INDEX Acer Rubruml., Rooting of Cuttings Aleurone Cells of Wheat

Total Page:16

File Type:pdf, Size:1020Kb

INDEX Acer Rubruml., Rooting of Cuttings Aleurone Cells of Wheat INDEX PAGE PAGE Acer rubrumL., Rooting of Cuttings Bachelard, H. S., and Trikojus, ~ Ml V.M.- Aleurone Cells of Wheat Grain, Studies on Endemic Goitre. I. Ultrastructure of 762 The Identification of Thioglu­ Algae, Blue-Green, Ultrastructure cosides and their Aglucones in of the Vegetative Cell of .. 585 Weed Contaminants of Pastures in Goitrous Areas of Tasmania AnagaZlis arvensis, Germination and Southern Queensland 147 Patterns Shown by tbe Light- II. The Behaviour of 3-Methyl­ sensitive Seed of 572 sulphonylpropyl Isothiocyanate Andrew, W. D.- (Cheirolin) and other Isothio­ Susceptibility to Damping-off in cyanates in Bovine Rumen Seedlings of M edicayo denticulata Liquor 166 Willd. and M. minima (L.) Bart. Bain, Joan M., and Mercer, F. V.­ during the early Post-emergence The Submicroscopic Cytology of Period .. 281 Superficial Scald, a Physiological Apples, Submicroscopic Cytology of Disease of Apples 442 Superficial Scald of .. 442 Balanced Polymorphisms with Un- Aspinall, D.- linked Loci 1 The Control of Tillering in the Ballard, L. A. T.- Barley Plant. II. The Control See Grant Lipp, A. E. 572 of Tiller-bud Growth during Ear Barley Apex, Studies in the Growth Development 285 of .. 561 Avena, Electric Potentials and Barley, Control of Tillering in. II 285 Auxin Translocation in .. 629 Barley, Host-Pathogen Relations in Powdery MIldew of 775 Barley, K. P.- Bachelard, E. P., and Stowe, B. B.­ See Sedgley, R. H. 19 Rooting of Cuttings of Acer Beetroot Tissue, Determination of rubrum L. and Eucalyptus camal- the Salt Relations of the Cyto- dulewi8 Dehn. 751. plasmic Phase in Cells of 647 Bachelard, H. S., McQuillan, Mary Bergersen, F. J.- T., and Trikojus, V. M.­ The Relationship Between Hy­ Studies on Endemic Goitre. III. drogen Evolution, Hydrogen An Investigation of the Anti­ Exchange, Nitrogen Fixation, thyroid Activities of Isothio­ and Applied Oxygen Tension in cyanates and Derivatives with Soybean Root Nodules .. 669 Observations on Fractions of Iron in the Developing Soybean Milk from Goitrous Areas .. 177 Nodule .. 916 928 INDEX PAGE PAGE Bergersen, F. J., Rely, F. W., and Oentrosema Mosiac Virus, Purifica- Costin, A. B.- tion and Properties of .. 468 Overwintering of Clover Nodules Ceratobasidium Species, Nuclear in Alpine Conditions 920 Distribution and Behaviour Blackshaw, A. W.- throughout Life Cycle of .. 450 The Enzymatic Activity of Mouse Cetyl Alcohol, Studies on the Use Testis .. 482 of, as a Transpiration Suppressor 743 The Reducing Activity of Ram Chambers, T. C., and Possingham, and Bull Spermatozoa .. .. 201 J.V.- Bottomley, W., Kefford, N. P., Studies of the Fine Structure of Zwar, J. A., and Goldacre, the the Wax Layer of Sultana Grapes 818 LateP. L.- Ohara australis, Ionic Relations of Kinin Activity from Plant Ex­ Cells of. VI .. 429 tracts. 1. Biological Assay and Choong, C. H., and Wales, R. G.- Sources of Activity 395 The Use of Various Diluents for Bottomley, W.- Deep-freezing Bull Spermatozoa 896 See also Zwar, J. A. 407 Choong, C. H.- Braden, A. W. H.- See also Wales, R. G. 885 See Mattner, P. E. 473 Claxton, J. H.- Bull Spermatozoa, Effect of Ultra- The Spatial Relationships violet Radiation on 885 between Skin Follicles during Bull Spermatozoa, Reducing their Development in Sheep 695 Activity of 201 Clover Nodules, Overwintering of, Bull Spermatozoa, Use of Various in Alpine Conditions 920 Diluents for Deep-freezing .. 896 Corbin, J. B., and Cruickshank, Bull, T. A., and Glasziou, K. T.­ 1. A. M.- The Evolutionary Significance Environment and Sporulation of Sugar Accumulation in in Phytopathogeuic Fungi. V. Saccharum 737 M onilinia fructicola (Wint.) Bull, T. A.- Honey: Effect of Water Rela­ See also Whiteman, P. C. 416 tions on Regeneration of Conidia Buttrose, M. S.- in vivo 99 llitrastructure of Developing Costin, A. B.- Wheat Endosperm 305 See Bergersen, F. J. 920 llitrastructure of Developing Crowley, N. C., and Francki, Aleurone Cells of Wheat Grain 768 R. T. B.- Purification and some Properties of Centrosema Mosaic Virus .. 468 Cruickshank, T. A. M.­ Cambial Regeneration in Approach Environment and Sporulation Grafts between Petioles and in Phytopathogeuic Fungi. IV. Stems 6 The Effect of Light on the Carter, M. V.- Formation of Couidia of Mycosphaerella pinode.s. II. The Peronospora tabacina Adam 88 Phenology of Ascospore Release 800 See also Corbin, J. B. 99 INDEX 929 PAGE PAGE Cruickshank, I. A. M., and Perrin, Gibson, A. H.- DawnR.- Physical Environment and Sym. Studies on Phytoalexins. VI. biotic Nitrogen Fixation. I. Pisatin: The Effect of some The Effect of Root Temperature Factors on Its Formation in on Recently Nodulated Trifo. Pisum satiV'Um L., and the lium 8ubterraneum L. Plants 28 Significance of Pisatin in Disease Gillespie, J. M.- Resistance III The Isolation and Properties of some Soluble Proteins from Diallel Cross Experiments, Analy. Wool. V. The Isolation of the sis of, in a Split.plot Situation 681 High Sulphur Protein SCMKB2 241 Diffusion Pressure Deficit, EstiM VII. The Heterogeneity of the mation of. 140 High·Sulphur Proteins . 259 Dodman, R. L.- See also Harrap, B. S. .. .. 542 See Flentje, N. T. 784 Gillespie, J. M., and Harrap, B. S., Dro8ophila melanogaster, Selection The Isolation and Properties of for Abdominal Bristles in .. 490 some Soluble Proteins from Drosophila melanogaster, Selection Wool. VI. The Physicochemical Properties of SCMKB2 252 for Body Weight in 516 Glasziou, K. T.- Eucalyptus camaldulensis Dehn., See Bull, T. A. .. 737 Rooting of Cuttings of . .. 751 See also Whiteman, P. C. 416 Ewe, Spermatozoa in the Genital II·Glucosidase of Stachybotrys alTa, Tract of. I, II, III 473, 687, 877 Action of, on p.Nitrophenyl II·Qninovoside .. 926 Fatty Acid Components of Oville Gluten Fractions Prepared by Ion· Tissue Lipids .. 905 exchange Chromatography on Flentje, N. T., Dodman, R. L., and Carboxymethyl. cellulose, Pro· Kerr,A.- perties of 717 The Mechanism of Host Pene· Goitre, Endemic, Studies on. I, tration by Thanatephorus cucu· II, III 147, 166, 177 meris 784 Goldacre, the Late P. L.­ Flentje, N. T., Stretton, Helena See Bottomley, W. 395 M., and Hawn, E. J.- Grace, T. D. C.- Nuclear Distribution and See Thomson, J. A. 869 Behaviour throughout the Life Graham, Janet, S. D.­ Cycles of Thanatephorus, Waitea, Starch.gel Electrophoresis of and Oeratobasidium Species 450 Wheat Flour Proteins .. 342 Francki, R. I. B.- Graham, Janet S. D., and Morton, See Crowley, N. C. 468 R.K.- Fraser, I. E. B.- Studies of Proteins of Developing The Use of Colchicine and Wheat Endosperm: Separation Colcemid for Metaphase Stasis by Starch-Gel Electrophoresis in the Matrix Cells of Wool and Incorporation of [35SlSul- Follicles .. 211 phate 357 930 INDEX PAGE PAGE Graham, Janet S. D., Morton, R. Hely,F. W.- K., and Raison, J. K.­ Relationship between Effective Isolation and Characterization Nodulation and Time to Initial of Protein Bodies from Develop- Nodulation in a Diploid Line of ing Wheat Endosperm 375 Trifolium ambiguum M. Bieb. 43 Graham, Janet S. D., Morton, R. See also Bergersen, F. J. 920 K., and Simmonds, D. H.­ Hope, A. B.- Studies of Proteins of Develop­ Ionic Relations of Cells of Ohara ing Wheat Endosperm: Frac- australis. VI. Fluxes of Potas- tionation by Ion-Exchange sium .. 429 Chromatography 350 Hordeum vulgare, Effect of Nutri­ Graham, P. H.- ent Concentration on the Growth Antibiotic Sensitivities of the and Ion Uptake of, during a Root Nodule Bacteria .. 557 Sodium Chloride Stress .. 616 Grant Lipp, A. E., and Ballard, Horgan, D. J., and Masters, C. J.­ L.A.T.- Fatty Acid Components ofOvine Germination Patterns Shown by Tissue Lipids, and the Response the Light-sensitive Seed of Ana- to Prolonged Protein Depletion 905 gallis arvensis 572 Greenway, H.- Plant Responses to Saline Su b­ Insect Ovarian Tissue, Cytological strates. III. Effect of Nutrient Observations on Cen Strains Concentration on the Growth Established in Culture from .. 869 and Ion Uptake of Hordeum vulgare during a Sodium Chloride Stress 616 Jennings, A. C., and Morton, R. K.­ Griffing, B.- Changes in Carbohydrate, Pro­ Comparisons of Potentials for tein, and Non-protein Nitro~ General Combining Ability genous Compounds of Developing Selection Methods Utilizing One Wheat Grain .. 318 or Two Random-mating Popu- Changes in Nucleic Acids and lations .. 838 other Phosphorus~containing Griffing, B., and Langridge, J.­ Compounds of Developing Wheat Factors Affecting Crossing Over Grain .. 332 in the Tomato .. 826 Amino Acids and Protein Syn­ thesis in Developing Wheat Harrap, B. S.- Endosperm .. 384 The Conformation of a Soluble Jennings, A. C., Morton, R. K., and Wool Keratin Derivative .. 231 Palk, B. A.- See also Gillespie, J. M. .. 252 Cytological Studies of Protein Harrap, B. S., and Gillespie, J. M.­ Bodies of Developing Wheat A Further Study on the Extrac­ Endosperm .. 366 tion of Reduced Proteins from Jermyn, M. A.- Wool .. 542 The Action of ,B-Glucosidase of Ha"Wll, E. J.- Stachybotrys atra on p-Nitro- See Flentje, N. T. 450 phenyl ,B-Quinovoside .. .. 926 INDEX 931 PAGE PAGE John, P. W. M.- Masters, C. J.- Analysis of Diallel Cross Experi­ Nucleic Acids and Protein Stores ments in a Split-plot Situation 681 in the Merino Sheep 192 The Electrophoretic Heterogen- eity of Ovine Lactate Dehydro­ Kefford, N. P.- genase 709 See Bottomley, W. 395 See also Horgan, D. J. .. 905 See alBa Zwar, J. A. 407 Matheson, N. K., and Wheatley, Kerr, A.- J.M.- The Root Rot-Fusarium Wilt Diurnal-Nocturnal Changes in Complex of Peas 55 the Starch of Tobacco Leaves 70 See also Flentje, N. T. .. .. 784 Mattner, P. E.- Kindred, Berenice- Spermatozoa in the Genital Tract Skin Grafting between Sub-lines of the Ewe. II. Distribution after of Inbred Strains of Mice .. 863 Coitus 687 Kinin Activityfrom Plant Extracts. III. The Role of Spermatozoan I, II 395, 407 Motility and Uterine Contract- Kriedeman, P.
Recommended publications
  • Genetic Regulation of Aleurone Development in Zea Mays Bryan Christopher Gontarek Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Genetic regulation of aleurone development in Zea mays Bryan Christopher Gontarek Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Plant Sciences Commons Recommended Citation Gontarek, Bryan Christopher, "Genetic regulation of aleurone development in Zea mays" (2017). Graduate Theses and Dissertations. 15309. https://lib.dr.iastate.edu/etd/15309 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genetic regulation of aleurone development in Zea mays by Bryan Christopher Gontarek A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Biology Program of Study Committee: Philip W. Becraft, Major Professor Diane Bassham Erik Vollbrecht Bing Yang Yanhai Yin Iowa State University Ames, Iowa 2017 Copyright © Bryan Christopher Gontarek, 2017. All rights reserved. ii TABLE OF CONTENTS Page CHAPTER 1. GENERAL INTRODUCTION .................................................. 1 Introduction to Maize Endosperm ....................................................................
    [Show full text]
  • The Genetics and Morphology of Some Endosperm Characters in Maize
    The Genetics and Morphology of Some Endosperm Characters in Maize . - P. C. MANGELSDORF The Genetics and Morphology of Some Endosperm Characters in Maize P. C. MANGELSDORF The Bulletins of this Station are mailed free to citizens of Connecticut who apply for them, and to other applicants as far as the editions permit. CONNECTICUT AGRICULTURAL EXPERIMENT STATION OFFICERS AND STAFF as of June, 1926 BOARD OF CONTROL His Excellency, John H. Trumbull, ex-oficio, President. Charles R. Treat, Vice President ................................Orange George A. Hopson, Secretary ............................Mount Carmel Wm. L. Slate, Jr., Treasurer ...............................New Haven Joseph W. Alsop .................................................Avon Elijah Rogers ............................................. Southington Edward C. Schneider ......................................Middletown Francis F. Lincoln ............................................Cheshire STAFF. E. H. JENKINS,PII.D., Director Emeritus. Administration. WM. L. SLATE,JR., B.Sc., Director and Treasurer. MISS L. M. BRAUTLECHT,Bookkeeper and Librarian. V. BERCER,Stenographer and Bookkeeper. E;:: Li ARY E. BRADLEY,Secretary. C. E. GRAHAM,In charge of Buildings and Grounds. Chemistry: E. M. BAILEY,PH.D.. Chemist in Charge. Analvtical C. E. SHEPARD > ~aboratory. OWEN L.J. NOLANFISHER, A,B. W. T. MATHIS FRANKC. SHELDON,Laboratory Assirtant. V. L. CHURCHILL,Sampling Agent. MISS MABELBACON, Stenographer. Biochemical T. B. OSRORNE,PH.D., Chemist in Charge. Laboratory. H. 13. VICKERY,PH.D., Biochemist. MISS HELENC. CANNON.B.S., Dietitian. Botany. G. P. CLINTON,Sc.D., Botanist in Charge. E. M. STODDARD,B.S., Pomologist. MISSFLORENCEA. MCCORMICK, PH.D., Pathologist. WILLISR. HUNTPH.D., Assistant in Botany. A. D. MCDONNELL, General Assistant. MRS. W. W. KELSEY,Secretary. Entomology. W. E. BRITTON,PH.D., Entomologist in Charge; State Entomologist. B. H. WALDEN,B.AGR.
    [Show full text]
  • Integrated Control of Seed Maturation and Iermination Programs by Activator
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Integrated control of seed maturation and iermination programs by activator and@ repressor• functions of Viviparous-1 ot maize Ute ~oecker,'Indra K. Vasil, and Donald R. ~c~arty~ Plant Molecular and Cellular Biology Program, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 3261 1 USA The Viviparous-1 (VP1) transcriptional activator of maize is required for abscisic acid induction of maturation-specific genes late in seed development leading to acquisition of desiccation tolerance and arrest in embryo growth. Here, we show that VP1 also inhibits induction of the germination-specific a-amylase genes in aleurone cells of the developing seed and thereby appears to be involved in preventing precocious hydrolyzation of storage compounds accumulating in the endosperm. In developing seeds of the somatically instable vpl-m2mutant, hydrolase activity was derepressed specifically in endosperm sectors underlying vpl mutant aleurone. A barley a-amylase promoter-GUS reporter construct (Amy-GUS) was induced in developing vpl mutant aleurone cells but not in wild-type aleurone cells. Moreover, transient expression of recombinant VP1 in vpl mutant aleurone cells strongly inhibited expression of Amy-GUS and thus effectively complemented this aspect of the mutant phenotype. VP1 specifically repressed induction of Amy-GUS by the hormone gibberellic acid in aleurone of germinating barley seeds. Deletion of the acidic transcriptional activation domain of VP1 did not affect the inhibitory activity, indicating that VP1 has a discrete repressor function. Hence, physically combining activator and repressor functions in one protein may provide a mechanism to integrate the control of two normally consecutive developmental programs, seed maturation and seed germination.
    [Show full text]
  • Isolation and Characterization of Oat Aleurone and Starchy
    Plant Physiol. (1983) 71, 519-523 0032-0889/83/71/05 19/05/$00.50/0 Isolation and Characterization of Oat Aleurone and Starchy Endosperm Protein Bodies' Received for publication August 18, 1982 and in revised form November 11, 1982 ERIK T. DONHOWE2 AND DAVID M. PETERSON3 Department ofAgronomy, University of Wisconsin, and United States Department ofAgriculture, Agricultural Research Service, Madison, Wisconsin 53706 ABSTRACT MATERIALS AND METHODS To compare oat (Aena saltiwa L cv Froker) aleurone protein bodies Tissue Separations. Embryos of mature oat (Avena sativa L. cv with those of the starchy endosperm, methods were developed to isolate Froker) groats (caryopses) were removed, and the remaining seed these tissues from mature seeds. Aleurone protoplasts were prepared by was sliced 1-mm thick with a razor blade. For starchy endosperm euzymic digestion and filtration of groat (caryopsis) slices, and starchy preparation, slices were imbibed 16 h at 4VC, and then rolled as endosperm tissue was separated from the aleurone layer by squeezing described by Phillips and Paleg (18). The resulting slurry was slices of imbibed groats followed by filtration. Protein bodies were isolated filtered through a 750-.un nylon screen, and the filtrate was stored from each tissue by sucrose density gradient centrifigation. Ultrastructure on ice. This procedure effectively separated starchy endosperm of the isolated protein bodies was not Identical to that of the intact from the more resistant aleurone tissue, which was retained on the organelles, suggesting modification during Isolation or fixation. Both aleu- screen. Microscopic examination of the filtrate confirmed the rone and starchy endosperm protein bodies contained globulin and prolamin absence of aleurone tissue.
    [Show full text]
  • Genetic Regulation of Aleurone Cell Fate in Zea Mays Gibum Yi Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Genetic regulation of aleurone cell fate in Zea mays Gibum Yi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agricultural Science Commons, Agriculture Commons, Developmental Biology Commons, Genetics Commons, and the Plant Biology Commons Recommended Citation Yi, Gibum, "Genetic regulation of aleurone cell fate in Zea mays" (2012). Graduate Theses and Dissertations. 12764. https://lib.dr.iastate.edu/etd/12764 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genetic regulation of aleurone cell fate in Zea mays by Gibum Yi A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Biology Program of Study Committee: Philip W. Becraft, Major Professor Diane Bassham Erik Vollbrecht Paul Scott Yanhai Yin Iowa State University Ames, Iowa 2012 Copyright © Gibum Yi, 2012. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1. General Introduction ……………………………………………….. 1 Thesis Organization…….………..…………………………………….…....7 References …………………………………………………………………...8 CHAPTER 2. High-Throughput Linkage
    [Show full text]
  • Inheritance of Spotted Aleurone Color in Hybrids of Chinese Maize’
    INHERITANCE OF SPOTTED ALEURONE COLOR IN HYBRIDS OF CHINESE MAIZE’ J. H. KEMPTON U. S. Bureau of Plant Industry, Washington, D. C. [Received January 10, 19191 The color in the aleurone cells of maize early attracted the attention cf geneticists as affording ideal material for testing the segregation of characters in the second generation of hybrids. The first cases that were investigated led to the idea of only one unit or factor being involved in the production of an aleurone color. With the progress of investigation, however, it became necessary to assume that two factors are involved. The occurrence of red and purple seeds on the same ear showed the need of recognizing a third factor, and the appearance of a pale color, or “dilute,” necessitated the assumption of a fourth, modifying, factor. A brief examination of the many varieties grown by the Indians of North and South America shows that there are still other aleurone colors not provided for in this scheme, such as clay (a light blue but very dis- tinct from dilute) found in varieties grown by the Hopi Indians of Arizona; pink (a light red), isolated from the Chinese waxy type, and black (an exceedingly intense blue or purple) found in varieties grown by the Navajo Indians and brown found in a Bolivian variety. It is not absolutely certain as yet whether additional factors are concerned in the production of these variations, or whether we are dealing with one or more dilution factors similar to those found in guinea pigs (WRIGHT 1916). Apart from the many shades of color there are several color patterns corresponding in a certain sense to those of animals.
    [Show full text]
  • Corn Wiki – Botanical Description
    Corn Botanical Description Corn, Zea mays, derives its name from the Arawak mahizi which literally means „that which sustains life.‟ii The name corn was added by the Europeans who referred to all small-seeded cereal grains as corn; they used the term „Indian Corn‟ when referring to this American grain denoting its connection with the Native Americans. Raising two to twenty feet high, corn stalks can have anywhere from eight to forty-eight leaves and multiple ears. Each stalk produces ears that contain many rows of kernels that grow off of the cob of the ear and are enclosed by a leafy husk. Zea mays is an annual grass of the Maydeae family of the genesis Gramineae.iii Other grasses in this family include wheat, barley, rye, sugarcane, sorghum, and riceiv. One main difference between corn and other cereals is that it bears seed heads, ears, that are larger than any other grassv. Also corn has a higher yield of food per unit than any other grain. This productivity is one of the main contributing factors of corn‟s appeal to farmers. Each corn plant contains both male and female reproductive organs. The tassels, the terminal flowers, ordinarily develop only male spikelets which grow in pairs with one being sessile, having no stalk, and the other pedicellate, a single blossom on a lean stalk.vi Each tassel contains some twenty-five million pollen grains.vii The lateral organ or female inflorescence is the ear. Each ear of corn contains upwards of one thousand potential kernels. Like the male tassels, the ears also bear spikelets, once again with only one of the flowers developing.
    [Show full text]
  • Mechanism of Delayed Seed Germination Caused by High
    www.nature.com/scientificreports OPEN Mechanism of delayed seed germination caused by high temperature during grain flling in rice (Oryza sativa L.) Chetphilin Suriyasak1, Yui Oyama1, Toshiaki Ishida2, Kiyoshi Mashiguchi 2, Shinjiro Yamaguchi2, Norimitsu Hamaoka1, Mari Iwaya‑Inoue1 & Yushi Ishibashi1* High temperature during grain flling considerably reduces yield and quality in rice (Oryza sativa L.); however, how high temperature afects seed germination of the next generation is not yet well understood. Here, we report that seeds from plants exposed to high temperature during the grain flling stage germinated signifcantly later than seeds from unstressed plants. This delay remained even after dormancy release treatments, suggesting that it was not due to primary seed dormancy determined during grain flling. In imbibed embryos of heat‑stressed seeds, expression of abscisic acid (ABA) biosynthesis genes (OsNCEDs) was higher than in those of control seeds, whereas that of ABA catabolism genes (OsABA8′OHs) was lower. In the aleurone layer, despite no change in GA signaling as evidenced by no efect of heat stress on OsGAMYB gene expression, the transcripts of α‑amylase genes OsAmy1C, OsAmy3B, and OsAmy3E were signifcantly down‑regulated in heat‑stressed seeds in comparison with controls. Changes in promoter methylation levels were consistent with transcriptional changes of ABA catabolism‑related and α‑amylase genes. These data suggest that high temperature during grain flling results in DNA methylation of ABA catabolism‑related and α‑amylase gene promoters, delaying germination of heat‑stressed seeds. Environmental stresses, such as temperature, drought, salinity, and other abiotic stresses, strongly afect plant growth and development 1. High temperature is one of the main environmental factors that cannot be avoided and cause losses in agricultural production worldwide.
    [Show full text]
  • Protein Synthesis and Secretion by the Barley Aleurone: a Perspective
    ISRAEL JOURNAL OF BOTANY, Vol. 34,1985,pp. 377-395 PROTEIN SYNTHESIS AND SECRETION BY THE BARLEY ALEURONE: A PERSPECTIVE RussELL L. JoNES Department of Botany, University of California, Berkeley, C4 94720, USA The secretion of extracellular macromolecules is a process common to all living organisms. In animal cells the secretion of proteins, especially by tissues of the digestive system, is quite well understood at the level of cell structure as well as at the biochemical and molecular levels. In plants, on the other hand, most studies have emphasized the transport of polysaccharides to the cell surface for the formation of the cell wall and other extracellular structures (Fahn, 1979). The cereal aleurone layer and digestive glands of insectivorous plants are especially interesting as they are among the few plant tissues studied that secrete acid hydro lases. In the case of insectivorous plants, research on the structure of the digestive gland dates back to the late nineteenth century and has been reviewed recently by Fahn (I 979) and He"slop­ Harrison and Heslop-Harrison (1981). The present review focuses on the synthesis and secretion of hydro lases by the cereal aleurone. ROLES OF ALEURONE, SCUTELLUM AND EMBRYO IN REGULATING ENZYME PRODUCTION Endosperm modification in cereals has been intensively studied for more than a century (Sachs, 1882; Haberlandt, 1884), but several aspects of this process that were controversial at the end of the nineteenth century (Haberlandt, 1890; Brown & Morris, 1890) remain so today. One controversy concerns the relative contributions of the aleurone layer and scutellum to the production of the hydrolases that mobilize endo­ sperm reserves during germination, while another concerns the role of the embryo in the regulation of hydrolase production.
    [Show full text]
  • Classification of Barley Varieties Grown in the United States and Canada in 1945
    Vf i^- \^< TECHNICAL BULLETIN NO. 907 • MAY 1946 Classification of Barley Varieties Grown in the United States and Canada in 1945 By EWERT ÀBERG Postdoctorate Research Assistant in Agronomy and Plant Pathology University of Wisconsin and Collaborator Division of Cereal Crops and Diseases and G. A, WIEBE Principal Agronomist Division of Cereal Crops and Diseases Bureau of Plant Industry, Soils, and Agricultural Engine^ing Agricultural Research Administration l^ ! B FÍ A R Y C'iñtüiT SERIAL REeORD JUL111S46 '" ••■ •''''•..-îTwm OF ÄSS10ULTÜRE UNITED STATES DEPARTMENT OF AGRICULTDEE, WASHINGTON, D. C. Technical Bulletin No. 907 May 1946 ^^^«^^^^^^^^^^^^ |:||¡|||i|||^ Classification of Barley Varieties Grown in the United States and Canada in 1945^ By EwERT ÀBERG, postdoctorate research assistant in agronomy and plant pathology, university of Wisconsin, and collaborator, Division of Cereal Crops and Diseases, Bureau of Plant Industry, Soils, and Agricultural Engi- neering; and G. A. WIEBE, principal agronomist. Division of Cereal Crops and Diseases, Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Administration ^ CONTENTS Page Page Need for classification 2 Classification keys—Continued. Previous systems of classification.... 2 The genus Hordeum, its sections and Key to the varieties of spring species 4 barley 52 Cultivated barleys of the united Key to the varieties of spring States and Canada 7 barley grown in Middle West- Manchuria-O. A. C. 21-Oder- ern and Eastern States and brucker group 7 Provinces
    [Show full text]
  • Course Code:Agr 215 Course Title:Agricultural Botany
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF EDUCATION COURSE CODE:AGR 215 COURSE TITLE:AGRICULTURAL BOTANY AGR 215 COURSE GUIDE COURSE GUIDE AGR 215 AGRICULTURAL BOTANY Course Writer/Developer Dr. Magashi Auwal Ibrahim Kano University of Science and Technology Wudil Programme Leader Dr. S.I. Ogunrinde National Open University of Nigeria Course Coordinator Dr. Sanusi Jari National Open University of Nigeria NATIONAL OPEN UNIVERSITY OF NIGERIA ii AGR 215 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja Nigeria e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2009 ISBN: 978-058-103-0 All Rights Reserved iii AGR 215 COURSE GUIDE CONTENTS PAGE Introduction…………………………………………………….. 1 The Course……………………………………………………… 1 Course Aims………………………………………………….…. 1 Course Objectives……………………………………………….. 2 What You Will Learn in the Course/Course Requirement……... 2 Course Materials…………………………………………….….. 2 Study Units………………………………………………………. 3 Textbooks and References…………………………………….…. 3 Assessment ………………………………………………….…… 4 Tutor-Marked Assignment……………………………………….. 4 Final Examination and Grading …………………………….……. 4 Summary ……………….…………………….…………….…….. 5 iv Introduction Agricultural botany is a branch of biology concerned with the study of plants (kingdom Plantae). Plants are now defined as multicelular organisms living on land that carry out photosynthesis. Organisms that had
    [Show full text]
  • Taxonomic Value of Characters in Cultivated Barley
    TECHNICAL BULLETIN NO. 942 March 1948 Taxonomic Value of Characters in Cultivated Barley By EWERT ÂBERG Postdoctorate Research Assistant in Agronomy and Plant Pathology University of Wis€x>nsin, and Collaborator Division of Cereal Crops and Diseases and G. A.WIEBE Principal Agronomist Division of Cereal Crops and Diseases Bureau of Plant Industry« Soils« and Agricultural Engineering Agricultural Research Administration /% í ^*'^*£ll^ UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. Technical Bulletin No. 942 March 19 M ipililiiliiiiiiiiiilil ■liilliltiîillill Taxonomic Value of Characters in Cultivated Barley^ By Ewi^RT ABERC, postdoctorate research assistant in agronomy and plant pathology^ University of Wisconsin, and collaborator, Division of Cereal Crops and Diseases, Bureau of Plant Industry, Soils, and Agricultural Engineering; and G. A. WIEBE, principal agronomist. Division of Cereal Crops and Diseases, Bureau of Plant In- dustry, Soils, and Agricultural Engineering, Agricultural Research Administration ^ CONTENTS Page Page Introduction 1 Leaf characters 14 Previous investigation 2 Stem characters 20 Technique used in present hives- Spike characters 27 tigation 2 Kernel characters 55 Climatic conditions 4 Discussion 72 Factors determining the vahie of Literature cited 73 taxonomic characters 4 Appendix 75 Characters studied 6 Index 87 Growth characters 7 INTRODUCTION In taxonomic work with any plant, distinct and stable morphological characters are of the greatest usefulness. In the classification of varieties of cidtivated plants, however, minute and less reliable mor- 1 Submitted for pubUcation November 5, 1945. Cooperative investigation of the University of Wisconsin and the Division of Cereal Crops and Diseases, Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Administration, U. S.
    [Show full text]