Caught Between Mass Extinctions - the Rise and Fall of Dicroidium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Mosses: What Do They Tell Us About Moss Evolution?
Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca. -
Equisetalean Plant Remains from the Early to Middle Triassic of New South Wales, Australia
Records of the Australian Museum (2001) Vol. 53: 9–20. ISSN 0067-1975 Equisetalean Plant Remains from the Early to Middle Triassic of New South Wales, Australia W.B. KEITH HOLMES “Noonee Nyrang”, Gulgong Road, Wellington NSW 2820, Australia Honorary Research Fellow, Geology Department, University of New England, Armidale NSW 2351, Australia [email protected] Present address: National Botanical Institute, Private Bag X101, Pretoria, 0001, South Africa ABSTRACT. Equisetalean fossil plant remains of Early to Middle Triassic age from New South Wales are described. Robust and persistent nodal diaphragms composed of three zones; a broad central pith disc, a vascular cylinder and a cortical region surrounded by a sheath of conjoined leaf bases, are placed in Nododendron benolongensis n.sp. The new genus Townroviamites is erected for stems previously assigned to Phyllotheca brookvalensis which bear whorls of leaves forming a narrow basal sheath and the number of leaves matches the number of vascular bundles. Finely striated stems bearing leaf whorls consisting of several foliar lobes each formed from four to seven linear conjoined leaves are described as Paraschizoneura jonesii n.sp. Doubts are raised about the presence of the common Permian Gondwanan sphenophyte species Phyllotheca australis and the Northern Hemisphere genus Neocalamites in Middle Triassic floras of Gondwana. HOLMES, W.B. KEITH, 2001. Equisetalean plant remains from the Early to Middle Triassic of New South Wales, Australia. Records of the Australian Museum 53(1): 9–20. The plant Phylum Sphenophyta, which includes the Permian Period, the increasing aridity and decline in the equisetaleans, commonly known as “horse-tails” or vegetation of northern Pangaea was in contrast to that in “scouring rushes”, first appeared during the Devonian southern Pangaea—Gondwana—where flourishing swamp Period (Taylor & Taylor, 1993). -
Triassic) in Barreal Depocenter, San Juan Province, Argentina
Andean Geology ISSN: 0718-7092 ISSN: 0718-7106 [email protected] Servicio Nacional de Geología y Minería Chile Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Bodnar, Josefina; Iglesias, Ari; Colombi, Carina E.; Drovandi, Juan Martín Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Andean Geology, vol. 46, no. 3, 2019 Servicio Nacional de Geología y Minería, Chile Available in: https://www.redalyc.org/articulo.oa?id=173961656006 This work is licensed under Creative Commons Attribution 3.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Josefina Bodnar, et al. Stratigraphical, sedimentological and palaeofloristic characterization of ... Research article Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Caracterización estratigráfica, sedimentológica y paleoflorística del Grupo Sorocayense (Triásico) en el área de Barreal, provincia de San Juan, Argentina Josefina Bodnar *12 Redalyc: https://www.redalyc.org/articulo.oa? Universidad Nacional de La Plata, Argentina id=173961656006 [email protected] Ari Iglesias 23 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Carina E. Colombi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Juan Martín Drovandi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Received: 30 November 2017 Accepted: 30 October 2018 Published: 04 February 2019 Abstract: e northern area of Cuyo Basin (west-central Argentina) corresponds to the Rincón Blanco half-graben, whose filling is arranged into the Rincón Blanco and Sorocayense groups. -
M.Sc. Plant Science (Applicable to Students Admitted in 2009 Onwards)
M.Sc. Plant Science (Applicable to students admitted in 2009 onwards) (w.e.f. examination of 2009 onwards) M.Sc. I (Previous) Semester I Paper I - Microbiology (Bacteriology, Virology) and Microbial 100 Marks Biotechnology. Paper II - Mycology & Plant Pathology (Fungal Diseases) 100 Marks Paper III - Algology & Lichenology 100 Marks Paper IV - Bryology 100 Marks Practical - Based on Papers I to IV including 200 Marks Class and Field Work (Local excursion) 600 Marks Semester II Paper V - Pteridophytes 100 Marks Paper VI - Gymnosperms and Palaeobotany 100 Marks Paper VII - Angiosperms: Taxonomy and Economic Botany 100 Marks Paper VIII - Angiosperms: Histology, Anatomy, Embryology 100 Marks Practical - Based on Papers V to VIII 200 Marks - Class and Field Work (Local excursion) 600 Marks Students have to take all the eight papers. M.Sc. II (Final) Semester III Paper I - Cytology, Genetics and Cytogenetics 100 Marks Paper II - Plant Breeding and Biostatistics 100 Marks Paper III - Ecology, Environment and Soil Science 100 Marks Paper IV - Modern experimental techniques and computer application 100 Marks Practical - Based on Papers I to IV including 200 Marks - Class and field work/Laboratory visit 600 Marks Semester IV Paper V - Plant Physiology 100 Marks Paper VI - Cell Biology & Plant Biochemistry 100 Marks Paper VII - Biotechnology and Human welfare 100 Marks Paper VIII Elective - Project work (Review based on all Papers from 100 Marks Semester I to IV) Practical - Based on Papers V and VII 200 Marks (Incl. Biotech Lab visits & class work) 600 Marks Students have to take all the seven papers (a) The theory papers would have internal evaluation by the teaching/guest faculty as decided by the Coordinator in accordance with the nature and requirement of the subject and shall be notified to the students in the beginning of the semester. -
Reappraisal of the Genus Dicroidium Gothan from the Triassic Sediments of India
The Palaeobotanist 63(2014): 137–155 0031–0174/2014 Reappraisal of the genus Dicroidium Gothan from the Triassic sediments of India PANKAJ K. PAL1*, AMIT K. GHOSH2, RATAN KAR2, R.S. SINGH2, MANOBIKA SARKAR1 AND RESHMI CHATTERJEE2 1Department of Botany, UGC Centre of Advanced Study, University of Burdwan, Burdwan–713 104, West Bengal, India. 2Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. *Corresponding author: [email protected] (Received 28 August, 2014; revised version accepted 25 September, 2014) ABSTRACT Pal PK, Ghosh AK, Kar R, Singh RS, Sarkar M & Chatterjee R 2014. Reappraisal of the genus Dicroidium Gothan from the Triassic sediments of India. The Palaeobotanist 63(2): 137–155. The genus Dicroidium Gothan, belonging to Corystospermaceae, is characterised by pinnately compound leaves with proximally forked primary rachis. The genus was earlier included under the genus Thinnfeldia Ettingshausen. Dicroidium is the most consistent macrofloral element in the Triassic strata of Southern Hemisphere. The present reassessment deals with the morphotaxonomy and stratigraphic significance of the species of Dicroidium in India. A critical review of the literature reveals that the specimens of Dicroidium described so far from India require reassessment, because same morphotypes have often been placed under different species names and sometimes dissimilar elements have been assigned to the same species. In view of this, a thorough analysis of Indian Dicroidium was undertaken based on fresh collections along with the species described earlier by previous workers. The present reappraisal reveals that the genus in the Triassic of Peninsular India is represented by eight species. These are D. hughesii (Feistmantel) Lele, D. -
Andrew Leslie
Andrew Leslie [email protected] • (401) 863-5931 • andrewleslielab.com Department of Ecology and Evolutionary Biology • Brown University Box G-W, 80 Waterman Street • Providence, RI 02912 EDUCATION Ph.D., University of Chicago (Chicago, IL) 2010 Department of the Geophysical Sciences Dissertation: Forms following functions: exploring the evolution of morphological diversity in seed plant reproductive structures. C. Kevin Boyce (advisor), Peter Crane, David Jablonski, Michael LaBarbera, Manfred Rudat B.A. (with honors), University of Pennsylvania 2004 Geology (honors); Biochemistry (honors) Honors thesis: Leaf development in Carboniferous seed plants. Hermann Pfefferkorn (advisor) CURRENT APPOINTMENT Assistant Professor 2014-present Department of Ecology and Evolutionary Biology, Brown University RESEARCH EXPERIENCE Postdoctoral research associate, Yale University 2010-2014 Projects: Fossil conifer descriptions, conifer phylogenetics, conifer reproductive biology, molecular dating techniques, character evolution (advisors: Peter Crane, Michael Donoghue) Doctoral dissertation research, University of Chicago 2004-2010 Topics: Conifer evolution, pollination biology, functional morphology (advisor: C. Kevin Boyce) Research assistant, University of Chicago 2007-2009 Project: Cretaceous plant fossil descriptions from Upatoi Creek, Georgia (advisor: Peter Crane) Research assistant, University of North Carolina, Chapel Hill 2006 Project: Reproductive morphology of the Devonian plant Rhacophyton (advisor: Patricia Gensel) Leslie CV 1 Research -
Quantification of an Archaean to Recent Earth Expansion Process Using Global Geological and Geophysical Data Sets
Department of Applied Geology Quantification of an Archaean to Recent Earth Expansion Process Using Global Geological and Geophysical Data Sets James Maxlow This thesis is presented as part of the requirement for the award of the Doctor of Philosophy of Curtin University of Technology June 2001 i Abstract Global geological and geophysical data, while routinely used in conventional plate tectonic studies, has not been applied to models of an expanding Earth. Crustal reconstructions on Archaean to Recent models of an expanding Earth presented here are the first time that reconstructions have been extended back to the Archaean, and the first time that continental and oceanic geology has been utilised to constrain plate assemblage and palaeoradius of the Earth. A set of twenty four spherical models have been constructed, twenty three covering the Archaean to Recent and one projected to five million years into the future. Construction of these spherical models relies on the fundamental premise that crustal lithosphere is cumulative with time, and historical markers preserved in the oceanic and continental geology accurately constrain both palaeoradius and plate reconstruction from the Archaean to Recent. Post-Triassic reconstructions of oceanic lithosphere demonstrate a plate fit- together along each plate margin at better than 99% fit. During the Triassic, continents envelope the Earth as a complete continental shell at a reduced Earth radius, and marginal and epi-continental sedimentary basins merge to form a global network surrounding continental cratons and orogenic zones. Continental crust is reconstructed on Pre-Jurassic models using the primary crustal elements of cratons, orogens and basins, with expansion primarily manifested as crustal extension within an established network of epi-continental rifts, orogens and sedimentary basins. -
Exceptionally Well-Preserved Early Cretaceous Leaves of Nilssoniopteris from Central Mongolia
Acta Palaeobotanica 58(2): 135–157, 2018 e-ISSN 2082-0259 DOI: 10.2478/acpa-2018-0016 ISSN 0001-6594 Exceptionally well-preserved Early Cretaceous leaves of Nilssoniopteris from central Mongolia FABIANY HERRERA1,5,*, GONGLE SHI2, GOMBOSUREN TSOLMON3, NIIDEN ICHINNOROV 3, MASAMICHI TAKAHASHI4, PETER R. CRANE5,6 and PATRICK S. HERENDEEN1 1 Chicago Botanic Garden, Glencoe, Illinois 60022 USA; e-mails: [email protected]; [email protected] 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008 People’s Republic of China; e-mail: [email protected] 3 Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia; e-mails: [email protected]; [email protected] 4 Department of Environmental Sciences, Niigata University, Ikarashi, Nishi-ku, Niigata 950-2181 Japan; e-mail: [email protected] 5 Oak Spring Garden Foundation, Upperville, Virginia 20184 USA 6 School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511 USA; e-mail: [email protected] Received 20 June 2018; accepted for publication 25 October 2018 ABSTRACT. Two new Early Cretaceous (Aptian-Albian) species of fossil bennettitalean leaves are described from central Mongolia and assigned to the genus Nilssoniopteris. Nilssoniopteris tomentosa F.Herrera, G.Shi, Tsolmon, Ichinnorov, Takahashi, P.R.Crane, et Herend. sp. nov., isolated from bulk sediment samples collected for mesofossils in the Tevshiingovi Formation at the Tevshiin Govi opencast coal mine, is distinctive in having a dense, well-developed indumentum composed of branched, fattened multicellular trichomes on the abaxial leaf surface. -
Background Paper on New South Wales Geology with a Focus on Basins Containing Coal Seam Gas Resources
Background Paper on New South Wales Geology With a Focus on Basins Containing Coal Seam Gas Resources for Office of the NSW Chief Scientist and Engineer by Colin R. Ward and Bryce F.J. Kelly School of Biological, Earth and Environmental Sciences University of New South Wales Date of Issue: 28 August 2013 Our Reference: J083550 CONTENTS Page 1. AIMS OF THE BACKGROUND PAPER .............................................................. 1 1.1. SIGNIFICANCE OF AUSTRALIAN CSG RESOURCES AND PRODUCTION ................... 1 1.2. DISCLOSURE .................................................................................................... 2 2. GEOLOGY AND EVALUATION OF COAL AND COAL SEAM GAS RESOURCES ............................................................................................................. 3 2.1. NATURE AND ORIGIN OF COAL ........................................................................... 3 2.2. CHEMICAL AND PHYSICAL PROPERTIES OF COAL ................................................ 4 2.3. PETROGRAPHIC PROPERTIES OF COAL ............................................................... 4 2.4. GEOLOGICAL FEATURES OF COAL SEAMS .......................................................... 6 2.5. NATURE AND ORIGIN OF GAS IN COAL SEAMS .................................................... 8 2.6. GAS CONTENT DETERMINATION ........................................................................10 2.7. SORPTION ISOTHERMS AND GAS HOLDING CAPACITY .........................................11 2.8. METHANE SATURATION ....................................................................................12 -
Diversity and Homologies of Corystosperm Seed-Bearing Structures from the Early Cretaceous of Mongolia Aã B,C D E F Gongle Shi , Peter R
Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 Diversity and homologies of corystosperm seed- bearing structures from the Early Cretaceous of Mongolia Gongle Shi, Peter R. Crane, Patrick S. Herendeen, Niiden Ichinnorov, Masamichi Takahashi & Fabiany Herrera To cite this article: Gongle Shi, Peter R. Crane, Patrick S. Herendeen, Niiden Ichinnorov, Masamichi Takahashi & Fabiany Herrera (2019) Diversity and homologies of corystosperm seed- bearing structures from the Early Cretaceous of Mongolia, Journal of Systematic Palaeontology, 17:12, 997-1029, DOI: 10.1080/14772019.2018.1493547 To link to this article: https://doi.org/10.1080/14772019.2018.1493547 Published online: 14 Jan 2019. Submit your article to this journal Article views: 142 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2019 Vol. 17, No. 12, 997–1029, http://dx.doi.org/10.1080/14772019.2018.1493547 Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia aà b,c d e f Gongle Shi , Peter R. Crane , Patrick S. Herendeen , Niiden Ichinnorov , Masamichi Takahashi and Fabiany Herrerad aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bOak Spring Garden -
Iop Newsletter 120
IOP NEWSLETTER 120 October 2019 CONTENTS Letter from the president Elections of IOP Executive Committee 2020 – Call for nominations Special issue in occasion of the 65th birthday of Hans Kerp Collection Spotlight: Cleveland Museum of Natural History Reflections from the ‘Earth Day’ 2019 Upcoming meetings IOP Logo: The evolution of plant architecture (© by A. R. Hemsley) 1 Letter from the president Greetings Members, This past quarter we have welcomed the publication Festschrifts celebrating our colleagues Hans Kerp (PalZ Paläontologische Zeitschrift, see below) and Gar Rothwell (International Journal of Plant Sciences v 180 nos. 7, 8). Thank you to the teams of editors and authors who have contributed to these issues illustrating the continuing strength of our discipline— and congratulations to Hans and Gar for inspiring such productivity by your admiring colleagues! Already three years have passed since our gathering for IOPC in Salvador, Brazil in 2016, and now planning is in full swing for next year’s meeting in Prague, 12-19 September 2020. This will be the 11th quadrennial meeting of IOP, held concurrently with the 15th International Palynological Conference. Please note the formal announcement in this newsletter (page 12, herein). Nominations for colleagues deserving of honorary membership are welcome at any time. As the submission of abstracts for IOPC/IPC presentations will be possible soon, we kindly remind the IOP Student Travel Awards. We will financially support about 5 to 7 PhD or MSc students in order to enable them to participate in the conference and present their research results in a talk. Recent PhD graduates will also qualify for these awards, if their completion was less than nine months prior to the time of the conference. -
Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(S): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B
Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(s): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B. Schwendemann, Ignacio H. Escapa, Edith L. Taylor, Thomas N. Taylor, Stephen McLoughlin Source: International Journal of Plant Sciences, Vol. 175, No. 9 (November/December 2014), pp. 1062-1075 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/678087 . Accessed: 08/12/2014 09:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 130.242.24.193 on Mon, 8 Dec 2014 09:32:01 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 175(9):1062–1075. 2014. q 2014 by The University of Chicago. All rights reserved. 1058-5893/2014/17509-0008$15.00 DOI:10.1086/678087 HABIT AND ECOLOGY OF THE PETRIELLALES, AN UNUSUAL GROUP OF SEED PLANTS FROM THE TRIASSIC OF GONDWANA Benjamin Bomfleur,1,*,† Anne-Laure Decombeix,‡ Andrew B.