Serratia Entomophila Sp. Nov. Associated with New Zealand Grass Grub Costelytra Amber Disease in the Zealandica

Total Page:16

File Type:pdf, Size:1020Kb

Serratia Entomophila Sp. Nov. Associated with New Zealand Grass Grub Costelytra Amber Disease in the Zealandica INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1988, p. 1-6 Vol. 38, No. 1 OO20-7713/88/01OO01-06$02.W/O Copyright 0 1988, International Union of Microbiological Societies Serratia entomophila sp. nov. Associated with Amber Disease in the New Zealand Grass Grub Costelytra zealandica PATRICK A. D. GRIMONT,l* TREVOR A. JACKSON,' ELISABETH AGERON,l AND MICHAEL J. NOONAN3 Unit&des Enttrobacte'ries, Institut National de la Sante' et de la Recherche Me'dicale Unitt 199, Institut Pasteur, F-75724 Paris Ce'dex 15, France'; Agricultural Research Division, Ministry of Agriculture and Fisheries, Lincoln, Canterbury, New Zealand2; and Department of Agricultural Microbiology, Lincoln College, Canterbury, New Zealand3 Serratiu entomophila sp. nov. is a homogeneous deoxyribonucleic acid relatedness group most closely related to Serratia ficaria and Serratia marcescens. All 19 strains studied resembled S. marcescens (the phenotypically closest species) by their inability to ferment or utilize L-arabinose, L-rhamnose, D-melibiose, dulcitol, and D-raffinose but differed from S. marcescens by their inability to ferment or utilize sorbitol and their lack of lysine and ornithine decarboxylases. All strains utilized itaconate, a unique characteristic among Serratia species. Two biotypes could be distinguished. Strains of biotype 1 utilized D-arabitol but not L-arabitol or D-xylose. Strains of biotype 2 utilized L-arabitol and D-xylose but not D-arabitol. S. enturnuphila has been isolated from insect larvae and water. Most strains were isolated in New Zealand from the grass grub Costelytra zealandica infected with amber disease. None of the strains were isolated from infected humans, animals (other than insects), or plants. The type strain is strain AIT (ATCC 43705T). The grass grub Costelytra zealandica White (Coleoptera; (A2a), 286 (A2b), 253 (A3b), 326 (A4a), 4466 (A4b), 246 (A5), Scarabaeidae) is a major pasture pest in New Zealand and 3780 (A6), 268 (A8b), 81, and 3583 (TCT). The type or causes damage estimated at up to $100 million (N.Z. cur- reference strains of other species used for comparison are rency) per year. Larvae of Costelytra zealandica feed on the same as used in earlier works (1, 9, 10). grass, clover, and other plant roots. Typically, their popu- DNA relatedness study. Published procedures to extract, lations grow to a peak in 4 to 6 years after the pasture is sown purify, and shear unlabeled DNAs were used (2). The and then collapse. Grass grub population decline was found procedures used for in vitro labeling of DNA with tritium- to be associated with the .presence of a disease called amber labeled nucleotides and for hybridization experiments (nu- disease (previously referred to as honey disease [22]). The clease S1-trichloroacetic acid method) have been described major bacterial agent of honey disease, a Serratia sp. (pre- previously (12). The denaturation temperature ( Tm), at viously referred to as Hafnia alvei [22] or Serratia marino- which 50% of the reassociated DNA became hydrolyzable rubra [21]), was isolated from naturally infected larvae (22) by S1 nuclease, was determined by the method of Crosa et and shown experimentally to produce the disease when al. (3); AT, is the difference between the T, of the heterol- transmitted to healthy larvae (22). Orally infected larvae stop ogous DNA pair and the T, of the homologous DNA. feeding within a few days, clear the gut, develop an amber G+C content determination. The denaturation tempera- discoloration, and gradually lose weight until death occurs 4 tures of 50-pg/ml DNA solutions in 0.1~SSC buffer (Ix to 6 weeks later (22) (Fig. 1). The bacteria colonize the gut SSC is 0.15 M NaCl plus 0.015 M trisodium citrate) were and cause disease symptoms without invading the hemo- measured with a Gilford spectrophotometer (Gilford Instru- coele (a body cavity largely filled with blood). Another ment Laboratories, Oberlin, Ohio). The guanine-plus-cy- bacterium, Serratia proteamaculans (previously referred to tosine (G+C) contents of DNAs were determined from the as Serratia liquefaciens [21]) was also shown to cause amber denaturation temperatures (17). The DNA of Escherichia disease in the grass grub. coli K-12 was used as a standard (G+C content, 51.2 mol%). The purpose of the present work was to determine, by Assimilation tests. Carbon source utilization tests were deoxyribonucleic acid (DNA) relatedness and extensive done by using specially manufactured API strips (API Sys- phenotypic characterization, the taxonomic position of the tem, La Balme les Grottes, France) which contained pure Serratia sp. causing amber disease in the grass grub. The carbon sources and were similar to commercial API CH, outcome of the study is the description of a new species for API AO, and API AA galleries (3,except that the total which the name Serratia entomophila is proposed. number of tests was 114 carbon sources (listed in the species description below). The minimal medium was supplied by MATERIALS AND METHODS API System. The strips were inoculated as described earlier (l),incubated at 3WC, and examined daily for growth for 4 Bacterial strains. The sources of S. entomophila strains days. are given in Table 1. Grass grub strains were isolated from Conventional biochemical tests. All tests were incubated at the midgut of larvae after dissection under sterile conditions 30°C unless otherwise stated. These tests included produc- (21). The following 13 Serratia $curia strains were repre- tion of gas and H,S in glucose-lactose-iron agar (Diagnostics sentative of the four known serotypes of that species (7): Pasteur, Marne-la-Coquette, France), urea hydrolysis, and 2602, 4024T (T, type strain), 4026, 4028, 4034, 4037, 4038, indole production from tryptophan in urea-indole medium 4039, 4600, 4738, 4739, 4747, and 4750. The following 12 (Diagnostics Pasteur), gelatin hydrolysis (film method) (16), Serratia marcescens strains represented 11 of the known the P-glucuronidase test (14), the y-glutamyltransferase test biotypes (indicated in parentheses): 5 (Ala), 328 (Alb), 504T (6), growth on caprylate-thallous agar (20), growth in tryptic soy broth (Diagnostics Pasteur) at different temperatures, * Corresponding author. growth in peptone water (Bacto-Peptone [Difco Laborato- 1 2, GRIMONT ET AL. INT. J. SYST.BACTERIOL. bles 2 and 3) since some DNA preparations yielded either high relative binding ratios (up to 72%) or relatively low ATm values (e.g., 5°C). However, high relative binding ratios matched with high AT, values, and low AT, values matched with low relative binding ratios. The average relatedness of S. Jicaria strains to labeled DNA from S. entomophila AIT was 47% at 60°C and 58% at 70°C. The corresponding average ATm values were 6.7"C (hybridization at 60°C) and 7.5"C (hybridization at 70°C). The average relatedness of S. entomophila strains to labeled DNA from S. Jicaria 4024T was 56% at 60°C and 62% at 70°C. The corresponding average AT,,, values were 7°C (hybridization at 60°C) and 6.6"C (hybridization at 70°C). The other Serratia species were 28 to 48% and 14 to 38% related to S. entomophila at 60 and 70"C, respectively. FIG. 1. Second-instar larvae of C. zealandica. Healthy larva The following other members of the Enterobacteriaceae with dark gut on left, translucent larva showing symptoms of amber were 1 to 25% related to S. entomophila A1 at 60°C: disease on right. Budvicia aquatica 20186T, Cedecea davisae 5T, Citrobacter freundii 460-61, Edwardsiella tarda 10396=, Enterobacter aerogenes AIT, Enterobacter agglomerans E20T, Entero- ries, Detroit, Mich.], 10 g; distilled water, 1 liter; pH 7) bacter agglomerans I11 1429-71, Enterobacter agglomerans containing 0, 2, 6, or 8% (wthol) NaC1, and the Voges- VII 6003-71, Enterobacter amnigenus 78-79, Enterobacter Proskauer test, using the modification of Richard (19). All cloacae 1347-71, Enterobacter gergoviae 2-78, Enterobacter other tests were done by using procedures described else- intermedium 33422, Enterobacter sakazaki 4562-70, Erwinia where (9). amylovora EA178, Erwinia carnegieana EC186, Erwinia Production of enterobacterial common antigen. Production carotovora 495, Erwinia chrysanthemi SR32, Erwinia cypri- of enterobacterial common antigen by strain AIT was stud- pedii EC155, Erwinia mallotivora 2851T, Erwinia nigrifuens ied by using a previously described hemagglutination test EN104, Erwinia rhapontici ER106, Erwinia salicis ES102, (15, 18). Escherichia coli K-12, Ewingella americana C24, Hafnia Pathogenicity tests. For each strain tested, 30 grass grub alvei 329-73, Klebsiella pneumoniae 2, Proteus mirabilis larvae were incubated at 20°C for 14 days in vials of 20 g of PR14, Providencia stuartii 2896-6gT, Rhanella aquatilis 77- soil (containing about 1.5 x 10" bacteria) per larva. The lljT, Salmonella typhimurium LT2, Shigella boydii 1610-55, detailed method of the test has been published previously Xenorhabdus luminescens Hb, and Yersinia ruckeri 4535-69. (21). Among these non-Serratia species, the highest percent re- latedness was with E. carotovora (25%), and the lowest (1%) RESULTS was with P. stuartii. DNA-DNA hybridization. Several samples of DNA from S. DNA base composition. DNAs from strains AIT and A14 entomophila AIT and S.Jicaria 4024T were labeled, and the contained 57.6 and 58.0 mol% G+C, respectively (averages S 1 nuclease-resistant core (in the incubated control tubes of three determinations). containing only denatured labeled DNA) was 6 to 10% at Phenotypic characterization. Characteristics that were either 60 or 70°C. The Tm of homoduplexes (in 0.42 M NaC1) common to all strains studied are given below in the species was 95.2 to 99°C (strain Al) or 96.0 to 97.7"C (strain 4024). description. Characteristics that varied among the 19 strains All strains of S. entomophila studied were more than 74% studied are given in Table 4. Although all strains grew on related to strain AIT at both 60 and 70°C (Table 2) with caprylate-thallous agar (a medium containing yeast extract) insignificant divergence (AT, close to OOC).
Recommended publications
  • Hemiptera: Adelgidae)
    The ISME Journal (2012) 6, 384–396 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae) Elena R Toenshoff1, Thomas Penz1, Thomas Narzt2, Astrid Collingro1, Stephan Schmitz-Esser1,3, Stefan Pfeiffer1, Waltraud Klepal2, Michael Wagner1, Thomas Weinmaier4, Thomas Rattei4 and Matthias Horn1 1Department of Microbial Ecology, University of Vienna, Vienna, Austria; 2Core Facility, Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria; 3Department of Veterinary Public Health and Food Science, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria and 4Department of Computational Systems Biology, University of Vienna, Vienna, Austria Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing o92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola’ and ‘Candidatus Ecksteinia adelgidicola’ are proposed for tentative classification.
    [Show full text]
  • Desfosses Et Al. Nat Microbiol
    Atomic structures of an entire contractile injection system in both the extended and contracted states Ambroise Desfosses, H Venugopal, T Joshi, Jan Felix, M Jessop, H Jeong, J Hyun, J. Bernard Heymann, Mark R. H. Hurst, Irina Gutsche, et al. To cite this version: Ambroise Desfosses, H Venugopal, T Joshi, Jan Felix, M Jessop, et al.. Atomic structures of an entire contractile injection system in both the extended and contracted states. Nature Microbiology, Nature Publishing Group, 2019, 4 (11), pp.1885-1894. 10.1038/s41564-019-0530-6. hal-02417597 HAL Id: hal-02417597 https://hal.univ-grenoble-alpes.fr/hal-02417597 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Europe PMC Funders Group Author Manuscript Nat Microbiol. Author manuscript; available in PMC 2020 February 05. Published in final edited form as: Nat Microbiol. 2019 November 01; 4(11): 1885–1894. doi:10.1038/s41564-019-0530-6. Europe PMC Funders Author Manuscripts Atomic structures of an entire contractile injection system in both the extended and contracted states Ambroise Desfosses1,2, Hariprasad Venugopal1,3, Tapan Joshi1, Jan Felix, Matthew Jessop1,2, Hyengseop Jeong4, Jaekyung Hyun4,5, J.
    [Show full text]
  • Biological Control of Grass Grub in Canterbury
    Proceedings of the New Zealand Grassland Association 52: 217-220 (1990) Biological control of grass grub in Canterbury TREVOR JACKSON MAF Technology, South Central, P.O. Box 24, Lincoln, Canterbury Abstract 2-year life cycle. This often results in spring damage, particularly to emerging crops. Within the limits set The grass grub (Costelytra zealandica) is a by climatic conditions, grass grub populations major pest of Canterbury pastures. Grass grub typically form a mosaic in any area, rising and falling numbers are low in young pastures and then according to pasture management practices and commonly rise to a peak 4-6 years from sowing, biological control agents operating within each before declining. Grass grub numbers in older paddock. pastures fluctuate but rarely reach the same Grass grub numbers are usually low in new pasture levels as the early peak. Biological control or crops owing to high mortality during cultivation. agents such as bird and invertebrate predators, In favourable conditions in pasture, grass grub parasites and diseases cause mortality in grass populations will increase in a predictable fashion grub populations; the effect of predators and (East & Kain 1982) and reach a peak 4-6 years from sowing (e.g. Kelsey quoted in Jensen 1967; Jackson parasites is limited. Pathogens are common in et al. 1989). High levels of damage are typical in 3- to grass grub populations. Amber disease, caused 6-year-old pastures and farmers will often respond to by the bacteria Serratia spp., was the disease damage with cultivation, thereby shortening the most frequently found in population surveys in potential life of the pasture.
    [Show full text]
  • Characteristics That Contribute to Invasive Success of Costelytra Zealandica (Scarabaeidae: Melolonthinae)
    Preference of a native beetle for “exoticism,” characteristics that contribute to invasive success of Costelytra zealandica (Scarabaeidae: Melolonthinae) Marie-Caroline Lefort1,2 , Stephane´ Boyer2, Jessica Vereijssen3, Rowan Sprague1, Travis R. Glare1 and Susan P. Worner1 1 Bio-Protection Research Centre, Lincoln, New Zealand 2 Department of Natural Sciences, Unitec Institute of Technology, Auckland, New Zealand 3 The New Zealand Institute for Plant & Food Research Limited, Lincoln, New Zealand ABSTRACT Widespread replacement of native ecosystems by productive land sometimes results in the outbreak of a native species. In New Zealand, the introduction of exotic pas- toral plants has resulted in diet alteration of the native coleopteran species, Costelytra zealandica (White) (Scarabaeidae) such that this insect has reached the status of pest. In contrast, C. brunneum (Broun), a congeneric species, has not developed such a relationship with these ‘novel’ host plants. This study investigated the feeding pref- erences and fitness performance of these two closely related scarab beetles to increase fundamental knowledge about the mechanisms responsible for the development of invasive characteristics in native insects. To this end, the feeding preference of third instar larvae of both Costelytra species was investigated using an olfactometer device, and the survival and larval growth of the invasive species C. zealandica were compared on native and exotic host plants. Costelytra zealandica, when sampled from exotic pastures, was unable to fully utilise its ancestral native host and showed higher Submitted 12 June 2015 feeding preference and performance on exotic plants. In contrast, C. zealandica Accepted 7 November 2015 sampled from native grasslands did not perform significantly better on either host Published 30 November 2015 and showed similar feeding preferences to C.
    [Show full text]
  • Insect Pathogens As Biological Control Agents: Back to the Future ⇑ L.A
    Journal of Invertebrate Pathology 132 (2015) 1–41 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Insect pathogens as biological control agents: Back to the future ⇑ L.A. Lacey a, , D. Grzywacz b, D.I. Shapiro-Ilan c, R. Frutos d, M. Brownbridge e, M.S. Goettel f a IP Consulting International, Yakima, WA, USA b Agriculture Health and Environment Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK c U.S. Department of Agriculture, Agricultural Research Service, 21 Dunbar Rd., Byron, GA 31008, USA d University of Montpellier 2, UMR 5236 Centre d’Etudes des agents Pathogènes et Biotechnologies pour la Santé (CPBS), UM1-UM2-CNRS, 1919 Route de Mendes, Montpellier, France e Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, Ontario L0R 2E0, Canada f Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada1 article info abstract Article history: The development and use of entomopathogens as classical, conservation and augmentative biological Received 24 March 2015 control agents have included a number of successes and some setbacks in the past 15 years. In this forum Accepted 17 July 2015 paper we present current information on development, use and future directions of insect-specific Available online 27 July 2015 viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for con- trol of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Keywords: Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the con- Microbial control trol of lepidopteran pests.
    [Show full text]
  • Field Assessment of a Sex Attractant for Control of Grass Grub, Costelytra
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. FIELD ASSESSMENT OF A SEX ATTRACTANT FOR CONTROL OF GRASS GRUB, CosteZytra aeaZandica (White). A thesis submitted in partial fulfilment of the requirements for the degree of Master of Agricultural Science in the University of Canterpury by R.B. CHAPMAN Lincoln College 1975 Abstract of a thesis submitted in partial fu1 1ment of the requirements for the Degree of M.Agr.Sc. FIELD ,ASSESSMENT OF A SEX ATTRACTANT FOR CONTROL OF GRASS GRUB, Costelytra zealandiaa (White). by R.B. CHAPMAN DUring the 1973 flight season of the grass grub beetle, Costelytra zealandiaa (White), an attempt was made to suppress populations on small scale field plots by mass trapping male beetles using simple water traps baited with the synthetic sex attractant, Durez 12687. Populations were monitored be:/:0re, during and after· the trapping period by sampling the subterranean eggs, larvae and adults. Trapping extended for three weeks during which time large numbers of beetles were captured and destroyed, however, populations in the immediate vicinity of the traps were not reduced, an outcome largely attributed to the massive immigration of male beetles on to treatment plots and low trap efficiency.
    [Show full text]
  • REPORT on APPLES – Fruit Pathway and Alert List
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ .....................................................................................................................................
    [Show full text]
  • Severe Insect Pest Impacts on New Zealand Pasture: the Plight of an Ecological Outlier
    Journal of Insect Science, (2020) 20(2): 17; 1–17 doi: 10.1093/jisesa/ieaa018 Review Severe Insect Pest Impacts on New Zealand Pasture: The Plight of an Ecological Outlier Stephen L. Goldson,1,2,9, Gary M. Barker,3 Hazel M. Chapman,4 Alison J. Popay,5 Alan V. Stewart,6 John R. Caradus,7 and Barbara I. P. Barratt8 1AgResearch, Private Bag 4749, Christchurch 8140, New Zealand, 2Bio-Protection Research Centre, P.O. Box 85084, Lincoln University, Lincoln 7647, New Zealand, 3Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand, 4School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand, 5AgResearch, Private Bag 11008, Palmerston North, New Zealand, 6PPG Wrightson Seeds, P.O. Box 69175, Lincoln Christchurch 7640, New Zealand, 7Grasslanz Technology Ltd., Private Bag 11008, Palmerston North 4442, New Zealand, 8AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, New Zealand, and 9Corresponding author, e-mail: [email protected] Subject Editor: Louis Hesler Received 17 November 2019; Editorial decision 8 March 2020 Abstract New Zealand’s intensive pastures, comprised almost entirely introduced Lolium L. and Trifolium L. species, are arguably the most productive grazing-lands in the world. However, these areas are vulnerable to destructive invasive pest species. Of these, three of the most damaging pests are weevils (Coleoptera: Curculionidae) that have relatively recently been controlled by three different introduced parasitoids, all belonging to the genus Microctonus Wesmael (Hymenoptera: Braconidae). Arguably that these introduced parasitoids have been highly effective is probably because they, like many of the exotic pest species, have benefited from enemy release.
    [Show full text]
  • Sustainable Management of Adult Costelytra Zealandica (Coleoptera: Melolonthinae) Damage in Marlborough Vineyards
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Sustainable management of adult Costelytra zealandica (Coleoptera: Melolonthinae) damage in Marlborough vineyards A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Mauricio Andrés González-Chang Lincoln University 2016 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy. Sustainable management of adult Costelytra zealandica (Coleoptera: Melolonthinae) damage in Marlborough vineyards by Mauricio Andrés González-Chang Conventional agriculture is facing many challenges to provide food security for a constantly growing human population. Unfortunately, it still relies heavily on fossil fuel-derived inputs, such as pesticides, which affect human health, biodiversity and contribute to global warming. In New Zealand, the endemic grass grub Costelytra zealandica (Coleoptera: Melolonthinae) has been a pasture pest for more than 100 years. By consuming plant roots, its larvae reduce pasture yield, affecting both dairy and meat production. Recently, adults of this species have been found feeding on horticultural crops, such as kiwifruit, avocado, and vines, amongst others.
    [Show full text]
  • Managing Bird Damage
    Managing Bird Damage Managing Bird Managing Bird Damage Bird damage is a significant problem in Australia with total to Fruit and Other Horticultural Crops damage to horticultural production estimated at nearly $300 million annually. Over 60 bird species are known to damage horticultural crops. These species possess marked differences in feeding strategies and movement patterns which influence the nature, timing and severity of the damage they cause. Reducing bird damage is difficult because of the to Fruit and Other Horticultural Crops Fruit and Other Horticultural to unpredictability of damage from year to year and a lack of information about the cost-effectiveness of commonly used management practices. Growers therefore need information on how to better predict patterns of bird movement and abundance, and simple techniques to estimate the extent of damage to guide future management investment. This book promotes the adoption of a more strategic approach to bird management including use of better techniques to reduce damage and increased cooperation between neighbours. Improved collaboration and commit- John Tracey ment from industry and government is also essential along with reconciliation of legislation and responsibilities. Mary Bomford Whilst the focus of this review is pest bird impacts on Quentin Hart horticulture, most of the issues are of relevance to pest bird Glen Saunders management in general. Ron Sinclair DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY Managing Bird Damage Managing Bird Managing Bird Damage Bird damage is a significant problem in Australia with total to Fruit and Other Horticultural Crops damage to horticultural production estimated at nearly $300 million annually. Over 60 bird species are known to damage horticultural crops.
    [Show full text]
  • Soil Bacteria Capable of Destroying Structure Of
    SOIL BACTERIA CAPABLE OF DESTROYING STRUCTURE OF CASSAVA MEALY BUGS Patcharida Khumpumuang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology Academic Year 2015 แบคทีเรียในดินที่สามารถท าลายโครงสร้างของเพลี้ยแป้งมันส าปะหลัง นางสาวพชั ริดา คา ภูเมือง วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวทิ ยาศาสตรดุษฎบี ัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ปี การศึกษา 2558 SOIL BACTERIA CAPABLE OF DESTROYING STRUCTURE OF CASSAVA MEALY BUGS Suranaree University of Technology has approved this thesis submitted III partial fulfillment of the requirements for the Degree of Doctor of Philosophy. Chairperson ~="L..~ (Asst. Prof. Dr. Sureelak Ro tong) Member ~(Thesis A6t~dvisor) (Assoc. Prof. Dr. Jirawat Yongsawatdigul) Member 11-. tbmt' (Dr. Hathairat urai:::F!7 Member _~ca.t ~, (Assoc.~r. Kwanjai Kanokmedhakul) Member (Prof. Dr. Sukit Limpiju&e . (Prof. Dr. Santi Maensiri) Vice Rector for Academic Affairs Dean of Institute of Science and Innovation . ~ l4''If'1~1 f11mijtl~: t!ufll1~tI'hJ~'U-¥hnlJTHl'vhmtl IflHLl~l~'Utl~!l"l~tJ!!iI~lTmhtl~11~~ '" (BACTERIA IN SOIL CAPABLE OF DESTROYING STRUCTURE OF CASSAVA d'.d_~ 911 d' o:::1Q1 d' 9J MEALY BUGS) m'\lTW'VI1J'Hl'l:J1: ~'lfltlfl'lLlI'l'jl'\lTW ~'j .LlHln'I:JW 'jtl~'VItl~, 155 11'Ul. '" . 'iI )I v , !l"l~ tit! iI ~'1'111:11tlVI 'IfI ~ tI~ ~ n'U111!~ tI~'\l1n'VImll'U 'Utl ~VI'If'l'111,rVI'If!-H tlll'll tI !1J'Uuu 1:1~ . '" ~ . rYl',l"'jV" 'llfl1ftll'l tu 'Utl~lT'UftlU~ 11~~ f11'jmu f.llJ!l"l~ tit! iI ~lT'UftlU~ 11~~ I ~ tltl1rYtJ!!Ufll1 ~ tI1'U~'U JJ !J.I ?I ==< cl.
    [Show full text]
  • A Review of the Natural Enemies of Beetles in the Subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for Sustainable Pest Management S
    This article was downloaded by: [USDA National Agricultural Library] On: 13 May 2009 Access details: Access Details: [subscription number 908592637] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management S. Toepfer a; T. Haye a; M. Erlandson b; M. Goettel c; J. G. Lundgren d; R. G. Kleespies e; D. C. Weber f; G. Cabrera Walsh g; A. Peters h; R. -U. Ehlers i; H. Strasser j; D. Moore k; S. Keller l; S. Vidal m; U. Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b Agriculture & Agri-Food Canada, Saskatoon, SK, Canada c Agriculture & Agri-Food Canada, Lethbridge, AB, Canada d NCARL, USDA-ARS, Brookings, SD, USA e Julius Kühn-Institute, Institute for Biological Control, Darmstadt, Germany f IIBBL, USDA-ARS, Beltsville, MD, USA g South American USDA-ARS, Buenos Aires, Argentina h e-nema, Schwentinental, Germany i Christian-Albrechts-University, Kiel, Germany j University of Innsbruck, Austria k CABI, Egham, UK l Agroscope ART, Reckenholz, Switzerland m University of Goettingen, Germany Online Publication Date: 01 January 2009 To cite this Article Toepfer, S., Haye, T., Erlandson, M., Goettel, M., Lundgren, J. G., Kleespies, R. G., Weber, D. C., Walsh, G. Cabrera, Peters, A., Ehlers, R. -U., Strasser, H., Moore, D., Keller, S., Vidal, S.
    [Show full text]