INDEX to VOLUME 45 (New Names in Boldface) Abbreviatella
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Analysis of the Tribe Emesidini (Lepidoptera: Riodinidae)
Zootaxa 4668 (4): 475–488 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4668.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:211AFB6A-8C0A-4AB2-8CF6-981E12C24934 Genomic analysis of the tribe Emesidini (Lepidoptera: Riodinidae) JING ZHANG1, JINHUI SHEN1, QIAN CONG1,2 & NICK V. GRISHIN1,3 1Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Insti- tute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050; [email protected] 2present address: Institute for Protein Design and Department of Biochemistry, University of Washington, 1959 NE Pacific Street, HSB J-405, Seattle, WA, USA 98195; [email protected] Abstract We obtained and phylogenetically analyzed whole genome shotgun sequences of nearly all species from the tribe Emesidini Seraphim, Freitas & Kaminski, 2018 (Riodinidae) and representatives from other Riodinidae tribes. We see that the recently proposed genera Neoapodemia Trujano, 2018 and Plesioarida Trujano & García, 2018 are closely allied with Apodemia C. & R. Felder, [1865] and are better viewed as its subgenera, new status. Overall, Emesis Fabricius, 1807 and Apodemia (even after inclusion of the two subgenera) are so phylogenetically close that several species have been previously swapped between these two genera. New combinations are: Apodemia (Neoapodemia) zela (Butler, 1870), Apodemia (Neoapodemia) ares (Edwards, 1882), and Apodemia (Neoapodemia) arnacis (Stichel, 1928) (not Emesis); and Emesis phyciodoides (Barnes & Benjamin, 1924) (not Apodemia), assigned to each genus by their monophyly in genomic trees with the type species (TS) of the genus. -
Field Checklist of the Butterflies of Sonora, Mexico
Field Checklist Field Checklist of of the Butterfl ies of Sonora, Mexico The Butterfl ies of Sonora, Mexico List Compiled by Jim P. Brock Checklists available at Mexico Birding Website March 2009 http://MexicoBirding.com Kurt Radamaker Checklist Locality __________________________________ Observer(s) _______________________________ of the 1 Date __________Time ______ Total Species ____ Butterfl ies of Mexico Weather __________________________________ Remarks __________________________________ This checklist is a direct result of the work of Jim P. Brock's col- lecting and research in Sonora, Mexico since 1984. Locality __________________________________ Observer(s) _______________________________ 2 Date __________Time ______ Total Species ____ Weather __________________________________ Remarks __________________________________ Locality __________________________________ Observer(s) _______________________________ 3 Date __________Time ______ Total Species ____ Weather __________________________________ Remarks __________________________________ Locality __________________________________ Observer(s) _______________________________ 4 Date __________Time ______ Total Species ____ Weather __________________________________ Remarks __________________________________ Locality __________________________________ Observer(s) _______________________________ 5 Date __________Time ______ Total Species ____ Weather __________________________________ Booklet Design by Remarks __________________________________ Kurt and Cindy Radamaker March 2009 1 2 -
Downloaded from BOLD Or Requested from Other Authors
www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries. -
New Taxa and New Records of Butterflies from Vietnam (5) (Lepidoptera, Papilionoidea) 355-364 Atalanta 47 (3/4): 355-364, Marktleuthen (2016), ISSN 0171-0079
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2016 Band/Volume: 47 Autor(en)/Author(s): Monastyrskii Alexander L. Artikel/Article: New taxa and new records of butterflies from Vietnam (5) (Lepidoptera, Papilionoidea) 355-364 Atalanta 47 (3/4): 355-364, Marktleuthen (2016), ISSN 0171-0079 New taxa and new records of butterflies from Vietnam (5) (Lepidoptera, Papilionoidea) by ALEXANDER L. MONASTYRSKII received 12.VI.2016 Abstract: Two new species and three new subspecies of Papilionoidea discovered in Vietnam between 2013-2015 are described and illustrated: Celaenorrhinus markus spec. nov., Faunis caelestis spec. nov., Dodona eugenes indigena sub- spec. nov., Horaga albimacula insulana subspec. nov., and Remelana jangala daoana subspec. nov. Six additional species in the families Nymphalidae and Lycaenidae are newly recorded to Vietnam. Introduction: Several taxa new to science and new to the country were discovered during studies of the Vietnamese butterfly fauna in 2013-2015. These observations span the entire country, including Lao Cai and Ha Giang Provinces (northern Vietnam, Dong Van and Meo Vac Districts) and Ba Ria - Vung Tau Province (southern Vietnam, Con Son Is., Con Dao National Park). The former area is saturated with species distributed throughout the Sino-Himalayan re- gion that penetrate into montane habitats in Vietnam along the Vietnam-China border. The latter includes an isolated butterfly assemblage, similar to continental species in southern Vietnam that have diverged enough to be considered as new subspecies. This descriptive work reports recent progress in my ongoing work to document the spectacular butterfly diversity of Vietnam (MONASTYRSKII, 2004; MONASTYRSKII, 2012). -
Prospects for Biological Control of Cogongrass
Prospects for biological control of cogongrass William A. Overholt1, James P. Cuda2, John A. Goolsby3, A. Millie Burrell4 , Bruno Le Ru5, Keiji Takasu6, Patricia E. Klein4, Alexis Racelis7 and Purnama Hidayat8 1University of Florida, Fort Pierce, FL, USA 2University of Florida, Gainesville, FL, USA 3USDA/ARS, Edinburg, TX, USA 4Texas A&M University, College Station, TX, USA 5International Centre of Insect Physiology and Ecology, Nairobi, Kenya 6Kyushu University, Fukuoka, Japan 7University of Texas–Pan American, Edinburg, TX 8Bogor Agricultural University, Bogor, Indonesia Outline • Background on cogongrass • Areas to explore • African stemborers • Asian insects • What’s next Cogongrass • Perennial • Rhizotomous (60% of biomass in rhizome) • C4 photosynthesis • Displaces native/desirable vegetation • Evidence of alleopathy • Increases frequency and severity of fires Distribution of Imperata cylindrica Source: Global Biodiversity Information Facility (gbif.org) Imperata species in the USA Imperata cylindrica Imperata Imperata brevifolia brasiliensis Cogongrass in southeastern USA Japan ? 15 10 Florida peninsula 5 Gulf Coast 0 Philippines ‐10 ‐5 0 5 10152025 Second axis Aiken, SC ‐5 Japanese blood grass ‐10 Imperata brasiliensis ‐15 First axis Burrell, M., A. E. Pepper, G. Hodnett, J. A. Goolsby, W. A. Overholt, A. E. Racelis, R. Diaz and P. E. Klein. 2015. Exploring origins, invasion history and genetic diversity of Imperata cylindrica (L.) P. Beauv. (Cogongrass) in the United States using genotyping by sequencing. Molecular Ecology. DOI: 10.1111/mec.13167. How biological control works Native home Invaded area Biological Control Grasses as biological control targets • Often thought to have few specialized herbivores due to: • Simple architecture • Scarcity of secondary metabolites • Feeding deterrents (e.g. -
Butterfly Extirpations
RAFFLES BULLETIN OF ZOOLOGY 2018 Conservation & Ecology RAFFLES BULLETIN OF ZOOLOGY 66: 217–257 Date of publication: 19 April 2018 http://zoobank.org/urn:lsid:zoobank.org:pub:CFF83D96-5239-4C56-B7CE-8CA1E086EBFD Butterfy extirpations, discoveries and rediscoveries in Singapore over 28 years Anuj Jain1,2*#, Khew Sin Khoon3, Cheong Weei Gan2, and Edward L. Webb1* Abstract. Habitat loss and urbanisation in the tropics have been recognised as major drivers of species extinctions. Concurrently, novel habitats such as urban parks have been shown to be important as habitats and stepping stones in urban ecosystems around the world. However, few studies have assessed long-term patterns of species extinctions and discoveries in response to these drivers in the tropics. We know little about long-term persistence and utility of novel habitats in tropical urban ecosystems. In this study, we produced an updated and exhaustive butterfy checklist of species recorded from Singapore till December 2017 to investigate trends in butterfy extirpations (local extinctions), discoveries (new country records) and rediscoveries and how these relate to land use change in 28 years (1990–2017) in Singapore. Up to 144 butterfy species were identifed to be extirpated in Singapore by 1990. From 1990–2017, an additional nine butterfy extirpations have potentially occurred, which suggests a maximum of 153 butterfy extirpations to date. The rate of extirpations between 1990 to 2017 (< 0.33 extirpations per year) was much lower than the rate of extirpations between 1926 to 1989 (> 1.52 extirpations per year). The majority of potentially extirpated butterfies between 1990 to 2017 were species restricted to mature forests. -
Phylogenetic Analysis and Systematics
European Journal of Taxonomy 270: 1–36 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.270 www.europeanjournaloftaxonomy.eu 2017 · Le Ru B. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:7E8B1A8F-48C1-433B-A34E-A95CDDE3D13F Phylogenetic analysis and systematics of the Acrapex unicolora Hampson species complex (Lepidoptera, Noctuidae, Noctuinae, Apameini), with the description of five new species from the Afrotropics Bruno LE RU 1,*, Claire CAPDEVIELLE-DULAC 2, Boaz K. MUSYOKA 3, Beatrice PALLANGYO 4, Mohamedi NJAKU 5, Onésime MUBENGA 6, Gilson CHIPABIKA 7, Rose NDEMAH 8, Grégoire BANI 9, Richard MOLO 10, George ONG’AMO 11 & Gael J. KERGOAT 12 1,2 IRD/CNRS, UMR IRD 247 EGCE, Laboratoire Evolution Génomes Spéciation, Avenue de la terrasse, BP 1, 91198 Gif-sur-Yvette, France and Université Paris-Sud 11, 91405 Orsay, France. 1,3 Unité de Recherche UMR 247, African Insect Science for Food and Health (icipe), PO Box 30772-00100, Nairobi, Kenya. 4,5 Biocontrol Program, PO Box 30031, Kibaha, Tanzania. 6 Faculté des Sciences agronomiques, Université de Kisangani, Kisangani, Democratic Republic of the Congo. 7 Zambia Agriculture Research Institute, Mount Maluku Central Research Station, PO Box 8, Chilanga, Zambia. 8 International Institute of Tropical Agriculture, PO Box 2008, Messa, Yaoundé, Cameroon. 9 Centre de Recherches Agronomiques de Loudima (CRAL), BP 28, Loudima, Republic of the Congo. 10 Namulonge Agricultural and Animal Production Research Institute (NAARI), PO Box 7084, Kampala, Uganda. 11 School of Biological Science, College of Physical and Biological Sciences (Chiromo Campus), University of Nairobi, PO Box 30197, Nairobi, Kenya. -
9 Morphometric Variation in the Species of Two
J. biodivers. conserv. bioresour. manag. 3(1), 2017 MORPHOMETRIC VARIATION IN THE SPECIES OF TWO SUBFAMILIES OF LYCAENID BUTTERFLIES (LEPIDOPTERA: LYCAENIDAE) OF BANGLADESH Akand, S., M. A. Bashar, S. Rahman and H. R. Khan Environmental Biology and Biodiversity Laboratory (EBBL), Department of Zoology, University of Dhaka, Dhaka-1000, Bangladesh Abstract A laboratory examination was done on the morphometric variation of lycaenid butterflies. Identifying characteristics, viz. forewing length (FWL), hind wing length (HWL), body length (BdL) and antennal length (AntL) were used for the analysis. A total of 514 individuals of lycaenid butterflies was identified under two subfamilies Polyommatinae and Theclinae. Among them 265 individuals were placed under 19 species of Polyommatinae and 249 individuals under 25 species of Theclinae. ANOVA tests were conducted to find differences between the butterfly species of the two subfamilies through identifying characters like FWL (F=10.37, P=0.005), HWL (F=3.81, P=0.067), BdL (F=5.78, P=0.027) and AntL (F=2.77, P=0.114). A linear regression analysis of FWL, HWL, BdL and AntL of the species under the two subfamilies showed significant differences between Polyommatinae and Theclinae. These differences stand among the species of both the subfamilies and produced good results to identify the species more correctly. Key words: Lycaenidae, butterfly, species, morphometric variation, Polyommatinae, Theclinae. INTRODUCTION Morphometrics is the study of any quantitative measurement and analysis of morphological traits affecting on it (Digo et al. 2015). Lycaenidae is commonly known as „Gossamer-winged butterflies‟ comprising a huge number of species– an estimated 6,000 species worldwide, with greatest diversity in the tropics (Ackery and Vane-Wright 1984, Fiedler 1996). -
Red List of Bangladesh 2015
Red List of Bangladesh Volume 1: Summary Chief National Technical Expert Mohammad Ali Reza Khan Technical Coordinator Mohammad Shahad Mahabub Chowdhury IUCN, International Union for Conservation of Nature Bangladesh Country Office 2015 i The designation of geographical entitles in this book and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, International Union for Conservation of Nature concerning the legal status of any country, territory, administration, or concerning the delimitation of its frontiers or boundaries. The biodiversity database and views expressed in this publication are not necessarily reflect those of IUCN, Bangladesh Forest Department and The World Bank. This publication has been made possible because of the funding received from The World Bank through Bangladesh Forest Department to implement the subproject entitled ‘Updating Species Red List of Bangladesh’ under the ‘Strengthening Regional Cooperation for Wildlife Protection (SRCWP)’ Project. Published by: IUCN Bangladesh Country Office Copyright: © 2015 Bangladesh Forest Department and IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: Of this volume IUCN Bangladesh. 2015. Red List of Bangladesh Volume 1: Summary. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp. xvi+122. ISBN: 978-984-34-0733-7 Publication Assistant: Sheikh Asaduzzaman Design and Printed by: Progressive Printers Pvt. -
Vol.22 (2), June, 2020 BIONOTES TABLE of CONTENTS
ISSN 0972- 1800 VOLUME 22, NO. 2 QUARTERLY APRIL-JUNE, 2020 Date of Publication: 28th June, 2020 BIONOTES A Quarterly Newsletter for Research Notes and News On Any Aspect Related with Life Forms BIONOTES articles are abstracted/indexed/available in the Indian Science Abstracts, INSDOC; Zoological Record; Thomson Reuters (U.S.A); CAB International (U.K.); The Natural History Museum Library & Archives, London: Library Naturkundemuseum, Erfurt (Germany) etc. and online databases. Founder Editor Manuscripts Dr. R. K. Varshney, Aligarh, India Please E-mail to [email protected]. Board of Editors Guidelines for Authors Peter Smetacek, Bhimtal, India BIONOTES publishes short notes on any aspect of biology. Usually submissions are V.V. Ramamurthy, New Delhi, India reviewed by one or two reviewers. Jean Haxaire, Laplune, France Kindly submit a manuscript after studying the format used in this journal Vernon Antoine Brou, Jr., Abita Springs, (http://www.entosocindia.org/). Editor U.S.A. reserves the right to reject articles that do not Zdenek F. Fric, Ceske Budejovice, Czech adhere to our format. Please provide a contact Republic telephone number. Authors will be provided Stefan Naumann, Berlin, Germany with a pdf file of their publication. R.C. Kendrick, Hong Kong SAR Address for Correspondence Publication Policy Butterfly Research Centre, Bhimtal, Information, statements or findings Uttarakhand 263 136, India. Phone: +91 published are the views of its author/ source 8938896403. only. Email: [email protected] From Volume 21 Published by the Entomological Society of India (ESI), New Delhi (Nodal Officer: V.V. Ramamurthy, ESI, New Delhi) And Butterfly Research Centre, Bhimtal Executive Editor: Peter Smetacek Assistant Editor: Shristee Panthee Butterfly Research Trust, Bhimtal Published by Dr. -
A SKELETON CHECKLIST of the BUTTERFLIES of the UNITED STATES and CANADA Preparatory to Publication of the Catalogue Jonathan P
A SKELETON CHECKLIST OF THE BUTTERFLIES OF THE UNITED STATES AND CANADA Preparatory to publication of the Catalogue © Jonathan P. Pelham August 2006 Superfamily HESPERIOIDEA Latreille, 1809 Family Hesperiidae Latreille, 1809 Subfamily Eudaminae Mabille, 1877 PHOCIDES Hübner, [1819] = Erycides Hübner, [1819] = Dysenius Scudder, 1872 *1. Phocides pigmalion (Cramer, 1779) = tenuistriga Mabille & Boullet, 1912 a. Phocides pigmalion okeechobee (Worthington, 1881) 2. Phocides belus (Godman and Salvin, 1890) *3. Phocides polybius (Fabricius, 1793) =‡palemon (Cramer, 1777) Homonym = cruentus Hübner, [1819] = palaemonides Röber, 1925 = ab. ‡"gunderi" R. C. Williams & Bell, 1931 a. Phocides polybius lilea (Reakirt, [1867]) = albicilla (Herrich-Schäffer, 1869) = socius (Butler & Druce, 1872) =‡cruentus (Scudder, 1872) Homonym = sanguinea (Scudder, 1872) = imbreus (Plötz, 1879) = spurius (Mabille, 1880) = decolor (Mabille, 1880) = albiciliata Röber, 1925 PROTEIDES Hübner, [1819] = Dicranaspis Mabille, [1879] 4. Proteides mercurius (Fabricius, 1787) a. Proteides mercurius mercurius (Fabricius, 1787) =‡idas (Cramer, 1779) Homonym b. Proteides mercurius sanantonio (Lucas, 1857) EPARGYREUS Hübner, [1819] = Eridamus Burmeister, 1875 5. Epargyreus zestos (Geyer, 1832) a. Epargyreus zestos zestos (Geyer, 1832) = oberon (Worthington, 1881) = arsaces Mabille, 1903 6. Epargyreus clarus (Cramer, 1775) a. Epargyreus clarus clarus (Cramer, 1775) =‡tityrus (Fabricius, 1775) Homonym = argentosus Hayward, 1933 = argenteola (Matsumura, 1940) = ab. ‡"obliteratus" -
A Review of Apodemia Hepburni (Lycaenidae: Riodininae) with a Description of a New Subspecies
Journal of the Lepidopterists' Society 45(2), 1991, 135-141 A REVIEW OF APODEMIA HEPBURNI (LYCAENIDAE: RIODININAE) WITH A DESCRIPTION OF A NEW SUBSPECIES GEORGE T. AUSTIN Nevada State Museum and Historical Society, 700 Twin Lakes Drive, Las Vegas, Nevada 89107 ABSTRACT. Apodemia hepburni Godman and Salvin (Lycaenidae: Riodininae) is reviewed. A new subspecies, Apodemia hepburnt remota Austin, is described from south ern Baja California, Mexico, based on 112 specimens. Both taxa of the species exhibit biphenism. Additional key words: Baja California Sur, Sonora, Mexico, A. palmerii, A. murphyt. Apodemia hepburni is a small metalmark (Lycaenidae: Riodininae) described from Chihuahua, Mexico (Godman & Salvin 1886). In con junction with a study of the phenotypically similar Apodemia palmerii (W. H. Edwards) (Austin 1987), I had the opportunity to examine series of A. hepburni in several major museums in the United States and those in a number of private collections. The degree of seasonal and geo graphical variation I noted prompted this review. Throughout, butterfly size (mean and range in mm) is the length of the forewing from base to apex. Specimens indicated by "M" and "F" are male and female, respectively. Capitalized color names are after Smithe (1975, 1981). Apodemia hepburni hepburni Godman and Salvin (Figs. 1-4) Apodemia hepburni Godman and Salvin 1886:468 (type locality: Pinos Altos, Chihuahua, Mexico); holotype male at The Natural History Museum, London (Miller & Brown 1981). The species was figured and very briefly described from a single male by Godman and Salvin (1886). I examined photographs of the type, a somewhat worn male without antennae and with a phenotype of the first brood.