Drought-Proofing Lake Lanier Wilton Rooks

Total Page:16

File Type:pdf, Size:1020Kb

Drought-Proofing Lake Lanier Wilton Rooks Drought Management Drought-Proofing Lake Lanier Wilton Rooks kay… In reality it is impossible Lake Lanier since it holds 65 percent of record low of 21 feet below full pool level to isolate Lake Lanier – or any the conservation storage for the entire with disastrous results to the economy Oother reservoir – from the impact Apalachicola-Chattahoochee-Flint River around the lake (Figure 1). of droughts. But is it possible to plan for Basin (ACF) basin but only has 6 percent droughts differently than has been done in of the watershed. The result is that it Endangered species the past? refills much slower than other reservoirs There are mussel and fish species on That is a question that haunts water on the Chattahoochee River making the endangered list in the Apalachicola policy professionals and government management of the lake even more River and Bay whose protection is regulators. In the past, regulators have difficult and unpredictable. the responsibility of the U.S. Fish said that they cannot plan for droughts and Wildlife Service (USFWS). The since they do not trust the forecasts. Factors impacting drought planning USACE has the responsibility to obtain Perhaps that is an indictment of sister for Lake Lanier concurrence from USFWS that their government agencies that focus on In a drought, downstream users from action will not put these species in forecasts, but it does provide a canvas for Metro Atlanta to Apalachicola, Florida jeopardy. Thus, they petitioned USFWS how droughts are viewed. depend on water withdrawals from for their biological opinion regarding Given the view that weather extremes Lake Lanier to meet their needs. Water a minimum required flow of 5,000 are generally predicted to become more conservation policies kick in and ease the cfs (cubic feet per second) into the severe with higher highs and lower lows burden on Lake Lanier, but as experienced Apalachicola River from the confluence (no matter the metric) how do we adjust in 2007, the lake took a major hit. During of the Flint and Chattahoochee Rivers. our thinking and planning for droughts? that experience Lake Lanier reached a The USFWS concurred that as long as What should we expect from our water policy and regulators that will prepare us for potentially worse droughts? Was the drought of 2007-2008 a harbinger of the future for Lake Lanier? Lake Lanier has had a turbulent past for the last 25 years. It has been in the bullseye of legal battles among Georgia, Florida, and Alabama with each state at various times suing each other as well as the US Army Corp of Engineers (USACE). When the US Supreme Court chose not to hear an appeal by Florida on a ruling by the 11th Circuit Court of Appeals that Lake Lanier is authorized as a water supply source, the belief was that the legal battles were over. However, Florida reinvigorated the legal battles with a lawsuit in the U.S. Supreme Court related to Georgia’s use of the waters of the ACF basin thereby depriving Florida of an equitable apportionment of the waters in the Chattahoochee and Flint Rivers. That battle involves Figure 1. Image of Lake Lanier in 2008. Winter 2015 / NALMS • LAKELINE 39 there is a minimum flow of 5,000 cfs at the reduced flow from the Flint required 4 through groundwater – surface water the first gage in the Apalachicola River feet of lake elevation from Lake Lanier to interaction. As water is pumped from the the endangered species would not be put make up the shortfall from the Flint River, aquifer, water from the surface waters into jeopardy, unless an extreme drought illustrating the connectivity of the entire flow into the aquifer, thereby reducing condition existed in which the flow could ACF Basin and the dependence on Lake the flows into the Apalachicola River. drop to 4,500 cfs. Lanier. Agricultural use of the waters of the ACF The USACE has the responsibility The agriculture-rich lands in Basin, including groundwater pumping, to manage the water in the reservoirs on southwest Georgia are dependent on can be almost 50 percent of the average the Chattahoochee River. Under normal irrigation from the Flint River and the annual consumption in the entire basin conditions flows into the Apalachicola Floridan Aquifer, which are connected (Figure 2). River average 20,000 cfs and an important criteria is balancing the conservation storage in the reservoirs. However, during a drought, the conservation storage in the reservoirs downstream of Lake Lanier are rapidly depleted leaving Lanier as the only available resource to meet the minimum required flows. This results in a condition where thousands of cubic feet per second are discharged from Lake Lanier just to meet the minimum required flow of 5,000 cfs into the Apalachicola River. During the drought of 2007-2008, discharges from Lanier in November 2007 averaged 2,244 cfs with a high of over 4,000 cfs. Imagine the view of the Chattahoochee River being out of its banks as it flowed past Atlanta while Lake Lanier was experiencing its worst drawdown in history. Metro Atlanta residents were under strict water consumption policies that created a contradictory situation that was only explained by the role of Lake Lanier in the total ACF Basin. Why is the Flint River important to Lake Lanier? A compounding factor is the role of the Flint River in the ACF Basin. The Flint, which starts under the runway at Hartsfield-Jackson Airport in Atlanta, flows through middle Georgia and the agriculture southwest Georgia, draining 8,460 square miles of the 19,600 square miles of the total ACF Basin. Under normal rainfall conditions it contributes approximately 45 percent of the total flow into the Apalachicola River. However, during the 2007-2008 drought, the flow from the Flint into the Apalachicola River reached a low as 600 cfs during the month of November 2007 with an average of less than 1,100 cfs for that month. The discharges from Lanier had to make up the difference to reach the 5,000 cfs minimum required flow. During the drought, one calculation estimated that Figure 2. Image of ACF Basin showing Flint River. 40 Winter 2015 / NALMS • LAKELINE So what are the elements of dropped consistently since 2000 and with limited shoreline impacts. drought planning? total consumption has dropped even Some investments would Forecasting though the population has increased. have to be made if 1073 msl Drought planning has to start with These savings resulted from emphasis were to replace 1071 as the forecasting. Unfortunately the weather on water efficiency plans and tiered “ceiling” used by the USACE crystal ball gets murky the further out one water consumption rates that provide for management of the lake tries to project. Major weather factors like incentives to residents and businesses level. But those investments strong El Nino or La Nina patterns can to upgrade fixtures and reduce are minimal compared to new give useful information but even those consumption. During a drought, reservoir construction. can be subject to countervailing forces. further actions are imposed to reduce § Currently there is 14 feet of Based on recent trends and projections, consumption even more, but with the flood control (1085-1071 msl) expectations are for shorter periods Metro Atlanta population increasing in Lake Lanier that is used of heavier rains and longer periods of substantially, even more per capita by the USACE to manage droughts. Predicting a precise temperature restrictions will have to be imposed. potential flooding situations. range or rainfall is only valid for a few 2. Increase storage – It is generally The USACE argues that this days out. However forecasting related understood that additional storage amount is needed in order to major events such as a wetter or of water would be beneficial during to provide adequate flood colder season than normal do provide a drought. There are political and protection in the event of useful information for drought planning. environmental arguments for and severe rainfall events either Predicting when a drought will start is against this but the benefit during a above or below Lake Lanier. difficult but predicting when it will end is drought is difficult to deny. There Over the 50 year life of Lake equally critical for planning purposes. are few options in the ACF Basin Lanier, only 6 feet has been to increase storage. A reservoir on required for this purpose. Contingency Planning the Flint River was taken off the § The USACE does not have If a drought is expected, what actions table in the 1960s and there are the authority to raise the can water managers and government scant possibilities that it will be full pool level without U.S. regulators take to mitigate the impact? resurrected. Once past the geological Congress authorization. With The goal of any planning should be to fall line there are limited possibilities the associated political issues extend the usefulness of available water for additional reservoirs of significant that exist among the three as long as possible. That means curtailing volume. states, this is considered a low usage to the maximum degree possible. In the Metro Atlanta area, probability. Since Lake Lanier holds 65 percent of various investigations are underway the water storage for the entire ACF for additional reservoirs. However, Role of the ACF stakeholders (ACFS) basin, extending the useful life of the a major source of additional storage Six years ago, a group of water stored water is extremely important. In is to increase the full pool “ceiling” professionals, environmentalists, and addition to Metro Atlanta water users, used by the USACE for Lake Lanier consumers organized to develop a solution numerous downstream users depend on it by 2 feet from 1071 above mean sea to the 20-year legal battle among the three to maintain reservoirs, provide drinking level (msl) to 1073.
Recommended publications
  • Okefenokee Swamp and St. Marys River Named Among America's
    Okefenokee Swamp and St. Marys River named Among America’s Most Endangered Rivers of 2020 Mining threatens, fish and wildlife habitat; wetlands; water quality and flow Contact: Ben Emanuel, American Rivers, 706-340-8868 Christian Hunt, Defenders of Wildlife 828-417-0862 Rena Ann Peck, Georgia River Network, 404-395-6250 Alice Miller Keyes, One Hundred Miles, 912-230-6494 Alex Kearns, St. Marys EarthKeepers, 912-322-7367 Washington, D.C. –American Rivers today named the Okefenokee Swamp and St. Marys River among America’s Most Endangered Rivers®, citing the threat titanium mining would pose to the waterways’ clean water, wetlands and wildlife habitat. American Rivers and its partners called on the U.S. Army Corps of Engineers and other permitting agencies to deny any proposals that risk the long-term protection of the Okefenokee Swamp and St. Marys River. “America’s Most Endangered Rivers is a call to action,” said Ben Emanuel, Atlanta- based Clean Water Supply Director with American Rivers. “Some places are simply too precious to allow risky mining operations, and the edge of the unique Okefenokee Swamp is one. The Army Corps of Engineers must deny the permit to save this national treasure.” The annual America’s Most Endangered Rivers report is a list of rivers at a crossroads, where key decisions in the coming months will determine the rivers’ fates. Over the years, the report has helped spur many successes including the removal of outdated dams, the protection of rivers with Wild and Scenic designations, and the prevention of harmful development and pollution. Rena Ann Peck, Executive Director of Georgia River Network, explains "The Okefenokee Swamp is like the heart of the regional Floridan aquifer system in southeast Georgia and northeast Florida.
    [Show full text]
  • Upper Apalachicola-Chattahoochee
    Georgia: Upper Apalachicola- Case Study Chattahoochee-Flint River Basin Water Resource Strategies and Information Needs in Response to Extreme Weather/Climate Events ACF Basin The Story in Brief Communities in the Apalachicola-Chattahoochee-Flint River Basin (ACF) in Georgia, including Gwinnett County and the city of Atlanta, faced four consecutive extreme weather events: drought of 2007-08, floods of Sep- tember and winter 2009, and drought of 2011-12. These events cost taxpayers millions of dollars in damaged infrastructure, homes, and businesses and threatened water supply for ecological, agricultural, energy, and urban water users. Water utilities were faced with ensuring reliable service during and after these events. Drought of 2007-2008 and 2012 Impacts Northern Georgia saw record-low precipitation in 2007. By late spring 2008, Lake Lanier, the state’s major water supply, was at 50% of its storage capacity. The drought, combined with record-high temperatures, caused an estimated $1.3 billion in economic losses and threatened local water utilities’ ability to meet demand for four million people. Similar drought conditions unfolded in 2011-2012, during which numerous Water Trends Georgia counties were declared disaster zones. The Chattahoochee River, its tributaries, and Reduced rain affected recharge of the surface-water- Lake Lanier provide water to most of the dependent reservoir. It reduced flows, dried tributaries, “There is nothing simple, nothing one sub-basin Atlanta and Columbus metro populations. The and caused ecological damage in a landscape already river is the most heavily used water resource in affected by urbanization, impervious cover, and reduced can do to solve the problem.
    [Show full text]
  • Lloyd Shoals
    Southern Company Generation. 241 Ralph McGill Boulevard, NE BIN 10193 Atlanta, GA 30308-3374 404 506 7219 tel July 3, 2018 FERC Project No. 2336 Lloyd Shoals Project Notice of Intent to Relicense Lloyd Shoals Dam, Preliminary Application Document, Request for Designation under Section 7 of the Endangered Species Act and Request for Authorization to Initiate Consultation under Section 106 of the National Historic Preservation Act Ms. Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426 Dear Ms. Bose: On behalf of Georgia Power Company, Southern Company is filing this letter to indicate our intent to relicense the Lloyd Shoals Hydroelectric Project, FERC Project No. 2336 (Lloyd Shoals Project). We will file a complete application for a new license for Lloyd Shoals Project utilizing the Integrated Licensing Process (ILP) in accordance with the Federal Energy Regulatory Commission’s (Commission) regulations found at 18 CFR Part 5. The proposed Process, Plan and Schedule for the ILP proceeding is provided in Table 1 of the Preliminary Application Document included with this filing. We are also requesting through this filing designation as the Commission’s non-federal representative for consultation under Section 7 of the Endangered Species Act and authorization to initiate consultation under Section 106 of the National Historic Preservation Act. There are four components to this filing: 1) Cover Letter (Public) 2) Notification of Intent (Public) 3) Preliminary Application Document (Public) 4) Preliminary Application Document – Appendix C (CEII) If you require further information, please contact me at 404.506.7219. Sincerely, Courtenay R.
    [Show full text]
  • Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards
    Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards ( 1) Purpose. The establishment of water quality standards. (2) W ate r Quality Enhancement: (a) The purposes and intent of the State in establishing Water Quality Standards are to provide enhancement of water quality and prevention of pollution; to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses and to maintain and improve the biological integrity of the waters of the State. ( b) The following paragraphs describe the three tiers of the State's waters. (i) Tier 1 - Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. (ii) Tier 2 - Where the quality of the waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the division finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the division's continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located.
    [Show full text]
  • 0429Lanierdoc
    Planned Primary Project Name Corps District Work Description Allocation State ($000) Work performed with recovery funds includes the control and removal of nuisance vegetation from the upper St. Johns River which serves as a nursery area for vegetation which floats downstream into the St. Johns River Federal Navigation Project. This work will keep the project channel open for navigation and to ensure public safety. This vegetation also displaces native species, changes ecosystem structure and alters ecological functions potentially impacting threatened and endangered species. Work will be FL REMOVAL OF AQUATIC GROWTH, FL JACKSONVILLE performed by hired contract. 225 Award a contract for replacement of critical equipment used to conduct invasive vegetation operations in the Jacksonville District. These operations include survey and monitoring of vegetation in the St. Johns River and Lake Okeechobee. The operations keep the principal navigable waterways and structures open for navigation and to ensure public safety. Additionally, this vegetation displaces native species, changes ecosystem structure and alters ecological functions potentially impacting threatened and endangered FL REMOVAL OF AQUATIC GROWTH, FL JACKSONVILLE species 225 Snagging, clearing, and removal of fallen trees, stumps and other debris from the Withlachoochee River FL WITHLACOOCHEE RIVER, FL JACKSONVILLE Federal navigation Project for the purpose of ensuring navigation and public safety. 250 Update inundation mapping below project for dam safety, flood damage reduction and emergency action GA ALLATOONA LAKE, GA MOBILE plans in order to improve emergency response to flood events and reduce risk to public. 350 Hire additional contract employees to provide increased maintenance support for project facilities.These activities will provide the public a safe and enjoyable recreational experience at the project.
    [Show full text]
  • Streamflow Maps of Georgia's Major Rivers
    GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 21 STREAMFLOW MAPS OF GEORGIA'S MAJOR RIVERS by M. T. Thomson United States Geological Survey Prepared cooperatively by the Geological Survey, United States Department of the Interior, Washington, D. C. ATLANTA 1960 STREAMFLOW MAPS OF GEORGIA'S MAJOR RIVERS by M. T. Thomson Maps are commonly used to show the approximate rates of flow at all localities along the river systems. In addition to average flow, this collection of streamflow maps of Georgia's major rivers shows features such as low flows, flood flows, storage requirements, water power, the effects of storage reservoirs and power operations, and some comparisons of streamflows in different parts of the State. Most of the information shown on the streamflow maps was taken from "The Availability and use of Water in Georgia" by M. T. Thomson, S. M. Herrick, Eugene Brown, and others pub­ lished as Bulletin No. 65 in December 1956 by the Georgia Department of Mines, Mining and Geo­ logy. The average flows reported in that publication and sho\vn on these maps were for the years 1937-1955. That publication should be consulted for detailed information. More recent streamflow information may be obtained from the Atlanta District Office of the Surface Water Branch, Water Resources Division, U. S. Geological Survey, 805 Peachtree Street, N.E., Room 609, Atlanta 8, Georgia. In order to show the streamflows and other features clearly, the river locations are distorted slightly, their lengths are not to scale, and some features are shown by block-like patterns.
    [Show full text]
  • Trophic State and Metabolism in a Southeastern Piedmont Reservoir
    TROPHIC STATE AND METABOLISM IN A SOUTHEASTERN PIEDMONT RESERVOIR by Mary Callie Mayhew (Under the direction of Todd C. Rasmussen) Abstract Lake Sidney Lanier is a valuable water resource in the rapidly developing region north of Atlanta, Georgia, USA. The reservoir has been managed by the U.S Army Corps of Engineers for multiple purposes since its completion in 1958. Since approximately 1990, Lake Lanier has been central to series of lawsuits in the “Eastern Water Wars” between Georgia, Alabama and Florida due to its importance as a water-storage facility within the Apalachicola-Chattahoochee-Flint River Basin. Of specific importance is the need to protect lake water quality to satisfy regional water supply demands, as well as for recreational and environmental purposes. Recently, chlorophyll a levels have exceeded state water-quality standards. These excee- dences have prompted the Georgia Environmental Protection Division to develop Total Max- imum Daily Loads for phosphorus in Lake Lanier. While eutrophication in Southeastern Piedmont impoundments is a regional problem, nutrient cycling in these lakes does not appear to behave in a manner consistent with lakes in higher latitudes, and, hence, may not respond to nutrient-abatement strategies developed elsewhere. Although phosphorus loading to Southeastern Piedmont waterbodies is high, soluble reac- tive phosphorus concentrations are generally low and phosphorus exports from the reservoir are only a small fraction of input loads. The prevailing hypothesis is that ferric oxides in the iron-rich, clay soils of the Southeastern Piedmont effectively sequester phosphorus, which then settle into the lake benthos. Yet, seasonal algal blooms suggest the presence of internal cycling driven by uncertain mechanisms.
    [Show full text]
  • Update of the Water Control Manual
    91154 Federal Register / Vol. 81, No. 242 / Friday, December 16, 2016 / Notices ADDRESSES section of this notice. Before Jim Woodruff Lock and Dam and Lake total of 705 mgd to a range of 597–621 including your address, phone number, Seminole. mgd—242 mgd from Lake Lanier email address, or any other personal The purpose and need for the federal (instead of 297 mgd) and 355–379 mgd identifying information in your action is to determine how federal downstream (instead of 408 mgd)— comment, you should be aware that projects in the ACF Basin should be through the year 2050 rather than 2040 your entire comment—including your operated for their authorized purposes, as specified in the 2013 request. personal identifying information—may in light of current conditions and USACE’s objectives for the Master be made available to the public at any applicable law, and to implement those Manual are to develop a water control time. While you can request us to operations through updated water plan that meets the existing water withhold your personal identifying control plans and manuals. The resource needs of the basin, fulfills its information from public review, we proposed action will result in an responsibilities in operating for the cannot guarantee that we will be able to updated Master Manual and individual authorized project purposes, and do so. project water control manuals (WCMs) complies with all pertinent laws. The Dated: December 8, 2016. that comply with existing USACE FEIS presents the results of USACE’s regulations and reflect operations under analysis of the environmental effects of Mark Harberg, existing congressional authorizations, the Proposed Action Alternative (PAA) Missouri River Recovery Program Manager, taking into account changes in basin that the USACE believes accomplishes U.S.
    [Show full text]
  • Fish Consumption Guidelines: Rivers & Creeks
    FRESHWATER FISH CONSUMPTION GUIDELINES: RIVERS & CREEKS NO RESTRICTIONS ONE MEAL PER WEEK ONE MEAL PER MONTH DO NOT EAT NO DATA Bass, LargemouthBass, Other Bass, Shoal Bass, Spotted Bass, Striped Bass, White Bass, Bluegill Bowfin Buffalo Bullhead Carp Catfish, Blue Catfish, Channel Catfish,Flathead Catfish, White Crappie StripedMullet, Perch, Yellow Chain Pickerel, Redbreast Redhorse Redear Sucker Green Sunfish, Sunfish, Other Brown Trout, Rainbow Trout, Alapaha River Alapahoochee River Allatoona Crk. (Cobb Co.) Altamaha River Altamaha River (below US Route 25) Apalachee River Beaver Crk. (Taylor Co.) Brier Crk. (Burke Co.) Canoochee River (Hwy 192 to Lotts Crk.) Canoochee River (Lotts Crk. to Ogeechee River) Casey Canal Chattahoochee River (Helen to Lk. Lanier) (Buford Dam to Morgan Falls Dam) (Morgan Falls Dam to Peachtree Crk.) * (Peachtree Crk. to Pea Crk.) * (Pea Crk. to West Point Lk., below Franklin) * (West Point dam to I-85) (Oliver Dam to Upatoi Crk.) Chattooga River (NE Georgia, Rabun County) Chestatee River (below Tesnatee Riv.) Chickamauga Crk. (West) Cohulla Crk. (Whitfield Co.) Conasauga River (below Stateline) <18" Coosa River <20" 18 –32" (River Mile Zero to Hwy 100, Floyd Co.) ≥20" >32" <18" Coosa River <20" 18 –32" (Hwy 100 to Stateline, Floyd Co.) ≥20" >32" Coosa River (Coosa, Etowah below <20" Thompson-Weinman dam, Oostanaula) ≥20" Coosawattee River (below Carters) Etowah River (Dawson Co.) Etowah River (above Lake Allatoona) Etowah River (below Lake Allatoona dam) Flint River (Spalding/Fayette Cos.) Flint River (Meriwether/Upson/Pike Cos.) Flint River (Taylor Co.) Flint River (Macon/Dooly/Worth/Lee Cos.) <16" Flint River (Dougherty/Baker Mitchell Cos.) 16–30" >30" Gum Crk.
    [Show full text]
  • Stream-Temperature Charcteristics in Georgia
    STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA U.S. GEOLOGICAL SURVEY Prepared in cooperation with the GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Water-Resources Investigations Report 96-4203 STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA By T.R. Dyar and S.J. Alhadeff ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4203 Prepared in cooperation with GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Atlanta, Georgia 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3039 Amwiler Road, Suite 130 Denver Federal Center Peachtree Business Center Box 25286 Atlanta, GA 30360-2824 Denver, CO 80225-0286 CONTENTS Page Abstract . 1 Introduction . 1 Purpose and scope . 2 Previous investigations. 2 Station-identification system . 3 Stream-temperature data . 3 Long-term stream-temperature characteristics. 6 Natural stream-temperature characteristics . 7 Regression analysis . 7 Harmonic mean coefficient . 7 Amplitude coefficient. 10 Phase coefficient . 13 Statewide harmonic equation . 13 Examples of estimating natural stream-temperature characteristics . 15 Panther Creek . 15 West Armuchee Creek . 15 Alcovy River . 18 Altamaha River . 18 Summary of stream-temperature characteristics by river basin . 19 Savannah River basin . 19 Ogeechee River basin. 25 Altamaha River basin. 25 Satilla-St Marys River basins. 26 Suwannee-Ochlockonee River basins . 27 Chattahoochee River basin. 27 Flint River basin. 28 Coosa River basin. 29 Tennessee River basin . 31 Selected references. 31 Tabular data . 33 Graphs showing harmonic stream-temperature curves of observed data and statewide harmonic equation for selected stations, figures 14-211 .
    [Show full text]
  • Day 4 Allatoona Allemande
    Allatoona Allemande–Paddle Georgia 2017 June 20—Etowah River Distance: 11 miles Starting Elevation: 850 feet Lat: 34.24636°N, Lon: - 84.47819°W Ending Elevation: 836 feet Lat: 34.21450°N Lon: -84.56760°W Restroom Facilities: Mile 0 Etowah River Park Mile 11 Knox Bridge Boat Ramp Points of Interest: Mile 0—Canton Cotton Mill—A bit of Canton’s history stands beyond the tree line opposite our launch site. Built in 1924, the massive brick Canton Cotton Mill No. 2 once employed 550 people and processed up to 30,000 bales of cotton each year. In the 1930s, fully a third of the town’s population was employed in the textile industry. This mill operated until 1981, and in 2000, it was transformed into loft apartments. Today no textile industry exists in Canton. Mile 0—Parrie Pinyan Landing—This boat launch was dedicated to the memory of Parrie Pinyan, a Cherokee County native, Paddle Georgia alumnus and long-time river advocate who died after a long fight with cancer in 2013. That the launch bears Parrie’s name is appropriate for she provided key testimony in a legal appeal of environmental permits issued by the state for the nearby Canton Marketplace shopping center. The appeal brought by the Coosa River Basin Initiative in 2008 ultimately forced the developer to reduce impacts to streams at the building site by 20 percent and provide $500,000 for land protection projects in the upper Etowah River basin. Included in the settlement with the developer was $25,000 to build a boat launch on the river in Canton— the first ever in the city.
    [Show full text]
  • Simulated Effects of Impoundment of Lake Seminole on Ground-Water Flow in the Upper Floridan Aquifer in Southwestern Georgia and Adjacent Parts of Alabama and Florida
    Simulated Effects of Impoundment of Lake Seminole on Ground-Water Flow in the Upper Floridan Aquifer in Southwestern Georgia and Adjacent Parts of Alabama and Florida Prepared in cooperation with the Georgia Department of Natural Resources Environmental Protection Division Georgia Geologic Survey Scientific Investigations Report 2004-5077 U.S. Department of the Interior U.S. Geological Survey Cover: Northern view of Jim Woodruff Lock and Dam from the west bank of the Apalachicola River. Photo by Dianna M. Crilley, U.S. Geological Survey. A. Map showing simulated flow net of the Upper Floridan aquifer in the lower Apalachicola-Chattahoochee-Flint River basin under hypothetical preimpoundment Lake Seminole conditions. B. Map showing simulated flow net of the Upper Floridan aquifer in the lower Apalachicola-Chattahoochee-Flint River basin under postimpoundment Lake Seminole conditions. Simulated Effects of Impoundment of Lake Seminole on Ground-Water Flow in the Upper Floridan Aquifer in Southwestern Georgia and Adjacent Parts of Alabama and Florida By L. Elliott Jones and Lynn J. Torak Prepared in cooperation with the Georgia Department of Natural Resources Environmental Protection Division Georgia Geologic Survey Atlanta, Georgia Scientific Investigations Report 2004-5077 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 This report is available on the World Wide Web at http://infotrek.er.usgs.gov/pubs/ For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]