Distinct Signaling and Transcriptional Pathways Regulate Peri-Weaning Development and Cold-Induced Recruitment of Beige Adipocytes

Total Page:16

File Type:pdf, Size:1020Kb

Distinct Signaling and Transcriptional Pathways Regulate Peri-Weaning Development and Cold-Induced Recruitment of Beige Adipocytes Distinct signaling and transcriptional pathways regulate peri-weaning development and cold-induced recruitment of beige adipocytes Yixuan Wua, Melissa A. Kinnebrewa,b, Vassily I. Kutyavina, and Ajay Chawlaa,c,d,1,2 aCardiovascular Research Institute, University of California, San Francisco, CA 94143-0795; bDepartment of Dermatology, University of California, San Francisco, CA 94115; cDepartment of Physiology, University of California, San Francisco, CA 94143-0795; and dDepartment of Medicine, University of California, San Francisco, CA 94143-0795 Edited by Christian Wolfrum, Swiss Federal Institute of Technology in Zurich, Zurich Schwerzenbach, Switzerland, and accepted by Editorial Board Member David J. Mangelsdorf February 6, 2020 (received for review November 20, 2019) Adipose tissue provides a defense against starvation and environ- Although less well appreciated, iWAT also undergoes beige mental cold. These dichotomous functions are performed by three adipogenesis during the peri-weaning period (7–12). However, distinct cell types: energy-storing white adipocytes, and thermogenic the importance of sympathetic stimulation in acquisition of this beige and brown adipocytes. Previous studies have demonstrated phenotype remains controversial. For example, Contreras et al. that exposure to environmental cold stimulates the recruitment of demonstrated that denervation of iWAT impairs commitment to beige adipocytes in the white adipose tissue (WAT) of mice and the beige adipocyte lineage, whereas Chabowska-Kita et al. + humans, a process that has been extensively investigated. However, reported presence of UCP1 cells in the iWAT of thermoneutral beige adipose tissue also develops during the peri-weaning period in mice that presumably lacked sympathetic stimulation (7, 8). mice, a developmental program that remains poorly understood. Here, we address this gap in our knowledge using genetic, imaging, These findings raise the possibility that a combination of cell physiologic, and genomic approaches. We find that, unlike cold- autonomous and nonautonomous mechanisms might regulate induced recruitment in adult animals, peri-weaning development of beige adipocyte development during the peri-weaning period, a beige adipocytes occurs in a temperature- and sympathetic nerve- gap in our knowledge that we address here. independent manner. Instead, the transcription factor B cell PHYSIOLOGY leukemia/lymphoma 6 (BCL6) acts in a cell-autonomous manner Results and Discussion to regulate the commitment but not the maintenance phase of Beige Fat Develops during the Peri-Weaning Period in a Temperature- beige adipogenesis. Genome-wide RNA-sequencing (seq) studies Independent Manner. To identify mechanisms that control beige adi- reveal that BCL6 regulates a core set of genes involved in fatty acid pogenesis during the peri-weaning period, we employed Adipo-Clear oxidation and mitochondrial uncoupling, which are necessary for development of functional beige adipocytes. Together, our find- Significance ings demonstrate that distinct transcriptional and signaling mech- anisms control peri-weaning development and cold-induced Adipose tissue performs multiple functions in mammals, in- recruitment of beige adipocytes in mammals. cluding insulation, mechanical tissue protection, and energy balance. These functions of adipose tissue are performed by BCL6 | sympathetic nervous system | thermogenesis | development | three distinct cell types: white, beige, and brown adipocytes. metabolism While white adipocytes store energy, beige and brown adi- pocytes dissipate energy through mitochondrial respiration. n mammals, adipose tissue provides a defense against starva- Previous studies have elucidated how environmental cold Ition and environmental cold (1). These distinct functions of stimulates recruitment of beige adipocytes in adult animals. adipose tissue are performed by specialized adipocytes that can However, beige adipogenesis also occurs during the peri- store or dissipate energy. For example, white adipocytes, which weaning period in mice, a process that is poorly understood. contain a single large lipid droplet, are a primary site of energy Here, we demonstrate that distinct mechanisms regulate de- storage in mammals, whereas multilocular beige and brown ad- velopment and recruitment of beige adipocytes. We find that B ipocytes dissipate energy through uncoupled respiration (1–4). cell leukemia/lymphoma 6 (BCL6) controls development of Consistent with their distinct functions in energy metabolism, beige adipocytes during the peri-weaning period, whereas loss of white adipocytes, as in lipodystrophy, leads to ectopic de- sympathetic nerves regulate the recruitment of beige adipo- position of lipids in liver and other organs, whereas loss of beige cytes in cold environments. and brown adipocytes compromises organismal defense against environmental cold (1). Author contributions: Y.W., M.A.K., and A.C. designed research; Y.W., M.A.K., and V.I.K. performed research; V.I.K. contributed new reagents/analytic tools; Y.W., M.A.K., V.I.K., Beige and brown adipocytes are considered to be two distinct and A.C. analyzed data; and Y.W. and A.C. wrote the paper. cell types based on their developmental origin, transcriptome, The authors declare no competing interest. and epigenome (1, 4, 5). Myogenic precursors give rise to brown This article is a PNAS Direct Submission. C.W. is a guest editor invited by the adipocytes during embryogenesis in a temperature-independent Editorial Board. manner, whereas environmental cold is the primary stimulus for This open access article is distributed under Creative Commons Attribution-NonCommercial- the recruitment of mesenchyme-derived beige adipocytes in the NoDerivatives License 4.0 (CC BY-NC-ND). white adipose tissue (WAT) of adult animals. A focus on cold- Data deposition: All RNA-seq data are available at the Gene Expression Omnibus (GEO), induced recruitment of beige adipocytes has identified a large https://www.ncbi.nlm.nih.gov/geo/ (accession no. GSE140259). number of signaling and transcriptional pathways that control its 1Present address: Discovery Biology, Merck Research Labs, South San Francisco, CA 94080. biogenesis in adult animals (4). In nearly all of these cases, beige- 2To whom correspondence may be addressed. Email: [email protected]. promoting factors directly or indirectly modulate the adrenergic This article contains supporting information online at https://www.pnas.org/lookup/suppl/ activity of sympathetic nerves, which densely innervate the in- doi:10.1073/pnas.1920419117/-/DCSupplemental. guinal WAT (iWAT) of mice (6). First published March 5, 2020. www.pnas.org/cgi/doi/10.1073/pnas.1920419117 PNAS | March 24, 2020 | vol. 117 | no. 12 | 6883–6889 Downloaded by guest on September 28, 2021 together with light sheet fluorescence microscopy to investigate at P14 between mice bred at 22 °C and 30 °C but differed in older how the ambient temperature (Ta) regulates developmental ex- (P21–P35) animals (Fig. 1C). Hematoxylin and eosin staining of pression of UCP1 in the iWAT (13). In C57BL/6J mice that were tissue sections independently confirmed the presence of multi- bred at Ta = 22 °C, UCP1 expression began in the inguinal region locular beige adipocytes in P28 iWAT of thermoneutral mice (Fig. (left) of iWAT as early as postnatal day (P)14, spread to the 1D). Taken together with previous observations that neonatal dorsolumbar region (right) by P21, peaked around P28, and mice are poikilothermic (body temperature mirrors ambient tem- began to regress by P35 (Fig. 1A, SI Appendix, Fig. S1 A and B, perature) and only develop full thermoregulatory capacity around and Movie S1). To our surprise, this spatiotemporal pattern of P19 to P28 (14), our data suggest that beige adipogenesis is initiated UCP1 expression was preserved in iWAT of C57BL/6J mice that prior to acquisition of homeothermy in a temperature-independent were bred at thermoneutrality (Ta = 30 °C), suggesting that the manner. commitment to the beige adipocyte lineage occurs in a temperature- We next asked whether the pattern of UCP1 expression in independent manner (Fig. 1B and Movie S2). In support of this iWAT of cold-exposed adult animals was similar to its develop- hypothesis, quantitation of UCP1 protein expression during the peri- mental expression during the peri-weaning period. We found weaning period (P14–P35) revealed that while beige adipocyte de- that cold-induced beige fat recruitment in adult animals followed velopment occurred in a temperature-independent manner, the a similar spatiotemporal pattern as young mice; i.e., it began in amplitude of this response was gated by environmental temper- the inguinal region and progressively spread to the dorsolumbar + ature (Fig. 1C). For example, the UCP1 volume was comparable region of iWAT, as previously reported (Fig. 1 A and E) (13). C57BL/6J 22 C C57BL/6J 30 C A P14 UCP1 P21 UCP1 P28 UCP1 P35 UCP1 CD 5×109 ) 3 9 m 4×10 P 9 3×10 p<0.000001 p=0.00283 9 p=0.0058 B P14 UCP1 P21 UCP1 P28 UCP1 P35 UCP1 2×10 1×109 UCP1 volume ( 0 14 21 28 35 14 21 28 35 Age (days) E UCP1 RT UCP1 UCP1 UCP1 F 20 wk 20 wk G Ai14 Ai14 x Ucp1Cre J I 2 Biological Process -logP 1 Upregulated (210 genes) Sc5D 0 Ptges2 Muscle contraction 18.4 -1 Cpt2 Ehhadh Sarcomere organization 4.6 -2 Hsd17B12 Abhd5 Cardiac muscle tissue morphogenesis 4.1 Hmgcs1 Lss Regulation of ATPase activity 3.4 Hadha Cardiac muscle contraction 2.7 Fam57B Hadhb Insig1 (111 genes) (111 Aspg K Downregulated Hsd17B4 Acaa1B Beige White Thrsp
Recommended publications
  • Targeted Genes and Methodology Details for Neuromuscular Genetic Panels
    Targeted Genes and Methodology Details for Neuromuscular Genetic Panels Reference transcripts based on build GRCh37 (hg19) interrogated by Neuromuscular Genetic Panels Next-generation sequencing (NGS) and/or Sanger sequencing is performed Motor Neuron Disease Panel to test for the presence of a mutation in these genes. Gene GenBank Accession Number Regions of homology, high GC-rich content, and repetitive sequences may ALS2 NM_020919 not provide accurate sequence. Therefore, all reported alterations detected ANG NM_001145 by NGS are confirmed by an independent reference method based on laboratory developed criteria. However, this does not rule out the possibility CHMP2B NM_014043 of a false-negative result in these regions. ERBB4 NM_005235 Sanger sequencing is used to confirm alterations detected by NGS when FIG4 NM_014845 appropriate.(Unpublished Mayo method) FUS NM_004960 HNRNPA1 NM_031157 OPTN NM_021980 PFN1 NM_005022 SETX NM_015046 SIGMAR1 NM_005866 SOD1 NM_000454 SQSTM1 NM_003900 TARDBP NM_007375 UBQLN2 NM_013444 VAPB NM_004738 VCP NM_007126 ©2018 Mayo Foundation for Medical Education and Research Page 1 of 14 MC4091-83rev1018 Muscular Dystrophy Panel Muscular Dystrophy Panel Gene GenBank Accession Number Gene GenBank Accession Number ACTA1 NM_001100 LMNA NM_170707 ANO5 NM_213599 LPIN1 NM_145693 B3GALNT2 NM_152490 MATR3 NM_199189 B4GAT1 NM_006876 MYH2 NM_017534 BAG3 NM_004281 MYH7 NM_000257 BIN1 NM_139343 MYOT NM_006790 BVES NM_007073 NEB NM_004543 CAPN3 NM_000070 PLEC NM_000445 CAV3 NM_033337 POMGNT1 NM_017739 CAVIN1 NM_012232 POMGNT2
    [Show full text]
  • Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) Or Enhance (Squalest
    JPET Fast Forward. Published on May 25, 2016 as DOI: 10.1124/jpet.116.233312 This article has not been copyedited and formatted. The final version may differ from this version. Differential regulation of gene expression by cholesterol biosynthesis inhibitors that reduce (pravastatin) or enhance (squalestatin 1) nonsterol isoprenoid levels in primary cultured mouse and rat hepatocytes. Elizabeth A. Rondini, Zofia Duniec-Dmuchowski, Daniela Cukovic, Alan A. Dombkowski, and Thomas A. Kocarek Downloaded from Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA (E.A.R., Z.D-D, T.A.K.) jpet.aspetjournals.org Department of Pediatrics, Division of Clinical Pharmacology and Toxicology, Wayne State University, Detroit, MI 48202 (D.C., A.A.D) at ASPET Journals on September 27, 2021 JPET Fast Forward. Published on May 25, 2016 as DOI: 10.1124/jpet.116.233312 This article has not been copyedited and formatted. The final version may differ from this version. JPET #233312 Running title: Regulation of hepatocellular gene expression by isoprenoids Address correspondence to: Dr. Thomas A. Kocarek, Institute of Environmental Health Sciences, 6135 Woodward Avenue, IBio Building, Room 2126, Wayne State University, Detroit, MI 48202, USA. Tel: (313) 577-6580; FAX: (313) 972-8025; E-mail: [email protected] Number of text pages: 43 Downloaded from Number of tables: 2 Supplemental Number of figures: 8 jpet.aspetjournals.org Number of references: 77 Number of words in Abstract: 249 Number of words in Introduction: 745 at
    [Show full text]
  • Identification and Characterization of Zebrafish 17Beta-HSD Type 1 and Type 3: a Comparative Analysis of Androgen/Estrogen Activity Regulators
    Institut für Experimentelle Genetik GSF-Forschungzentrum für Umwelt und Gesundheit, Neuherberg Identification and characterization of zebrafish 17beta-HSD type 1 and type 3: A comparative analysis of androgen/estrogen activity regulators Rebekka Mindnich Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.- Prof. Dr. Bertold Hock Prüfer der Dissertation: 1. Priv.-Doz. Dr. Jerzy Adamski 2. Univ.-Prof. Dr. Johannes Buchner 3. Univ.-Prof. Dr. Wolfgang Wurst Die Dissertation wurde am 30.06.2004 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 07.10. 2004 angenommen. Table of contents Table of contents ABSTRACT................................................................................................................................... 7 ZUSAMMENFASSUNG................................................................................................................ 9 ABBREVIATIONS....................................................................................................................... 11 1 INTRODUCTION ................................................................................................................ 13 1.1 THE AIM OF THIS STUDY ...............................................................................................
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • NSDHL, an Enzyme Involved in Cholesterol Biosynthesis, Traffics Through the Golgi and Accumulates on ER Membranes and on The
    Human Molecular Genetics, 2003, Vol. 12, No. 22 2981–2991 DOI: 10.1093/hmg/ddg321 NSDHL, an enzyme involved in cholesterol biosynthesis, traffics through the Golgi and accumulates on ER membranes and on the surface of lipid droplets Hugo Caldas1 and Gail E. Herman1,2,* Downloaded from https://academic.oup.com/hmg/article/12/22/2981/606598 by guest on 27 September 2021 1Center for Molecular and Human Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, USA and 2Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA Received July 15, 2003; Revised August 29, 2003; Accepted September 11, 2003 NSDHL, for NAD(P)H steroid dehydrogenase-like, encodes a sterol dehydrogenase or decarboxylase involved in the sequential removal of two C-4 methyl groups in post-squalene cholesterol biosynthesis. Mutations in this gene are associated with human CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked, male lethal disorder, as well as the mouse mutations bare patches and striated. In the present study, we have investigated the subcellular localization of tagged proteins encoded by wild-type and selected mutant murine Nsdhl alleles using confocal microscopy. In addition to an ER localization commonly found for enzymes of post-squalene cholesterol biosynthesis, we have identified a novel association of NSDHL with lipid droplets, which are endoplasmic reticulum (ER)-derived cytoplasmic structures that contain a neutral lipid core. We further demonstrate that trafficking through the Golgi is necessary for ER membrane localization of the protein and propose a model for the association of NSDHL with lipid droplets.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • BMC Genomics Biomed Central
    BMC Genomics BioMed Central Research article Open Access Histone deacetylase inhibitors: A new mode for inhibition of cholesterol metabolism Sridar V Chittur*1, Niquiche Sangster-Guity2 and Paulette J McCormick1 Address: 1Center for Functional Genomics, University at Albany, State University of New York, Cancer Research Center, One Discovery Drive, Rm 310, Rensselaer, NY 12144, USA and 2Johns Hopkins University, School of Medicine, 1550 Orleans St, CRBII Rm 456, Baltimore, MD 21231, USA Email: Sridar V Chittur* - [email protected]; Niquiche Sangster-Guity - [email protected]; Paulette J McCormick - [email protected] * Corresponding author Published: 29 October 2008 Received: 6 March 2008 Accepted: 29 October 2008 BMC Genomics 2008, 9:507 doi:10.1186/1471-2164-9-507 This article is available from: http://www.biomedcentral.com/1471-2164/9/507 © 2008 Chittur et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Eukaryotic gene expression is a complex process involving multiple cis and trans activating molecules to either facilitate or inhibit transcription. In recent years, many studies have focused on the role of acetylation of histone proteins in modulating transcription, whereas deacetylation of these same proteins is associated with inactivation or repression of gene expression. This study explores gene expression in HepG2 and F9 cell lines treated with Trichostatin A (TSA), a potent histone deacetylase inhibitor. Results: These experiments show that TSA treatment results in clear repression of genes involved in the cholesterol biosynthetic pathway as well as other associated pathways including fatty acid biosynthesis and glycolysis.
    [Show full text]
  • AGPAT2 Gene 1-Acylglycerol-3-Phosphate O-Acyltransferase 2
    AGPAT2 gene 1-acylglycerol-3-phosphate O-acyltransferase 2 Normal Function The AGPAT2 gene provides instructions for making an enzyme that is found in many of the body's cells and tissues. It plays a critical role in the growth and development of adipocytes, which are cells that store fats for energy. Adipocytes are the major component of the body's fatty (adipose) tissue. The AGPAT2 enzyme is part of a chemical pathway in many cells that produces two important types of fats (lipids): glycerophospholipids and triacylglycerols. Glycerophospholipids are the major component of cell membranes and are involved in chemical signaling within cells. Triacylglycerols (also known as triglycerides) are fat molecules that are stored in adipocytes for later conversion to energy. The AGPAT2 enzyme is responsible for a particular chemical reaction in the production of these two types of lipids. Specifically, the enzyme helps convert a molecule called lysophosphatidic acid (LPA) to another molecule, phosphatidic acid (PA). Additional reactions convert phosphatidic acid to glycerophospholipids and triacylglycerols. Health Conditions Related to Genetic Changes Congenital generalized lipodystrophy At least 26 mutations in the AGPAT2 gene have been identified in people with congenital generalized lipodystrophy (also called Berardinelli-Seip congenital lipodystrophy) type 1. This rare condition is characterized by an almost total absence of adipose tissue and a very muscular appearance. A shortage of adipose tissue leads to multiple health problems, including high levels of triglycerides circulating in the bloodstream (hypertriglyceridemia) and diabetes mellitus. The AGPAT2 gene mutations that cause congenital generalized lipodystrophy type 1 greatly reduce or eliminate the activity of the AGPAT2 enzyme.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Biomolecules
    biomolecules Article The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes Teresa Martínez-Sena 1, Polina Soluyanova 1, Carla Guzmán 1, José Manuel Valdivielso 2 , José Vicente Castell 1,3,4 and Ramiro Jover 1,3,4,* 1 Experimental Hepatology Unit, IIS Hospital La Fe, 46026 Valencia, Spain; [email protected] (T.M.-S.); [email protected] (P.S.); [email protected] (C.G.); [email protected] (J.V.C.) 2 Vascular and Renal Translational Research Group, Experimental Medicine Department, IRBLleida, 25196 Lleida, Spain; [email protected] 3 Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain 4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ISCIII, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-96124-6653 Received: 21 February 2020; Accepted: 20 March 2020; Published: 24 March 2020 Abstract: The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4–6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA).
    [Show full text]
  • Supplemental Table 1. List of Candidate Gene Filters Used in the Analysis of Exome Sequencing. MYOPATHY NEUROPATHY MND ABHD5
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Supplemental table 1. List of candidate gene filters used in the analysis of exome sequencing. MYOPATHY NEUROPATHY MND ABHD5 AAAS AAAS ACADL AARS1 AARS1 ACADM ABCA1 AGT ACADS ABCD1 ALAD ACADVL ABHD12 ALS2 ACTA1 ADCY6 ANG ADSSL1 AFG3L2 APEX1 AGL AIFM1 APOE AGPAT2 AMACR AR AGRN ANG ASAH1 AIRE AP1S1 ATM ALDOA APOA1 ATP7A ALG14 APTX ATXN2 ALG2 ARHGEF10 ATXN3 ALG3 ARL6IP1 B4GALT6 ANKRD2 ARSA BCL11B ANO5 ASAH1 BCL6 ASCC1 ATL1 BICD2 ATGL ATL3 BSCL2 ATP2A1 ATM C19orf12 ATRN ATXN1 C9orf72 B3GALNT2 ATXN10 CCS B3GNT2 ATXN2 CDH13 BAG3 ATXN3 CDH22 BIN1 ATXN7 CHCHD10 BSCL2 B2M CHMP2B BVES B4GALNT1 CNTF CACNA1S BAG3 CNTN4 CAPN3 BCKDHB CNTN6 CASQ1 BSCL2 CRIM1 CAV1 C12orf65 CRYM CAV3 C9orf72 CSNK1G3 CAVIN1 CLP1 CST3 CCDC78 CNTNAP1 CUL4B CDKN1C COX10 CYP2D6 CFL2 COX6A1 DAO Grunseich C, et al. J Neurol Neurosurg Psychiatry 2021;0:1–11. doi: 10.1136/jnnp-2020-325437 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry CHAT CPOX DCAF15 CHCHD10 CRYAB DCTN1 CHD7 CTDP1 DIAPH3 CHKB CTSA DISC1 CHN1 CYP27A1 DNAJB2 CHRM3 DARS2 DOC2B CHRNA1 DDHD1 DPP6 CHRNB1 DGUOK DYNC1H1 CHRND DHH EFEMP1 CHRNE DHTKD1 ELP3 CIDEC DMD EPHA4 CLCN1 DNAJB2 EWSR1 CLN3 DNAJC3 EXOSC3 CNBP DNM2 FBLN5 CNTN1 DYNC1H1 FBXO38 COA3 EGR2 FEZF2 COL12A1 EMD FGGY COL13A1 ERCC6 FIG4 COL6A ERCC8 FUS COL6A1 FAH GARS1 COL6A2 FAM126A GBE1 COL6A3 FBLN5 GMPPA COL9A3 FGD4 GRB14 COLQ FGF14 GRN COX10 FIG4 HEXA COX15 FLNC HFE CPT2 FLRT1 HINT1 CRAT FLVCR1 HSPB1 CRPPA FMR1 HSPB3 CRYAB FUS HSPB8 CTNS FXN IGHMBP2 DAG1 GALC ITPR2 DECR1 GAN KDR DES GARS1 KIFAP3 DGUOK GBA2 KLHL9 DIH1 GBE1 LAMA2 DMD GDAP1 LAS1L DMPK GJB1 LIF DNAJB6 GJB3 LIPC DNAJC19 GLA LOX Grunseich C, et al.
    [Show full text]
  • The Fingerprint Sourcebook
    CHAPTER EMBRYOLOGY AND MORPHOLOGY OF FRICTION RIDGE SKIN Kasey Wertheim CONTENTS 3 3.1 Introduction 12 3.7 Pattern Formation 4 3.2 Embryology: Establishing 18 3.8 Genetics Uniqueness and Pattern Formation in the Friction Ridge Skin 5 3.3 Limb Development 21 3.9 Uniqueness: Developmental Noise 7 3.4 Differentiation of the Friction 22 3.10 Summary: Keys to Ridge Skin Uniqueness and Pattern Formation 8 3.5 Primary Ridge Formation 22 3.11 Reviewers 11 3.6 Secondary Ridge 24 3.12 References Formation 3–1 Embryology and Morphology of Friction Ridge Skin C H A P T E R 3 CHAPTER 3 EMBRYOLOGY AND 3.1 Introduction Friction ridge skin has unique features that persist from MORPHOLOGY OF before birth until decomposition after death. Upon contact with a surface, the unique features of friction ridge skin may leave an impression of corresponding unique details. Two FRICTION RIDGE SKIN impressions can be analyzed, compared, and evaluated, and if sufficient quality and quantity of detail is present (or Kasey Wertheim lacking) in a corresponding area of both impressions, a com- petent examiner can effect an individualization or exclusion (identify or exclude an individual). The analysis, comparison, evaluation, and verification (ACE-V) methodology, combined with the philosophy of quantitative–qualitative examinations, provide the framework for practical application of the friction ridge examination discipline. But at the heart of the disci- pline is the fundamental principle that allows for conclusive determinations: the source of the impression, friction ridge skin, is unique and persistent. Empirical data collected in the medical and forensic com- munities continues to validate the premises of uniqueness and persistence.
    [Show full text]