Music Recommendation Algorithms: Discovering Weekly Or Discovering
MUSIC RECOMMENDATION ALGORITHMS Music Recommendation Algorithms: Discovering Weekly or Discovering Weakly? Jennie Silber Muhlenberg College, Allentown, PA, USA Media & Communication Department Undergraduate High Honors Thesis April 1, 2019 1 MUSIC RECOMMENDATION ALGORITHMS 2 MUSIC RECOMMENDATION ALGORITHMS Abstract This thesis analyzes and assesses the cultural impact and economic viability that the top music streaming platforms have on the consumption and discovery of music, with a specific focus on recommendation algorithms. Through the support of scholarly and journalistic research as well as my own user experience, I evaluate the known constructs that fuel algorithmic recommendations, but also make educated inferences about the variables concealed from public knowledge. One of the most significant variables delineated throughout this thesis is the power held by human curators and the way they interact with algorithms to frame and legitimize content. Additionally, I execute my own experiment by creating new user profiles on the two streaming platforms popularly used for the purpose of discovery, Spotify and SoundCloud, and record each step of the music discovery process experienced by a new user. After listening to an equal representation of all genre categories within each platform, I then compare the genre, release year, artist status, and content promotion gathered from my listening history to the algorithmically-generated songs listed in my ‘Discover Weekly’ and ‘SoundCloud Weekly’ personalized playlists. The results from this experiment demonstrate that the recommendation algorithms that power these discovery playlists intrinsically facilitate the perpetuation of a star- driven, “winner-take-all” marketplace, where new, popular, trendy, music is favored, despite how diverse of a selection the music being listened to is.
[Show full text]