Formation Pressure Patterns in Cretaceous Viking Formation, Alberta

Total Page:16

File Type:pdf, Size:1020Kb

Formation Pressure Patterns in Cretaceous Viking Formation, Alberta 850 Association Round Table beds within correlative uppermost Devonian rocks HARPER, J. D., Shell Development Co., Exploration along the Cordilleran miogeosyncline. They are present and Production Research Center, Houston, Tex. in the Exshaw Formation of southwestern Alberta, Sappington Member of Three Forks Formation TRENDS OF FAUNAI. MoRPHoroGic VARIATION AND throughout western Montana, lower part of Leatham, THEIR ENVIRONMENTAL SIGNIFICANCH; KEY TO PAI- Formation of northern Utah, and middle part of Pilot EOECOLOGic ANALYSIS Shale of west-central Utah and southeastern Nevada. Analysis of trends of morphologic variation within These phyllopod bivalve crustaceans or clam shrimp faunai assemblages is significant for paleoecologic in­ are found most commonly in greenish-gray and gray­ terpretation, and complements paleoenvironment in­ ish-black shales. The shales directly overlie extremely terpretations based on analogy with Holocene sedimen­ thin discontinuous fish- and conodont-bone beds and tary environments. The Rondout Formation (Late Silu­ are overlain by carbonate beds that generally contain rian), Hudson Valley, New York, demonstrates the im­ numerous algal nodules (oncolites). Conchostracans portance of such analysis. also are present in Umestone and in channel siltstone. The Glasco Limestone Member (12 ft) records The associated biota generally comprises inarticulate offshore subtidal deposition. It is overlain and under­ brachiopods, principally Lingula and Orbiculoidea, or- lain by supratidal mudflats—the Whiteport Dolomite thocone, nautiloid, and goniatite cephalopods, Tasman- (1-7 ft) atid Rosendale Dolomite Members, re­ iles, and fish fragments, but locally includes abundant spectively. to rare ophiuroids, blastoids, and other pelmatozoans, Within the Glasco, 5 units in vertical sequence from articulate brachiopods, ostracods, conodonts, trilobites, base to top show morphologic variation of halysitids, horn corals, and sponge spicules. The conchostracans coenitids, stromatoporoids, and various algae, coinci­ are small and thin valved in noncalcareous shale but dent with shallowing: Unit I (1 ft), "amoeboid" stro­ their size and valve thickness increase relative to higher matoporoids in wackestone matrix; Unit 11 (4 ft), thin, carbonate content of enclosing rocks. The bivalves are laminar stromatoporoids, "head-shaped" halysitids, en­ flattened in shale but undistorted in carbonate beds; crusting algae, and smafl-diameter branching coenitids open articulated valves are commonly preserved. in packstone and grainstone matrix; Unit 111 (1 ft), A brackish-water environment is suggested for these halysitids change to '"blade" morphology; Unit IV (4 latest Devonian conchostracans. Optimum conditions ft), no halysitids, bloom of larger diameter branching apparently were a muddy bottom, restricted circula­ coenitids, branching and encrusting algae, and laminar tion, shallow and quiet water, and slow deposition. and "amoeboid" stromatoporoids in packstone and grainstone matrix (rare wackestone); Unit V (2 ft), massive domal stromatoporoids in calcareous shale. HADLEY, DONALD G., U.S. Geol. Survey, Washing­ Transitions from "heads" (o branches, from "heads" ton, D.C. to "blades," from smaller to larger diameter coenitids, and from encrusting to branching algae arc interpreted PALEOCURRENTS AND ORIGIN OF HURONIAN I.ORRAIN as adaptation to incieased turbulence. Halysitid estab­ FORMATION, ONTARIO AND QUEBEC lishment and laminar stromatoporoid morphology cor­ TTie Lorrain Formation crops out in 3 areas between relate with "firm" substrate. A "soft" substrate sup­ Sault Ste. Marie, Ontario, and Ville-Marie, Quebec— ported "amoeboid" stromatoporoids. A decrease of tur­ Bruce Mines, Whitefish Falls, and Cobalt. It conform­ bulence permitted verlica) expansion of stromatopo­ ably overlies the Gowganda Formation in each area; in roids to domal morphology. the Cobalt area it also locally overlies Archean granite. Paleoecologic interpretations based on single mor­ The Lorrain is overlain by the Gordon Lake Forma­ phologic occurrences, as contrasted with trends, must tion. be made with reservation In ascending order, the Lorrain Formation consists of arkose, subarkose, jasper-bearing orthoconglomer- HARRIS, D. G., and A. YOUNG, Esso Production ate, and orthoquartzite. In the Bruce Mines area the Research, Houston, Tex., and H. HAY-ROE, Belco Lorrain is 8,300 ft thick and is divided into 5 members Petroleum Corp., Lima, Pcni (A-E); in the eastern areas the Lorrain is only 5,000 ft thick and is divided into 3 members (lower, middle, FORMATION PRESSURI; PAirrKNS IN CRETACEOUS VIKING and upper). In each area, mineralogic and texlural ma­ FORMATION, ALBEIMA turity increases upward; grains in immature arkose at Regional potentiometiic maps of the Lower Creta­ the base are subrounded and 44% feldspar, and grains ceous Viking Formation in central Alberta indicate a in supermature orthoquartzite at the top are well low-pressure area or "sink" centered on the Joftre- rounded and 95-100% quartz. Chronologically, the de- Bentley-Gilby trend of oil fields, with formation waters positional environments suggested are shallow-water in central Alberta flowing into the trend. According to marine, lacustrine, delta fringe, overshelved beach, and integrated geologic and pressure studies, the "sink" ac­ high-energy beach. tually consists of 6 separate, nearly static, pressure sys­ Currents flowing south and southeast deposited most tems controlled by the environiriental facies and subse­ of the sediments; however, in jasper-bearing conglom­ quent structural deformation. erate of the Bruce Mines area, cross-bedding and peb­ The Viking reservoirs are interpreted to be lenticular ble composition indicate a 90° variance in transport sandstone bodies deposited as en echelon offshore bars direction, and an additional source on the east. Abun­ with a NW-SF trend. Postdepositional uplift and subse­ dant potash feldspar and lack of metamorphic and sed­ quent erosion have exposed the Viking sandstones at imentary rock fragments in the lower members suggest their lateral extremities; in places, these extremities are a plutonic provenance. Subsequent deposition of jas­ covered by a thin veneer of permeable glacial deposits. per, chert, and quartz-rich detritus indicates erosion Five of the 6 pressuic systems in the Viking appear to and reworking of Precambrian jaspilites and igneous be controlled by the distribution of these bars and by source rocks similar to those now exposed in the Cana­ the elevations of outcrops. The sixth system is charac­ dian shield. terized by pressures 1,200 psi helow hydrostatic pres- Association Round Table 851 sure and by as much as 1,900 psi below the outcrop- sin, and Fort Union lake deposits in the Big Horn ba­ controlled systems. This system is interpreted to be a sin. The lobate configuration of Fort Union coarse sandstone lens completely enclosed in shale; its pres­ elastics on the west Hank of the Big Horn basin is very sures were developed by geo-osmosis, as indicated by suggestive of deltaic deposits facies relations, shale analyses, and salinity maps. The osmotic cell in this system consists of the low- HAYES, MILES O., JON C. HOOTHROYD, and AL­ salinity Viking sandstone and the deeper, high-salinity, BERT C. HINE. Ill, Coastal Research Group, Dept. Mannville sandstone and shale; the semipermeable Geology, Univ. Massachusetts, Amherst, Mass. membrane of the system is the intervening Joli Fou DiAGNOsric PRIMARY SIRI ( I UKES OE F.SIUARINI; SAND shale. Because the Viking sandstone system is isolated BODIES from the outcrop by shale and shaly rocks of very low permeability, the osmotic process produced a marked Estuarine sand bodies assume complex morphologic pressure anomaly. characteristics in response to multidirectional tidal currents and wave action. Studies in 8 New England HAUN, JOHN D., Colorado School of Mines, Golden, estuaries show, however, that the major forms are Colo., and JAMES A. BARLOW, JR., Barlow and repetitive from estuary to estuary and that Ihey display Haun, Casper, Wyo. diagnostic suites of primary structures. Sand accumulation around the seaward margin of LOWER TERIIARY DELIAS AND PETROEEIM, RCHK-I the major inlets takes the foim of ridge-and-runnel sys­ MOUNTAIN REGION tems and recurved spits attached to the barrier Paleocene and Eocene lacustrine deltas are present beaches, large swash bars ollshore, and submerged ebb- in several Rocky Mountain intermontane basins. Del­ dominated sand sheets. Wave-generated flow over the taic deposits of the Eocene Green River Formation in intertidal bars creates an abundance of large-scale (up the Red Wash-Raven Ridge area, northeastern Utah, to 20 ft thick) planar cross-beds oriented landward. have been studied intensively. Recognition of the Red Tidal deltiis inside the inlets consist inainly of sand Wash delta is based on distribution of (1) fluviatile flats covered with tlood-oriciited sand waves—>20-ft red and green shale facies (Wasatch Formation), dis­ wave lengths (A). Margins of the deltas (ebb shields tributary and nearshore sandstone facies, and lacust­ and ebb spits) contain piedominantly ebb-oriented rine oolitic, ostracodal hmestone facies (Green River niegaripples (\ ;: 2 20 ft) which produce festoon Formation); (2) geographic orientation and spatial di­ cross-bedding. In places, the deltas are cut by spillover mensions of thick sandstone bodies projecting into the lobes formed by ebb currents. Thus, zones of flood lake beds, indicating positions
Recommended publications
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files
    Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files By Debra K. Higley1, Mitchell E. Henry, and Laura N.R. Roberts Report Series 2005-1421 U.S. Department of the Interior U.S. Geological Survey 1 Inquiries about this publication should be addressed to: Debra K. Higley U.S. Geological Survey, MS 939, Box 25046 Denver Federal Center, Denver, CO 80225 Tel: 303-236-5791 Email: [email protected] 1 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For products and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS–the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Debra K. Higley, Mitchell Henry, and Laura N.R. Roberts, 2006, Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files: U.S. Geological Survey Report Series 2005-1421, web publication and associated data files. Any use of trade, product, or firm names is for descriptive purposes only, and does not imply endorsement by the U.S. government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Introduction …………………………………………………………….. 3 Data Processing Steps …………………………………………….……. 4 Acknowledgments ………………………………….………………..…. 5 Zmap-Format Grid Files ..………………………….………………..…. 5 References and Software Cited …………………….……………..…….
    [Show full text]
  • Stratigraphjc, Diagenetic and Geochemical Study of Cretaceous Strata In
    StratigraphJc, Diagenetic and Geochemical Study of Cretaceous Strata in Central Saskatchewan A thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Science In Geology University of Regina by Autumn Q Wang Regina, Saskatchewan August, 2010 Copyright 2010: Autumn Q. Wang Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-79906-2 Our file Notre reference ISBN: 978-0-494-79906-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'Internet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • The Viking Formation (Lower Cretaceous) of Southeastern Saskatchewan
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1981 The Viking Formation (Lower Cretaceous) of southeastern Saskatchewan. Shaun C. O'Connell University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation O'Connell, Shaun C., "The Viking Formation (Lower Cretaceous) of southeastern Saskatchewan." (1981). Electronic Theses and Dissertations. 6773. https://scholar.uwindsor.ca/etd/6773 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. NOTE TO USERS This reproduction is the best copy available. UMI_ (B) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE VIKING FORMATION (LOWER CRETACEOUS) OF SOUTHEASTERN SASKATCHEWAN by Shaun C. O' Connell Thesis Submitted to the Faculty of Graduate Studies through the Department of Geology in Partial Fulfilment of the Requirements for the degree of Master of Science in Geology at The University of Windsor.
    [Show full text]
  • Dynamic Sedimentation in the Late Albian, South-Central Alberta and Saskatchewan Matea Drljepan.; A
    Dynamic sedimentation in the Late Albian, south-central Alberta and Saskatchewan Matea Drljepan.; A. Guy Plint University of Western Ontario Summary Across southern Alberta and Saskatchewan, rocks of Late Albian age (including the Joli Fou, Viking, Bow Island and Mill Creek formations) represent depositional environments ranging from alluvial to deltaic- nearshore to offshore marine. Because of radical facies changes, it is difficult to establish age relationships amongst these various lithostratigraphic formations. Building upon an existing allostratigraphic framework developed by Boreen and Walker (1991), Roca et al. (2008), Buckley and Plint (2013), and Vannelli (2016) have modified the original allostratigraphic scheme and extended correlation of Upper Albian strata to northern Alberta and NE British Columbia. The investigation reported here builds upon these allostratigraphic studies and extends across 56,000 km2 of south-central Alberta and Saskatchewan. Preliminary results show that early Late Albian Joli Fou sediments form a subtly SE- thickening wedge whereas lower Viking allomembers VA and VB are approximately sheet-like, with local thickening to the SW reflecting local deltaic depocentres. Viking allomember VD contasts markedly with allomembers VA and VB because it forms a prominent, elongate SW-thickening wedge that extends across Alberta into Saskatchewan, within which, parasequences onlap towards the NE. The NE limit of the wedge is abrupt, defined by a prominent lineament, or hinge-line. To the south of the hinge, overlapping sandy deltaic lobes can be mapped whereas to the north of the hinge, the rocks are mudstone-dominated. Introduction The Viking Formation represents one of the most prolific hydrocarbon reservoirs in the Western Canada Foreland Basin, containing 5 to 8% of the total oil in Alberta (Reinson et al., 1994) and a total estimated oil reserve of 88.7 million m3 (Alberta Research Council et al., 1994).
    [Show full text]
  • Preliminary Investigations of the Hudson Bay Area Coal Deposits
    Preliminary Investigations of the Hudson Bay Area Coal Deposits J. Berenyi, A. Marsh, and R. Leray 1 Berenyi, J., Marsh, A., and Leray, R. (2009): Preliminary investigations of the Hudson Bay area coal deposits; in Summary of Investigations 2009, Volume 2, Saskatchewan Geological Survey, Sask. Ministry of Energy and Resources, Misc. Rep. 2009-4.2, Paper A-12, 14p. Abstract The discovery of anomalous thicknesses of coal in the Hudson Bay region of east-central Saskatchewan by Goldsource Mines Inc., in the spring of 2008, ignited an unprecedented staking rush for coal in the province. Subsequent drilling by the company has shown that these deposits are not only anomalous in thickness, but also in morphology and depositional environment. Unlike most other coal deposits in Saskatchewan, which are relatively thin (less than a few metres) and more regionally extensive, the Hudson Bay area coal deposits are more localized and have far greater thicknesses of up to 100 m (including partings). Since the initial discovery, the company has identified a total of 11 discrete coal deposits within its 51 942 ha Border Project area. In June of 2009, Saskatchewan Ministry of Energy and Resources staff commenced a study of the stratigraphy, sedimentology, and diagenetic history of the subsurface in and around these discoveries in an attempt to develop a geologic model for these types of deposits. Detailed stratigraphic logging, combined with geophysical well log interpretation, provided the basis for some preliminary interpretations. All of the significant intervals of coal occur within the Cantuar Formation of the Mannville Group. The Cantuar Formation is infilling paleo-topographic lows on the sub-Cantuar unconformity surface.
    [Show full text]
  • Sedimentology and Allostratigraphy of the Basal Belly River Formation of Central Alberta
    SEDIMENTOLOGY AND ALWSTRATIGRAPIIY OFTHE BASAL BELLY RIVER FORMATION OF CENTRAL ALBERTA SEDIMENTOLOGY AND ALLOSTRATIGRAPHY OF THE BASAL BELLY RIVER FORMATION OF CENTRAL ALBERTA BY ZUWENA SALIM AL-RAWAHI, B.Sc.(Hons.) A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Science McMaster University (February) 1993 -McMASTER UNIVERSITY LllIlilARY MASTER OF SCIENCE (1993) McMASTER UNIVERSITY (Geology) Hamilton, Ontario TITLE: Sedimentology and Allostratigraphy of the Basal Belly River Formation of central Alberta AUTHOR: Zuwena Salim AI-Rawahi, B.Sc.(Hons.) (The University of Birmingham, U.K) SUPERVISOR: Dr. R.G.Walker NUMBER OF PAGES: xi, 174 ii Abstract The nature of the transition from marine Lea Park Formation to continental Belly River Formation has been studied in a 50 m thick section in the Campanian of central Alberta. The sediments are subdivided into three allomembers (A 1 to A3), bounded by erosional discontinuities which formed as a result of relative sea level changes. The topmost 18 m of the Lea Park Formation consists of interbedded mudstones, siltstones and sandstones, deposited in a marine offshore environment below fairweather wave base (FWWB). Allomember 1 consists of 11 m thick sandstones with Macaronichnus traces which were interpreted as the shoreface of a prograding fluvial- and wave- dominated delta. These shoreface sandstones lie sharply on offshore mudstones of the Lea Park Formation. The lower bounding discontinuity is interpreted as a regressive surface of erosion (RSE) and consequently, the progradation of the shoreface succession of allomember 1 is due to a drop in sea level, termed a forced regression.
    [Show full text]
  • Pembina Cardium CO2 Monitoring Project: Timelapse Seismic Analysis
    CO2 Monitoring at Pembina Cardium Pembina Cardium CO2 monitoring project: timelapse seismic analysis Abdullah A. Alshuhail, Don C. Lawton, and Louis Chabot ABSTRACT Time-lapse analysis of the surface seismic dataset at the Violet Grove CO2-EOR pilot project site shows no significant anomaly that can be attributed to the injected supercritical CO2 between Phase I (March 2005) and Phase III (March 2007) of the project. However, the fixed-array vertical seismic profile (VSP) dataset exhibits small amplitude variations that may be associated with the CO2 plume. The time-lapse analysis referred to here is based on the observation of amplitude and traveltime variations after the injection of approximately 40,000 t of CO2 into the 1650 m deep, 20 m thick Cardium Formation over a period of two years. The ongoing analysis suggests that it would be hard to detect the CO2 plume due to its being contained in very thin layers of relatively permeable sandstone members of the Cardium Formation. The seismic data, however, suggests that no leakage of CO2 is taking place into shallower formations. INTRODUCTION The Violet Grove CO2 enhanced oil recovery (EOR) program was established as a pilot project for CO2-EOR in Alberta. At the site, supercritical CO2 has been injected into the 1650 m deep, 20 m thick Upper-Cretaceous Cardium Formation since March 2005. As part of the pilot project, a time-lapse seismic program was designed and incorporated into the overall mitigation monitoring and verification (MMV) program. The seismic component of the MMV program is based on the acquisition, processing and interpretation of 2D and 3D surface seismic and 2D vertical seismic profile (VSP) datasets in an attempt to: (1) track the CO2 within and around the reservoir, and (2) evaluate the integrity of the storage (Lawton et al., 2005; Chen et al., 2006; Coueslan et al., 2006).
    [Show full text]
  • The Depositional History of the Lower Cretaceous Viking Formation at Joffre, Alberta, Canada
    THE DEPOSITIONAL HISTORY OF THE LOWER CRETACEOUS VIKING FORMATION AT JOFFRE, ALBERTA, CANADA THE DEPOSITIONAL HISTORY OF THE LOWER CRETACEOUS VIKING FORMATION AT JOFFRE, ALBERTA, CANADA BY KAREN PAMELA DOWNING, B.SC A thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Science Md1aster University December 1986 MASTER OF SCIENCE (1986) MCMASTER UNIVERSITY (Geology) Hamilton, Ontario TITLE: The Depositional History of the Lower Cretaceous Viking Formation at Joffre, Alberta, Canada AUTHOR: Karen Pamela Downing, B.Sc (University of Western Ont. SUPERVISOR: Dr. R. G. Walker NUMBER OF PAGES: viii, 138 - ii - ABSTRACT Detailed core and log correlations have shown that there are three erosion surfaces within the Viking at Joffre, and that each surface is overlain by unusually coarse sediment. The main sand development at Joffre overlies the E2 erosion surface and comprises cross-stratified, medium-grained to pebbly sandstones. The basal portion of this sandstone tends to be glauconitic. This sandstone is interpreted to be the remnant of a shoreface which developed at Joffre in response to a relative lowering of sea level. Evidence for exposure southwest of the shoreface was removed during the subsequent transgression, as was the upper shoreface and beach. Only th~ mid to lower part of the shoreface was preserved and blanketted by burrowed marine mudstone. In total, five bounding surfaces have been defined at Joffre, three of them are demonstrably erosive and the other two are designated as core markers. These bounding surfaces serve to divide the formation into six distinct sedimentary packages whi~h tend to coarsen upward.
    [Show full text]
  • Structural Influences on Hydrocarbon Accumulation in the Viking Formation, West-Central Saskatchewan
    Structural Influences on Hydrocarbon Accumulation in the Viking Formation, West-central Saskatchewan Dan Kohlruss 1 Parts of this publication may be quoted if credit is given. It is recommended that reference to this publication be made in the following form: Kohlruss, D. (2015): Structural influences on hydrocarbon accumulation in the Viking Formation, west-central Saskatchewan; in Summary of Investigations 2015, Volume 1, Saskatchewan Geological Survey, Saskatchewan Ministry of the Economy, Miscellaneous Report 2015-4.1, Paper A-2, 12p. Abstract The Viking Formation has become one of the most important oil-producing reservoirs in Saskatchewan. It has been shown to be very resilient to fluctuations in oil price, since it is found at a relatively shallow depth and has a high API gravity, ranging from 30 to 36° (specific gravity 876 to 845 kg/m3). The distribution of the Viking Formation’s hydrocarbons in Saskatchewan is largely controlled by structural trapping and, to a lesser degree, by stratigraphic pinch-out of the reservoir facies. Topographic features created by the sub-Cretaceous erosional surface have significant control on Viking structural traps. The structural surface of the top of the Viking mimics the sub- Cretaceous erosional surface, draping over its erosional highs, in particular, the structural surface of the Madison Group and its subcrop edge. Viking oil plays are generally found either differentially trapped up-dip from natural gas pools within a series of successive traps along the Viking’s hydrocarbon migration pathway, or within structural lows below trapped natural gas. Using a cross-section and a series of production, structure and isopach contour maps, this paper will illustrate the nature of Viking Formation hydrocarbon trapping and distribution.
    [Show full text]
  • Togin Roadmap | Ptac 2017
    Tight Oil and Shale Gas Innovation Roadmap May 8, 2017 ACKNOWLEDGEMENTS This report was prepared by a team under the leadership and editing of Marc Godin and PTAC Petroleum Technology Alliance Canada. The project sponsored by Natural Resources Canada and Alberta Innovates. Report sections were authored by New Paradigm Engineering, Third Bay, the Saskatchewan Research Council, and Cap-Op Energy, particularly Bruce Peachey, Roland Park, Jana Vander Kloet, Roberta Wasylishen, Keith Minnich, Petro Nakutnyy, Peng Luo, Ian Kuwahara, Kristie Martin and Marc Godin. The authors and contributors wish to express their appreciation for the invaluable assistance, insight and comments received during the course of this work from representatives of Natural Resources Canada, and Alberta Innovates, particularly Candice Paton, Kate Wilson and David Ryan, as well as members of the following PTAC industry-government committees: Air Research Planning Committee, Technology for Emissions Reductions and Eco-Efficiency Committee, Water Innovation Planning Committee, and Tight Oil and Shale Gas Innovation Network Steering Committee. We would also like to acknowledge the Government of Alberta regarding earlier play-based assessments related to technology challenges and opportunities in Duvernay and Cardium shale gas and tight oil regions as being catalysts for the development of this report. DISCLAIMER Alberta Innovates and Her Majesty the Queen in right of Alberta, Natural Resources Canada and PTAC Petroleum Technology Alliance Canada make no warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information contained in this publication, nor that use thereof infringe on privately owned rights. The views and opinions of the authors expressed herein do not necessarily reflect those of Alberta Innovates or Her Majesty the Queen in right of Alberta, Natural Resources Canada or PTAC Petroleum Technology Alliance Canada.
    [Show full text]
  • AER/AGS Open File Report 2017-09: 3D Provincial Geological Framework Model of Alberta, Version 1
    AER/AGS Open File Report 2017-09 3D Provincial Geological Framework Model of Alberta, Version 1 – Methodology AER/AGS Open File Report 2017-09 3D Provincial Geological Framework Model of Alberta, Version 1 – Methodology P. Branscombe, K.E. MacCormack and M. Babakhani Alberta Energy Regulator Alberta Geological Survey April 2018 ©Her Majesty the Queen in Right of Alberta, 2018 ISBN 978-1-4601-2061-3 The Alberta Energy Regulator / Alberta Geological Survey (AER/AGS), its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any references to proprietary software and/or any use of proprietary data formats do not constitute endorsement by AER/AGS of any manufacturer’s product. If you use information from this publication in other publications or presentations, please acknowledge the AER/AGS. We recommend the following reference format: Branscombe, P., MacCormack, K.E. and Babakhani, M. (2018): 3D Provincial Geological Framework Model of Alberta, Version 1 – methodology; Alberta Energy Regulator, AER/AGS Open File Report 2017-09, 25 p. Publications in this series have undergone only limited review and are released essentially as submitted by the author. Published April 2018 by: Alberta Energy Regulator Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, AB T6B 2X3 Canada Tel: 780.638.4491 Fax: 780.422.1459 Email: [email protected] Website: www.ags.aer.ca AER/AGS
    [Show full text]