Activation by Inhibition of Second Messenger Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Activation by Inhibition of Second Messenger Compounds 1230 Annals ofthe Rheumatic Diseases 1992; 51: 1230-1236 Sulphasalazine inhibition of human granulocyte Ann Rheum Dis: first published as 10.1136/ard.51.11.1230 on 1 November 1992. Downloaded from activation by inhibition of second messenger compounds Gunnar Carlin, Richard Djursater, Goran Smedegard Abstract We have previously found by using the The effects of sulphasalazine on the pro- granulocyte as a model system that sulpha- duction of second messenger compounds in salazine inhibits cellular activation before activa- human granulocytes have been characterised tion of protein kinase C by interference with the by various stimuli. The increases in cytosolic synthesis of phosphoinositide derived second calcium, inositol trisphosphate, diacylgly- messenger compounds.6 As several cell types cerol, and phosphatidic acid (all important utilise phosphoinositide dependent signal trans- mediators of intracellular signal transduction) duction, sulphasalazine may modify a principal triggered by stimulation were inhibited by common mechanism for the regulation of sulphasalazine. The metabolites 5-amino- cell activity, which may explain the beneficial salicylic acid and sulphapyridine were less effects of the drug in a variety of diseases. potent inhibitors than the mother compound. Many of the stimuli used in the earlier studies It is concluded that sulphasalazine inhibits trigger an increase in cytosolic calcium as part of the synthesis of phosphoinositide derived the activation sequence. The increase in calcium second messenger compounds at the level of has, in a variety of cell systems, been found to phospholipase C or its regulatory guanosine depend on remodelling of phosphoinositides'3 5'-triphosphate (GTP) binding protein. In- (see fig 1). Ligation of a cell receptor leads to hibition of phosphatidic acid synthesis was the phospholipase C dependent hydrolysis of either due to the same mechanism, or to phosphatidylinositol-4,5-bisphosphate genera- interaction with a phospholipase D regulating ting two triggers of cell responses, namely GTP binding protein. diacylglycerol, an activator of protein kinase C,14 and inositol-1,4,5-trisphosphate, which (Ann Rheum Dis 1992; 51: 1230-1236) triggers the release of cell associated calcium.13 The link between the receptor and phospho- lipase C is in many cells a guanosine 5'- Sulphasalazine, a drug used for the treatment of trisphosphate (GTP) binding protein.'5 inflammatory bowel disease,' has during the last Several drugs have been shown to modulate http://ard.bmj.com/ decade also been shown to treat effectively other granulocyte responses such as superoxide pro- diseases of a presumably autoimmune nature, duction,16 and a few studies have indirectly such as rheumatoid arthritis, ankylosing associated the drug action with an interaction spondylitis,2 and psoriasis.3 with the synthesis of phosphoinositide derived The aetiology of tissue injury in rheumatoid second messenger molecules'7 18 and the GTP arthritis is unclear. A variety of cells, including binding protein.'9 granulocytes, have been suggested to contribute The purpose of this study was to evaluate on September 24, 2021 by guest. Protected copyright. to the initiation and propagation of the immune whether the inhibitory effects of sulphasalazine response in the rheumatoid synovium. Kitsis on cellular activation were related to the and Weissmann4 have reviewed the role of the production of second messenger compounds. neutrophil granulocyte as a key player in the We found that sulphasalazine inhibited the articular and extra-articular manifestations of production of inositol-1,4,5-trisphosphate and rheumatoid arthritis. They compared rheuma- consequently the increase in cytosolic calcium, toid joint inflammation to the Arthus reaction, a which indicated an interaction with either the neutrophil dependent interaction in which plasma membrane receptor, the associated GTP repeated exposure to an antigen results in the binding protein, or the phospholipase C. formation of immune complexes and activation Sulphasalazine still inhibited activation of cells of complement, causing an influx of granulo- stimulated with guanosine 5'-[y-thio]triphos- cytes and tissue destruction. phate (GTP[S]), a stimulus which bypasses the Sulphasalazine has been found to inhibit plasma membrane receptor. Department of Pharmacology, Kabi granulocyte activation, assessed as superoxide The production of phosphatidic acid, a meta- Pharmacia Therapeutics, production by cells activated with serum treated bolite of diacylglycerol, the other product of Uppsala, Sweden zymosan,5 chemotactic peptide N-formyl-L- phospholipase C activity, was also inhibited by G Carlin R Djursater methionyl-L-leucyl-L-phenylalanine (fMLP)6 7 sulphasalazine in cells unspecifically labelled in G Smedegard and immune complexes.8 Sulphasalazine the lipid glyceride backbone. Phosphatidic acid is formed of Correspondence to: has also been found to inhibit, for example, alternatively by hydrolysis phos- Dr Gunnar Carlin, granulocyte chemotaxis,9 lymphocyte prolifera- phatidylcholine; we found that sulphasalazine Kabi Pharmacia AB, S-751 82 Uppsala, Sweden. tion,'0 and interleukin 2 production" in also inhibited the production of radioactive Accepted for publication addition to monocyte production of interleukin phosphatidic acid in cells specifically labelled in 5 June 1992 1.12 phosphatidylcholine. Sulphasalazine inhibition ofhuman granulocyte activation 1231 37°C as described previously.2' Labelled granulocytes were washed and resuspended in Ann Rheum Dis: first published as 10.1136/ard.51.11.1230 on 1 November 1992. Downloaded from Hanks's balanced salt solution (HBSS, Gibco, p Paisley, UK) containing 10 mM LiCl. Each sample, containing 25 x 106 cells in 1 ml HBSS with LiCl, was preincubated with the test PLD i compound for 10 minutes at 37°C before chal- lenge with 0 1 ,IM fMLP (Calbiochem, La Jolla, PIP2 PC CA, USA). The reaction was terminated by addition of 7-5% trichloroacetic acid. Inositol- GDP .400' 1 ,4,5-trisphosphate was isolated by ion ex- IP3 DAG _ PA change chromatography as decribed pre- viously.21 Ca CYTOSOLIC CALCIUM The granulocytes, 1 x I08/ml, were incubated with 10 FtM FURA-2AM (Molecular Probes Inc., Eugene, OR, USA) as described by Korchak et al.22 The FURA-2 loaded cells were suspended to 25 x 106 cells/ml in ice cold PBS * 4 without Ca2' and Mg2e until used. The cells, 2-5 x I6/ml were preincubated in PBS either with or without Ca2+ and Mg2+ (in Protein Protein the latter case the buffer was supplemented with (inactive) (inactive) 1 mM EGTA) and test compound for two Protein-P minutes before the addition of stimulus. Fluo- (Active) rescence changes were monitored in a Shimadzu RF-5000 spectrophotometer equipped with a continuous magnetic stirring device at the dual excitation wavelengths of 340 and 380 nm, and emission at 510 nm. The concentration of Cell response cytosolic calcium was calculated by the ratio Figure I Schematic illustration ofthe partplayed by second messenger compounds in the method of Grynkiewicz et al.23 activation ofcells. The binding ofa ligand (L) to a membrane receptor (R) activates at 10 had considerable a phospholipase C (PLC) via the action ofa guanosine 5'-trisphosphate (GTP) Sulphasalazine ,umol/l bindingprotein (G). The activity ofthe GTP bindingprotein is regulated by absorbances at 340 and 380 nm. As the reduction its intrinsic GTPase activity, which hydrolyses GTP and thereby inactivates the of the emitted light was about 25% at the two protein. By hydrolysis ofphosphatidylinositol4,5-bisphosphate (PIP2), PLC generates wavelengths, however, sulphasalazine had only diacylglycerol (DAG), an activator ofprotein kinase C (PKC), and inositol-1,4,5- a negligible effect on the calculations of [Ca2+] trisphosphate (IP3), which triggers the release ofcell associated calcium and the subsequent http://ard.bmj.com/ activation ofa protein kinase (CaPK). Diacylglycerol isfurther phosphorylated to using the ratio method. phosphatidic acid (PA). Phosphatidic acid is alsoformed by a phospholipase D mediated (PLD) hydrolysis ofphosphatidylcholine (PC). Phosphatidic acid is subsequently dephosphorylated to DAG. GTP INDUCED SUPEROXIDE PRODUCTION The granulocytes were electropermeabilised Materials and methods essentially as described by Nasmith et al.24 Cells TEST COMPOUNDS were resuspended in permeabilisation buffer Sulphasalazine, sulphapyridine, and 5-amino- to 107 cells/ml and permeabilised with two on September 24, 2021 by guest. Protected copyright. salicylic acid were from Kabi Pharmacia discharges of 5 kV/cm from a 25 RF capacitor by (Uppsala, Sweden). using a Bio-Rad gene pulser apparatus equipped with a 0-8 ml cuvette. Permeabilised cells were used immediately (within a few minutes). The BUFFER permeabilisation buffer contained 10 mM Dulbecco's phosphate buffered saline (PBS) HEPES, 140 mM KC1, 1 mM EGTA, and 0-193 with, or when specifically stated without, mM CaC12 (giving a free [Ca2+] concentration of 0-9 mM Ca2" and 0-5 mM Mg2+ was from 100 nmol/l), 1 mM MgCl2, and 10 mM glucose Statens Veterinarmedicinska Anstalt (Uppsala, (pH 7-0, 295 mosM). Sweden). A 133 FtM solution of cytochrome c (type VI from horse heart, Sigma Chemical, St. Louis, MO, USA) in 750 1d permeabilisation buffer ISOLATION OF GRANULOCYTES containing the test compound was prewarmed Granulocytes were isolated from heparinised to 37°C. Thereafter 100 1t of a 20 mM NADPH blood from healthy volunteers, not using anti- solution was added immediately followed by 50 inflammatory
Recommended publications
  • Elimination of GPI2 Suppresses Glycosylphosphatidylinositol Glcnac
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436003; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Elimination of GPI2 suppresses glycosylphosphatidylinositol GlcNAc transferase activity and alters GPI glycan modification in Trypanosoma brucei Aurelio Jenni‡§, SeBastian Knüsel¶, Rupa Nagar||, Mattias Benninger¶, RoBert Häner**, Michael A. J. Ferguson||, IsaBel Roditi¶, Anant K. Menon#, Peter Bütikofer‡1 From the ‡Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland, the §Graduate School for Chemical and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland, the ¶Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland, the ||Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom, the **Department for Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland, the #Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA. Running Title: GPI synthesis in the absence of GPI2 * The work was supported By Swiss National Science Foundation Sinergia grant CRSII5_170923 to RH, AKM and PB, by a Wellcome Tust Investigator Award (101842/Z13/Z) to MAJF and Swiss National Science Foundation grant 310030_184669 to IR. The authors declare that they have no conflicts of interest with the contents of this article. 1 To whom correspondence should Be addressed: Institute of Biochemistry and Molecular Medicine, Bühlstrasse 28, 3012 Bern, Switzerland. Tel.: 41-31-631-4113; E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436003; this version posted March 19, 2021.
    [Show full text]
  • Suramin Alters Phosphoinositide Synthesis and Inhibits Growth Factor Receptor Binding in HT-29 Cells'
    (CANCER RESEARCH 50. 6490-6496. October 15. 1990] Suramin Alters Phosphoinositide Synthesis and Inhibits Growth Factor Receptor Binding in HT-29 Cells' Reinhard Kopp2 and Andreas Pfeiffer Departments of Surgery and Internal Medicine II, Klinikum (irosshadern. University of Munich, West Germany ABSTRACT levels and a stimulation of calcium/calmodulin kinases. Di acylglycerol activates protein kinase C, a family of Ca2+-sensi- Initiation of cell growth frequently involves activation of growth factor tive and phospholipid-dependent isoenzymes, known to phos- receptor-coupled u rosine kinases and stimulation of the phosphoinositide phorylate regulatory proteins and to elevate cytosolic pH levels second messenger system. The antitrypanosomal and antifiliarial drug suramin has been shown to exert antiproliferative activities by inhibition (5, 6). Activation of protein kinase C by phorbol esters and of growth factor receptor binding. We therefore investigated the effect of elevation of intracellular calcium levels by calcium ionophores suramin on epidermal growth factor receptor-binding characteristics and, have been shown to be mitogenically active cofactors during the additionally, searched for effects on basal or cholinergically stimulated initiation of DNA synthesis (7-10). phospholipid metabolism in HT-29 cells. HT-29 colon carcinoma cells have recently been shown to Suramin caused a dose-dependent and noncompetitive inhibition of produce EGF/transforming growth factor «and insulin-like '"I-epidermal growth factor binding (concentration producing 50% inhi growth factor 1-like activities (11), indicating a possible auto bition, 44.2 Mg/ml)but did not alter muscarinic receptor binding. Suramin did not affect the basal '-'I* incorporation into phosphoinositides at crine proliferative effect of these growth factors.
    [Show full text]
  • (4,5) Bisphosphate-Phospholipase C Resynthesis Cycle: Pitps Bridge the ER-PM GAP
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Topological organisation of the phosphatidylinositol (4,5) bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM GAP Shamshad Cockcroft and Padinjat Raghu* Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK; *National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India Address correspondence to: Shamshad Cockcroft, University College London UK; Phone: 0044-20-7679-6259; Email: [email protected] Abstract Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane– associated diacylglycerol (DG) and the consumption of plasma membrane PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the plasma membrane, the DG formed during PLC activation is rapidly converted to phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the plasma membrane where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2.
    [Show full text]
  • Synthesis of Lysophospholipids
    Molecules 2010, 15, 1354-1377; doi:10.3390/molecules15031354 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis of Lysophospholipids Paola D’Arrigo 1,2,* and Stefano Servi 1,2 1 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy 2 Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory", Politecnico di Milano and Università degli Studi dell'Insubria, Via Mancinelli 7, 20131 Milano, Italy * Author to whom correspondence should be addressed; E-Mail: paola.d’[email protected]. Received: 17 February 2010; in revised form: 4 March 2010 / Accepted: 5 March 2010 / Published: 8 March 2010 Abstract: New synthetic methods for the preparation of biologically active phospholipids and lysophospholipids (LPLs) are very important in solving problems of membrane–chemistry and biochemistry. Traditionally considered just as second-messenger molecules regulating intracellular signalling pathways, LPLs have recently shown to be involved in many physiological and pathological processes such as inflammation, reproduction, angiogenesis, tumorogenesis, atherosclerosis and nervous system regulation. Elucidation of the mechanistic details involved in the enzymological, cell-biological and membrane-biophysical roles of LPLs relies obviously on the availability of structurally diverse compounds. A variety of chemical and enzymatic routes have been reported in the literature for the synthesis of LPLs: the enzymatic transformation of natural glycerophospholipids (GPLs) using regiospecific enzymes such as phospholipases A1 (PLA1), A2 (PLA2) phospholipase D (PLD) and different lipases, the coupling of enzymatic processes with chemical transformations, the complete chemical synthesis of LPLs starting from glycerol or derivatives. In this review, chemo- enzymatic procedures leading to 1- and 2-LPLs will be described.
    [Show full text]
  • Identification of a Phosphatidic Acid-Preferring Phospholipase Al
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 9574-9578, September 1994 Biochemistry Identification of a phosphatidic acid-preferring phospholipase Al from bovine brain and testis (lysophosphatidic acld/lysophosphoipase/Triton X-100 miceles/phospholpase D/diacylgycerol kinase) HENRY N. HIGGS AND JOHN A. GLOMSET* Departments of Biochemistry and Medicine and Regional Primate Research Center, Howard Hughes Medical Institute, University of Washington, SL-15, Seattle, WA 98195 Contributed by John A. Glomset, May 31, 1994 ABSTRACT Recent experiments in several laboratories drolysis by phospholipase A (PLA) activities, producing have provided evidence that phosphatidic acid functions in cell lysophosphatidic acid (LPA). A PA-specific PLA2 has been signaling. However, the mechaninsm that regulate cellular reported (16), but detailed information about this enzyme is phosphatidic acid levels remain obscure. Here we describe a lacking. Another possibility is that a PLA1 might metabolize soluble phospholipase Al from bovine testis that preferentially PA to sn-2-LPA. Several PLA1 activities have been identified hydrolyzes phosphatidic acid when assayed in Triton X-100 in mammalian tissues, including one found in rat liver plasma micelles. Moreover, the enzyme hydrolyzes phosphatidic acid membrane (17), another found in rat brain cytosol (18, 19), molecular species containing two unsaturated fatty acids in and others found in lysosomes (20, 21). None of these preference to those containing a combination of saturated and enzymes, however, displays a preference for PA as a sub- unsaturated fatty acyl groups. Under certain conditions, the strate. enzyme also displays lysophospholipase activity toward In the present study, we identify and characterize a cyto- lysophosphatidic acid. The phospholipase Al is not likely to be solic PLA1 with a strong preference for PA.
    [Show full text]
  • Dissociation of Inositol Trisphosphate from Diacylglycerol Production in Rous Sarcoma Virus-Transformed Fibroblasts Timothy J
    Dissociation of Inositol Trisphosphate from Diacylglycerol Production in Rous Sarcoma Virus-transformed Fibroblasts Timothy J. Martins, Yoshikazu Sugimoto, and R. L. Erikson Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138 Abstract. The metabolism of phosphatidylinositol (PI) changes intermediate between those of transformed and and related intermediates was studied in uninfected nontransformed cells. NY72-4 CEF exhibited no in- and Rous sarcoma virus-(RSV) infected chicken em- crease in phosphoinositol concentrations before 8 h in- bryo fibroblasts (CEFs). Cells infected with wild-type cubation at 35°C, indicating that the transformation- Downloaded from http://rupress.org/jcb/article-pdf/108/2/683/1057290/683.pdf by guest on 26 September 2021 RSV exhibited twofold increases in steady-state con- specific changes in inositol metabolism were a delayed centrations of inositol trisphosphate (IP3) and inositol event. Furthermore, inositol turnover was not activated bisphosphate (IP2) as compared to uninfected CEFs. In during this time. In contrast to the case of inositol me- addition, increased concentrations of IP3 and IP2 were tabolism, significant increases in diacylglycerol (DAG) observed in CEFs infected with the RSV temperature- concentrations were observed within 15-30 min after sensitive transformation mutant NY72-4 when main- shift of NY72-4 CEFs to 35°C. tained at the permissive temperature (35°C) for >24 h. These findings suggest that (a) the major changes in Slight increases were
    [Show full text]
  • Regulation of Signaling and Metabolism by Lipin-Mediated Phosphatidic Acid Phosphohydrolase Activity
    biomolecules Review Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity Andrew J. Lutkewitte and Brian N. Finck * Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA; [email protected] * Correspondence: bfi[email protected]; Tel: +1-3143628963 Received: 4 September 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms. Keywords: phosphatidic acid; diacylglycerol; lipin; signaling 1. Introduction Foundational work many decades ago by the laboratory of Dr. Eugene Kennedy defined the four sequential enzymatic steps by which three fatty acyl groups were esterified onto the glycerol-3-phosphate backbone to synthesize triglyceride [1].
    [Show full text]
  • (GPI)-Anchored Glycoprotein ACA ISOLATION, PURIFICATION, PRIMARY STRUCTURE DETERMINATION, and MOLECULAR PARAMETERS of ITS LIPID STRUCTURE*
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 277, No. 43, Issue of October 25, pp. 40472–40478, 2002 © 2002 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. A Novel Human Erythrocyte Glycosylphosphatidylinositol (GPI)-anchored Glycoprotein ACA ISOLATION, PURIFICATION, PRIMARY STRUCTURE DETERMINATION, AND MOLECULAR PARAMETERS OF ITS LIPID STRUCTURE* Received for publication, March 12, 2002, and in revised form, August 2, 2002 Published, JBC Papers in Press, August 7, 2002, DOI 10.1074/jbc.M202416200 Zorica A. Becker Kojic´‡ and Peter Terness From the Institute of Immunology, Department of Transplantation Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany A method has been elaborated to isolate and purify up no cytoplasmic tail, and are therefore located exclusively on the to homogeneity a novel membrane glycoprotein contain- extracellular side of the plasma membrane. Glycosylated phos- ing a glycosyl-phosphatidylinositol (GPI) anchor by phoinositol-anchored molecules are a structurally diverse fam- means of salting out with ammonium sulfate (40–80% ily of biomolecules (1–3) that includes: protozoan coat compo- saturation), followed by preparative SDS-PAGE, chro- nents, activation antigens, complement regulatory proteins, matography and acetone precipitation. The preparation adhesion molecules, membrane-associated enzymes, and many obtained was homogeneous upon electrophoresis in the others glycoproteins. This type of cell membrane attachment Downloaded from presence of 0.1% SDS after reduction with 2-mercapto- implies that the protein moieties of these antigens are located ethanol. It is protein-soluble at its isoelectrical point outside the membrane, have potentially high lateral mobility, (pH 5.5) with molecular mass of 65,000 daltons.
    [Show full text]
  • Phosphatidic Acid: Biosynthesis, Pharmacokinetics, Mechanisms of Action and Effect on Strength and Body Composition in Resistance-Trained Individuals Peter Bond
    Bond Nutrition & Metabolism (2017) 14:12 DOI 10.1186/s12986-017-0166-6 REVIEW Open Access Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals Peter Bond Abstract The mechanistic target of rapamycin complex 1 (mTORC1) has received much attention in the field of exercise physiology as a master regulator of skeletal muscle hypertrophy. The multiprotein complex is regulated by various signals such as growth factors, energy status, amino acids and mechanical stimuli. Importantly, the glycerophospholipid phosphatidic acid (PA) appears to play an important role in mTORC1 activation by mechanical stimulation. PA has been shown to modulate mTOR activity by direct binding to its FKBP12-rapamycin binding domain. Additionally, it has been suggested that exogenous PA activates mTORC1 via extracellular conversion to lysophosphatidic acid and subsequent binding to endothelial differentiation gene receptors on the cell surface. Recent trials have therefore evaluated the effects of PA supplementation in resistance-trained individuals on strength and body composition. As research in this field is rapidly evolving, this review attempts to provide a comprehensive overview of its biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Keywords: Phosphatidic acid, mTORC1, Muscle hypertrophy Background complex and functions as a serine/threonine protein kin- Skeletal muscle mass comprises roughly half of our body ase belonging to the phosphatidylinositol-3 kinase mass and is essential for locomotion, heat production (PI3K)-related kinase (PIKK) superfamily [7]. mTORC1 during periods of cold stress and overall metabolism [1]. acts as a signal integrator of various environmental cues Skeletal muscle mass can be increased by mechanical and controls protein synthesis, specifically the process of loading such as a resistance exercise program [2].
    [Show full text]
  • The Role of Phosphatidylinositol-Specific Phospholipase-C in Plant Defense Signaling
    The Role of Phosphatidylinositol-Specific Phospholipase-C in Plant Defense Signaling Ahmed M. Abd-El-Haliem Thesis committee Promotor Prof. Dr P.J.G.M. de Wit Professor of Phytopathology Wageningen University Co-promotor Dr M.H.A.J. Joosten Associate professor, Laboratory of Phytopathology Wageningen University Other members Prof. Dr H.J. Bouwmeester, Wageningen University Prof. Dr M.W. Prins, University of Amsterdam Prof. Dr G.C. Angenent, Wageningen University Dr S.H.E.J. Gabriёls, Monsanto Holland BV, Wageningen This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. The Role of Phosphatidylinositol-Specific Phospholipase-C in Plant Defense Signaling Ahmed M. Abd-El-Haliem Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Thursday 23 October 2014 at 11.00 a.m. in the Aula. Ahmed M. Abd-El-Haliem The Role of Phosphatidylinositol-Specific Phospholipase-C in Plant Defense Signaling, 188 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN 978-94-6257-118-1 TABLE OF CONTENTS CHAPTER 1 General Introduction & Thesis Outline 7 CHAPTER 2 Identification of Tomato Phosphatidylinositol-Specific 19 Phospholipase-C (PI-PLC) Family Members and the Role of PLC4 and PLC6 in HR and Disease Resistance CHAPTER 3 Defense Activation
    [Show full text]
  • Phosphatidic Acid – a Simple Phospholipid with Multiple Faces* Jolanta Zegarlińska, Magda Piaścik, Aleksander F
    Vol. 65, No 2/2018 163–171 https://doi.org/10.18388/abp.2018_2592 Review Phosphatidic acid – a simple phospholipid with multiple faces* Jolanta Zegarlińska, Magda Piaścik, Aleksander F. Sikorski and Aleksander Czogalla* Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Phosphatidic acid (PA) is the simplest glycerophospho- essential in numerous cellular functions, such as vesicular lipid naturally occurring in living organisms, and even trafficking, signal transduction, cytoskeletal organization though its content among other cellular lipids is minor, and cell proliferation (Yang & Frohman, 2012; Carman it is drawing more and more attention due to its multi- & Henry, 2013; Pleskot et al., 2013). Most of these tasks ple biological functions. PA is a precursor for other phos- are accomplished via binding of a broad range of effec- pholipids, acts as a lipid second messenger and, due to tor proteins and thus through regulation of their func- its structural properties, is also a modulator of mem- tions. PA is also able to remodel membranes by chang- brane shape. Although much is known about interaction ing their physicochemical properties when it is locally of PA with its effectors, the molecular mechanisms re- concentrated, which can also affect protein functionality main unresolved to a large degree. Throughout many of (Yang et al., 2008; Jang et al., 2012). the well-characterized PA cellular sensors, no conserved Phosphatidic acid is the simplest membrane glycer- binding domain can be recognized. Moreover, not much ophospholipid. However, despite its simple chemical is known about the cellular dynamics of PA and how it structure, the nature of the lipid itself is much more is distributed among subcellular compartments.
    [Show full text]
  • Inositol Phospholipid and Phosphatidic Acid Metabolism in Response to Membrane Receptor Activation
    Proceedings ofthe Nuttition Society (1985)~44, 167-172 167 Inositol phospholipid and phosphatidic acid metabolism in response to membrane receptor activation By J. N. HAWTHORNE,Department of Biochemistry, University Hospital and Medical School, Nottingham NG7 2UH The status of myo-inositol (Fig. r(a)) as a vitamin is uncertain since some human tissues can synthesize it from glucose-6-phosphate. Eagle et a1. (1957), however, showed that it was an essential growth factor for many human cells in tissue culture. The concentration required for optimum growth was higher than would be expected of a typical vitamin, suggesting a metabolic role for inositol. It now seems clear that this role involves the phospholipids which contain inositol, phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate(PtdInsqP; Fig. ~(b))and phosphatidylinositol-q,5-bisphosphate(PtdIns(,+,g)P,; Fig. ~(c)). For the nutritionist these phosphoinositides are of interest in at least three ways. First, their metabolism is linked to activation of many cell-surface receptors, most of which mobilize calcium (Michell, 1975). Second, very recent studies connect the phosphoinositides with control of cell proliferation through epidermal growth factor and with malignant transformation of cells. Third, these lipids are rich in arachidonic acid and in some cells this particular pool of the acid is used as a source of prostanoids. The present paper concentrates on the first two of these topics since they are attracting a good deal of attention and some controversy. Phosphoinositides and Ca mobilization Michell ( 1975) suggested that phosphoinositide-linked receptors were those which utilized Ca2+ as a ‘second messenger’ and he developed a theory linking OH (a’ OH I DHOH OH (b) opoj- OH (C) 0 II 0 - P - 0 - CH2 I I CH~~COR’ CHSCOR’ Fig.
    [Show full text]