Lepidoptera: Crambidae): a New Genus and Species of Musotimine with Leaf-Mining Biology from Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Lepidoptera: Crambidae): a New Genus and Species of Musotimine with Leaf-Mining Biology from Costa Rica Life history and systematics of Albusambia elaphoglossumae (Lepidoptera: Crambidae): A new genus and species of musotimine with leaf-mining biology from Costa Rica M. Alma Solis1, Donald R. Davis2 & Kenji Nishida3 1 Systematic Entomology Laboratory, PSI, Agricultural Research Service, U. S. Department of Agriculture, c/o National Museum of Natural History, Washington, D.C., 20560-0168, U.S.A., [email protected] 2 Department of Entomology, Smithsonian Institution, Washington, D.C., 20560-0127, U.S.A., [email protected] 3 Sistema de Estudios de Posgrado en Biología, Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. [email protected] Received 15-V-2004. Corrected 09-II-2005. Accepted 10-II-2005. Abstract: Albusambia elaphoglossumae Solis & Davis, a new genus and species, is described. It was discov- ered mining the fronds of the fern Elaphoglossum conspersum in Costa Rica (San José and Cartago Provinces, at elevations of 2300-3100 m). The type series was obtained by rearing of the immature stages in laboratory. The adult is defined by unique genital characters, and the pupa with a medial depression on the vertex and with two anterolateral horn-like structures on the prothorax. The larva is a gregarious leaf miner with its body flat- tened dorsoventrally and head prognathous; morphological adaptations to its leaf-mining habit are new to the Musotiminae. Fern-feeding musotimines are important to the discovery of new biological control agents for invasive ferns. Rev. Biol. Trop. 53(3-4): 487-501. Epub 2005 Oct 3. Key words: Elaphoglossum conspersum, E. biolleyi, gregarious larvae, fern, leaf miner, Neotropical, Neurophyseta, Proacrias, Undulambia. Recent collecting in the Cordillera de about 200 species worldwide; 50 or more Talamanca of Costa Rica resulted in the dis- species and five to seven genera from Asia covery of a new genus and species of a and the South Pacific are still undescribed musotimine crambid mining fronds of the (S.-H. Yen, pers. comm.). There are nine gen- fern, Elaphoglossum conspersum H. Christ era and 82 species of Musotiminae in the (Pteridophyta: Lomariopsidaceae) (Figs. 1-3). Western Hemisphere, including Albusambia. The mining habit in the Pyraloidea is not Musotimines are defined by their laterally common. Other New World musotimines compressed antennae with flattened segments, have been reared feeding on ferns. These R2 stalked with R3+R4 (but not in Albusambia), are Undulambia polystichalis (Capps), reared a reduced coecum in the aedeagus of the from leather leaf fern, Rumohra adiantiformis male genitalia, and enlarged tympanal cases [=Polystichum adiantiforme (G. Forst) Small] (Minet 1985, Yoshiyasu 1985, Yen 1996). The Ching (Dryopteridaceae) (Kuitert and Dekle relationship of Albusambia to other genera 1962). In 2002, Neurophyseta camptogram- is unknown, although it is externally most malis (Hampson) was reared from Alsophila similar to Neurophyseta Hampson. The genus firma (Baker) D.S. Conant (Cyatheaceae) Undulambia Lange contains three species from (Janzen and Hallwachs database homepage). Florida and is the only genus of Musotiminae Musotiminae is comprised of 18 genera and found in the U.S. Lange (1956) placed it in Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 53 (3-4): 487-501, September-December 2005 487 Nymphulinae, a subfamily known for its true room (16-18°C) in the Museo de Insectos, aquatic caterpillars. Munroe (1972) later placed Universidad de Costa Rica, UCR (San Pedro Undulambia in a new, separate tribe, Ambiini, de Montes de Oca, 1150 m), or were placed within Nymphulinae, because U. polystich- in a refrigerator (7.0-8.0°C) for approximately alis was terrestrial and fed on ferns. Munroe 16 hours and then at room temperature (20°C) (1972) also noted that Musotima Meyrick (in for eight hours daily. A subset of specimens of Musotimini) larvae were terrestrial and fed immature stages were preserved in alcohol and on ferns. Speidel (1984) separated and raised deposited in the USNM. to subfamily rank the Musotiminae, including The host plant, E. conspersum, is common Ambiini from Nymphulinae, based on charac- in dense understory growth at several moist, ters of the genitalia and immatures. well-shaded sites along roads (Fig. 2). Vegetation In this paper, we describe the life history associated with E. conspersum consists of a of Albusambia elaphoglossumae as well as all tropical montane rain forest densely populat- life-stages in detail. The species is compared to ed by temperate elements such as black oaks U. polystichalis and species of Neurophyseta. (Quercus costaricensis Liebm.) (Fagaceae), with more scattered white oak (Q. copeyensis C. H. Muller) (Hartshorn 1983). Other abundant, MATERIALS AND METHODS principally understory species in this association include Schefflera rodriguesiana Frodin ex M. The eggs, larvae, and pupae were collected Cannon and Cannon (Araliaceae), Weinmannia in Costa Rica in an oak forest near the Pan pinnata L. (Cunoniaceae), Cavendishia brac- American Highway at Villa Mills, Cerro de la teata (Ruiz and Pav. ex J. St.-Hil.) Hoerold, Muerte (San José province) (Fig. 1), and CATIE Vaccinium consanguineum Klotzsch (Ericaceae); (Centro Agronómico Tropical de Investigación Miconia biperulifera Cogn., M. schnellii y Enseñanza) Biological Station in Cuericí Wurdack (Melastomataceae); and several species (Cartago province), at elevations between 2800 of Chusquea (Poaceae) (KN, pers. observ.). and 3100 m. Larvae from E. conspersum were first collected in January 1998 at the end of the wet season and reared by Donald R. Davis RESULTS (DRD). The wet season in this area extends from April through December or January. Albusambia Solis and Davis, n. gen. Heavy rains are common during these months, with a yearly annual rainfall of 2 812 mm Diagnosis: Base color of body shiny (Kappelle 1996). During the dry season in the white; wing margins not incised; forewing year 2000, Kenji Nishida (KN) visited the same costal swelling absent; male genitalia with area and began collecting additional material, valva curved in above junction of tegumen by inspecting fronds and conducting extensive and vinculum and continuing less broadly to observations in the field. In this region, the dry anterior end. Larva dorsoventrally flattened; season starts in December or January and ends head prognathous, mandibles with two rows of in mid- to late April. Although the rain is infre- serrations. Pupa with vertex of head round and quent, the humidity remains high and dense fog with prominent medial dorsoventral depres- is common in the afternoons. The annual aver- sion; prothorax smooth dorsally, not square, age temperature is 10.9°C, and the temperature with two anterolateral horn-like structures that sometimes decreases to -3°C during the dry protrude only slightly; anus posteriorly with season (Kappelle 1996). lateral conical depressions. Immature stages with the fronds collect- Comparison to other taxa: Albusambia ed by KN were placed in transparent plas- is compared to Undulambia in Capps (1965) tic bags and taken into an air-conditioned and Neurophyseta in Phillips and Solis (1996). 488 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 53 (3-4): 487-501, September-December 2005 The basal color of Undulambia adults is brown, Thorax: Dorsally white; patagium and not white, as in Albusambia and Neurophyseta. tegula white, a few specimens with tegula Wings of Undulambia are incised, and grey and metathorax dorsally grey. Forelegs those of Albusambia and Neurophyseta are white, mediolaterally black; midleg and hind- entire. Forewing costal swelling is absent leg white, midleg with one pair of tibial spurs, in Albusambia and Neurophyseta, but pres- hindleg with two pairs of tibial spurs. ent in Undulambia. In the male genitalia of Forewing (Fig. 21) [Refer to Phillips and Undulambia the valva is long and equal in Solis, 1996, Fig. 7 for venation terminology]: width throughout, not widened posteriorly as length = 6.91 mm (range: 6.0-8.1 mm) (n=36); in Albusambia and some Neurophyseta spe- margins not incised. Costal swelling absent. R1 cies. The body of Undulambia larva is round, and R2 from discal cell; R5 short stalked with not dorsoventrally flattened, and not inter- R3+4, stalked about two-thirds its length. Basal segmentally constricted as in Albusambia. In band black, basal area white with scattered Undulambia the mandible consists of one line black scale, antemedial band black, antemedial of teeth, not two as in that of Albusambia. area white, reniform spot black, postmedial line Other than the host plant record, the bio- black, black spots between R4 and R5 and on logical and morphological data of the larvae M3, fringe white with black patches on M3 and of Neurophyseta are not available. Unlike CuA2; a few specimens mostly black posterior to the vertex of the pupal head of Albusambia, and slightly above M-CuA line to posterior mar- Undulambia does not have a prominent medial gin, antemedial and postmedial lines broader, dorsoventral depression. Undulambia has a black lines to outer margin from postmedial line somewhat rugose, broadly flattened prothorax on M3 and CuA2, a black line parallel to postme- with two anterolateral horn-like structures that dial line from M3 to posterior margin. Underside protrude twice as much as in the smooth pro- white with postmedial line slightly visible with thorax of Albusambia. Albusambia has lateral black scales, some black at basal area near costa; conical depressions posterior to the anus, but slightly darker specimens with similar color and Undulambia lacks these depressions. Pupal pattern on underside as on upperside. data on Neurophyseta is incomplete. Hindwing (Fig. 21): Antemedial and post- Etymology: The prefix of the generic epi- medial line black, black discal spot, c-shaped thet is derived from the Latin “albus” referring mark from Rs to costal margin at intersection of to the white base color of the adult moths, and Sc+R1 and Rs, fringe white with black patches “ambia” meaning “around” in Latin and refer- on R5, M3, and CuA2; a few specimens black ring to its relatedness to other genera in the sub- basally to postmedial line, with broad black family.
Recommended publications
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • The Biology of Casmara Subagronoma (Lepidoptera
    insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms.
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J
    TRI-OLOGY, Vol. 47, No. 5 Patti J. Anderson, Ph.D., Managing Editor SEPTEMBER-OCTOBER 2008 DACS-P-00124 Wayne N. Dixon, Ph. D., Editor Page 1 of 13 BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J. Anderson, Ph.D. For this period, 167 specimens were submitted to the Botany Section for identification, and 1,418 were received from other sections for identification/name verification for a total of 1,585. In addition, 57 specimens were added to the herbarium, and 48 specimens of invasive species were prepared for the Division of Forestry’s Forest Health Project. Some of the samples received for identification are discussed below: Helianthus simulans E. E. Wats. (an endemic North American genus of 49 species, occurring throughout the United States and adjacent Canada, as well as in Baja California). Compositae (Asteraceae). Muck sunflower. It is unfortunate that such an attractive plant has such an unattractive common name. Growing to more than 2 m tall, this sunflower makes a showy and impressive specimen in the garden. In its best forms, the lanceolate leaves are leathery and dark green, somewhat reminiscent of those of the oleander (Nerium oleander). The flower heads, with bright yellow rays and usually a reddish- purple disk, are borne in profusion in October and November and vary from 7-10 cm across. Although it grows at least twice as tall and the leaves are broader and not revolute (turned under along the margins), it is often confused with the very common Helianthus simulans Photograph courtesy of Sally Wasowski and swamp sunflower (H.
    [Show full text]
  • Butterflies and Moths of Cumberland County, New Jersey, United
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Butterflies and Moths of Camden County, New Jersey, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Crambidae Biosecurity Occurrence Background Subfamilies Short Description Diagnosis
    Diaphania nitidalis Chilo infuscatellus Crambidae Webworms, Grass Moths, Shoot Borers Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The Crambidae is a large, diverse and ubiquitous family of moths that currently comprises 11,500 species globally, with at least half that number again undescribed. The Crambidae and the Pyralidae constitute the superfamily Pyraloidea. Crambid larvae are concealed feeders with a great diversity in feeding habits, shelter building and hosts, such as: leaf rollers, shoot borers, grass borers, leaf webbers, moss feeders, root feeders that shelter in soil tunnels, and solely aquatic life habits. Many species are economically important pests in crops and stored food products. Subfamilies Until recently, the Crambidae was treated as a subfamily under the Pyralidae (snout moths or grass moths). Now they form the superfamily Pyraloidea with the Pyralidae. The Crambidae currently consists of the following 14 subfamilies: Acentropinae Crambinae Cybalomiinae Glaphyriinae Heliothelinae Lathrotelinae Linostinae Midilinae Musotiminae Odontiinae Pyraustinae Schoenobiinae Scopariinae Spilomelinae Short Description Crambid caterpillars are generally cylindrical, with a semiprognathous head and only primary setae (Fig 1). They are often plainly coloured (Fig. 16, Fig. 19), but can be patterned with longitudinal stripes and pinacula that may give them a spotted appearance (Fig. 10, Fig. 11, Fig. 14, Fig. 22). Prolegs may be reduced in borers (Fig. 16). More detailed descriptions are provided below. This factsheet presents, firstly, diagnostic features for the Pyraloidea (Pyralidae and Crambidae) and then the Crambidae. Information and diagnostic features are then provided for crambids listed as priority biosecurity threats for northern Australia.
    [Show full text]
  • Home Pre-Fire Moth Species List by Species
    Species present before fire - by species Scientific Name Common Name Family Abantiades aphenges Hepialidae Abantiades hyalinatus Mustard Ghost Moth Hepialidae Abantiades labyrinthicus Hepialidae Acanthodela erythrosema Oecophoridae Acantholena siccella Oecophoridae Acatapaustus leucospila Nolidae Achyra affinitalis Cotton Web Spinner Crambidae Aeolochroma mniaria Geometridae Ageletha hemiteles Oecophoridae Aglaosoma variegata Notodontidae Agriophara discobola Depressariidae Agrotis munda Brown Cutworm Noctuidae Alapadna pauropis Erebidae Alophosoma emmelopis Erebidae Amata nigriceps Erebidae Amelora demistis Pointed Cape Moth Geometridae Amelora sp. Cape Moths Geometridae Antasia flavicapitata Geometridae Anthela acuta Common Anthelid Moth Anthelidae Anthela ferruginosa Anthelidae Anthela repleta Anthelidae Anthela sp. Anthelidae Anthela varia Variable Anthelid Anthelidae Antipterna sp. Oecophoridae Ardozyga mesochra Gelechiidae Ardozyga sp. Gelechiidae Ardozyga xuthias Gelechiidae Arhodia lasiocamparia Pink Arhodia Geometridae Arrade destituta Erebidae Arrade leucocosmalis Erebidae Asthenoptycha iriodes Tortricidae Asura lydia Erebidae Azelina biplaga Geometridae Barea codrella Oecophoridae Calathusa basicunea Nolidae Calathusa hypotherma Nolidae Capusa graodes Geometridae Capusa sp. Geometridae Carposina sp. Carposinidae Casbia farinalis Geometridae Casbia sp. Geometridae Casbia tanaoctena Geometridae Catacometes phanozona Oecophoridae Catoryctis subparallela Xyloryctidae Cernia amyclaria Geometridae Chaetolopha oxyntis Geometridae Chelepteryx
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]