EPPO Datasheet: Liberibacter Asiaticus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asian Citrus Psyllid, Diaphorina Citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F
EENY-033 Asian Citrus Psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F. W. Mead and T. R. Fasulo2 Introduction In June 1998, the insect was detected on the east coast of Florida, from Broward to St. Lucie counties, and was The Asian citrus psyllid, Diaphorina citri Kuwayama, is apparently limited to dooryard host plantings at the time of widely distributed in southern Asia. It is an important pest its discovery. By September 2000, this pest had spread to 31 of citrus in several countries as it is a vector of a serious Florida counties (Halbert 2001). citrus disease called greening disease or Huanglongbing. This disease is responsible for the destruction of several Diaphorina citri is often referred to as citrus psylla, but this citrus industries in Asia and Africa (Manjunath 2008). is the same common name sometimes applied to Trioza Until recently, the Asian citrus psyllid did not occur in erytreae (Del Guercio), the psyllid pest of citrus in Africa. North America or Hawaii, but was reported in Brazil, by To avoid confusion, T. erytreae should be referred to as the Costa Lima (1942) and Catling (1970). African citrus psyllid or the two-spotted citrus psyllid (the latter name is in reference to a pair of spots on the base of the abdomen in late stage nymphs). These two psyllids are the only known vectors of the etiologic agent of citrus greening disease (Huanglongbing), and are the only eco- nomically important psyllid species on citrus in the world. Six other species of Diaphorina are reported on citrus, but these are non-vector species of relatively little importance (Halbert and Manjunath 2004). -
UNIVERSITY of CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioi
UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions. Robert Krueger for mentoring me over the past twelve years. He was the first person I met at UCR and his willingness to help expand my knowledge base on Citrus varieties has been a generous gift. He is also an amazing friend. Tim Williams for teaching me everything I know about breeding Citrus and without whom I'd have never discovered my love for the art. -
Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang -
Feeding Behaviour of the Asiatic Citrus Psyllid, Diaphorina Citri, on Healthy and Huanglongbing-Infected Citrus
DOI: 10.1111/j.1570-7458.2012.01222.x Feeding behaviour of the Asiatic citrus psyllid, Diaphorina citri, on healthy and huanglongbing-infected citrus Yijing Cen1, Chengliang Yang1, Paul Holford2*, G. Andrew C. Beattie2, Robert N. Spooner-Hart2, Guangwen Liang1 &XiaolingDeng3 1Laboratory of Insect Ecology, Faculty of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, Guangdong 510642, China, 2School of Health and Science, University of Western Sydney, Locked Bag 1797, Pen- rith, NSW 2751, Australia, and 3Laboratory of Citrus Huanglongbing, Faculty of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, Guangdong 510642, China Accepted: 19 December 2011 Key words: electrical penetration graph, phloem ingestion, salivation, xylem ingestion, Hemiptera, Sternorrhyncha, Psyllidae, ‘Candidatus Liberibacter asiaticus’, Rutaceae, a-Proteobacteria, EPG Abstract Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psyllidae) is a vector of huanglongbing, a diseaseofcitrusthatinAsiaiscausedby‘Candidatus Liberibacter asiaticus’ (a-Proteobacteria) (Las). Acquisition of Las by D. citri appears to be variable, and this variability may be due to the suitability of the host plants and their tissues for acquisition. Therefore, this study aimed to determine the effect of symptom severity of the disease on the feeding behaviour of D. citri. Use of an electrical penetration graph showed that the pathway phase of D. citri consisted of four waveforms, A, B, C, and D; wave- forms A and B have not been reported for D. citri before. The remaining waveforms, E1, E2, and G, conform to those described before for D. citri. The duration of the non-penetration period did not differ between healthy or infected plants. However, in moderately and severely symptomatic plants, the duration of the pathway phase increased, whereas the phloem phase was shorter. -
Annotation and Analysis of Yellow Genes in Diaphorina Citri, Vector for the Huanglongbing Disease Crissy Massimino1, Chad Vosburg1, Teresa Shippy2, Prashant S
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.422960; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Annotation and analysis of yellow genes in Diaphorina citri, vector for the Huanglongbing disease Crissy Massimino1, Chad Vosburg1, Teresa Shippy2, Prashant S. Hosmani3, Mirella Flores- Gonzalez3, Lukas A. Mueller3, Wayne B. Hunter4, Joshua B. Benoit5, Susan J. Brown2, Tom D’Elia1 and Surya Saha3,6 1 Indian River State College, Fort Pierce, FL 34981 2 Division of Biology, Kansas State University, Manhattan, KS 66506 3 Boyce Thompson Institute, Ithaca, NY 14853 4 USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945 5 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221 6 Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721 ABSTRACT Huanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus (CLas) and represents a serious threat to global citrus production. This bacteria is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera) and there are no effective in-planta treatments for CLas. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could serve as novel targets for psyllid control. The yellow gene family represents an excellent target as yellow genes are linked to development and immunity due to their roles in melanization. -
Freeze Response of Citrus and Citrus- Speeds (Nisbitt Et Al., 2000)
HORTSCIENCE 49(8):1010–1016. 2014. and tree and grove size (Bourgeois et al., 1990; Ebel et al., 2005). Protection using microsprinklers is compromised by high wind Freeze Response of Citrus and Citrus- speeds (Nisbitt et al., 2000). Developing more cold-tolerant citrus varieties through breeding related Genotypes in a Florida Field and selection has long been considered the most effective long-term solution (Grosser Planting et al., 2000; Yelenosky, 1985). Citrus and Citrus relatives are members Sharon Inch, Ed Stover1, and Randall Driggers of the family Rutaceae. The subtribe Citrinae U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, is composed of Citrus (mandarins, oranges, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL pummelos, grapefruits, papedas, limes, lem- ons, citrons, and sour oranges); Poncirus 34945 (deciduous trifoliate oranges); Fortunella Richard F. Lee (kumquats); Microcitrus and Eremocitrus (both Australian natives); and Clymenia National Clonal Germplasm Repository for Citrus and Dates, U.S. (Penjor et al., 2013). There is considerable Department of Agriculture, Agricultural Research Service, 1060 Martin morphological and ecological variation within Luther King Boulevard, Riverside, CA 92521 this group. With Citrus, cold-hardiness ranges from cold-tolerant to cold-sensitive (Soost and Additional index words. Aurantioideae, citrus breeding, cold-sensitive, defoliation, dieback, Roose, 1996). Poncirus and Fortunella are frost damage, Rutaceae, Toddalioideae considered the most cold-tolerant genera that Abstract. A test population consisting of progenies of 92 seed-source genotypes (hereafter are cross-compatible with Citrus. Poncirus called ‘‘parent genotypes’’) of Citrus and Citrus relatives in the field in east–central trifoliata reportedly can withstand tempera- Florida was assessed after natural freeze events in the winters of 2010 and 2011. -
The Asian Citrus Psyllid and the Citrus Disease Huanglongbing
TheThe AsianAsian CitrusCitrus PsyllidPsyllid andand thethe CitrusCitrus DiseaseDisease HuanglongbingHuanglongbing Psyllid Huanglongbing The psyllid (pronounced síl - lid) is a small insect, about the size of an aphid The pest insect It has an egg stage, 5 wingless intermediate stages called nymphs, and winged adults Adult The pest insect Egg 5 Nymphs (insects molt to grow bigger) Adult psyllids usually feed on the underside of leaves and can feed on either young or mature leaves. This allows adults to survive year -round. The pest insect When feeding, the adult leans forward on its elbows and tips its rear end up in a very characteristic 45 o angle. The eggs are yellow -orange, tucked into the tips of tiny new leaves, and they are difficult to see because they are so small The pest insect The nymphs produce waxy tubules that direct the honeydew away from their bodies. These waxy tubules are unique and easy to recognize. Nymphs can only survive by living on young, tender The leaves and stems. pest insect Thus, nymphs are found only when the plant is producing new leaves. As Asian citrus psyllid feeds, it injects a salivary toxin that causes the tips of new leaves to easily break off. If the leaf survives, then it twists as it grows. Twisted leaves can be a sign that the psyllid has been there. The pest insect What plants can the psyllid attack? All types of citrus and closely related plants in the Rutaceae family • Citrus (limes, lemons, oranges, grapefruit, mandarins…) • Fortunella (kumquats) • Citropsis (cherry orange) • Murraya paniculata (orange jasmine) • Bergera koenigii (Indian curry leaf) • Severinia buxifolia (Chinese box orange) Plants • Triphasia trifolia (limeberry) • Clausena indica (wampei) affected • Microcitrus papuana (desert-lime) • Others…. -
Miscellaneous Species, Not Genus Citrus
Holdings of the University of California Citrus Variety Collection Miscellaneous species, not genus Citrus Category Other identifiers CRC VI PI numbera Accession name or descriptionb numberc numberd Sourcee Datef Miscellaneous species, not genus Citrus 1260 Geijera parviflora 52801 George Walder, Dir. of Agric., Sydney, NSW, Australia 1921? 1430 Atlantia citroides 539145 W.T. Swingle, USDA (cutting A) 1924 1460 Clausena lansium seedling (Wampee) 539716 W.T. Swingle, USDA 1924 1466 Faustrimedin (Microcitrus australasica ´ Calamondin) 539855 W.T. Swingle, USDA 1924 1484 Microcitrus australasica var. sanguinea seedling (Finger lime) 539734 W.T. Swingle, USDA 1485 Microcitrus virgata seedling (Sydney hybrid) 539740 W.T. Swingle, USDA 1924 1491 Severinia buxifolia (Chinese box orange)- cutting A 539793 W.T. Swingle, USDA 1924 1492 Severinia buxifolia (nearly spineless)- cuttings E & F 539794 W.T. Swingle, USDA 1924 1494 Severinia buxifolia seedling 539795 W.T. Swingle, USDA 1924 1495 Severinia buxifolia seedling 539796 W.T. Swingle, USDA 1924 1497 Severinia buxifolia (brachytic) seedling 539797 W.T. Swingle, USDA 1924 1637 Murraya paniculata (Orange Jessamine) 539746 W.T. Swingle, Date Garden, Indio CA 1926 2439 Eremocitrus glauca hybrid 539801 From CPB to Indio 1930 2878 Aeglopsis chevalieri seedling 539143 F.E. Gardner, Orlando FL 1950 2879 Hesperethusa crenulata 539748 F.E. Gardner, Orlando FL 1950? 2891 Faustrime 539808 F.E. Gardner, Orlando FL 1948? 3117 Pleiospermium species (ops) 231073 Ted Frolich, UCLA 1957 3126 Citropsis schweinfurthii (ops) 231240 H. Chapot, Rabat, Morocco 1956 3140 Aegle marmelos (ops) (Bael fruit) 539142 Charles Knowlton, Fullerton CA 1954 3165 Murraya koenigii seedling 539745 Bill Stewart, Arboretum, PasadenaCA 3166 Clausena excavata (ops) 235419 Ed Pollock, Malong Rd., Parkes N.S.W., Australia 1956 3171 Murraya paniculata (ops) (Hawaiian Mock orange) 539747 Hort. -
Potato Psyllid Vector of Zebra Chip Disease in the Pacific Northwest Biology, Ecology, and Management
A more recent revision exists, For current version, see: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw633_0.pdf A Pacific Northwest Extension Publication Oregon State University • University of Idaho • Washington State University PNW 633 • June 2012 Potato Psyllid Vector of Zebra Chip Disease in the Pacific Northwest Biology, Ecology, and Management Silvia Rondon1, Alan Schreiber2, Andrew Jensen3, Philip Hamm1, Joseph Munyaneza4, Phillip Nolte5, Nora Olsen6, Erik Wenninger7, Don Henne8, Carrie Wohleb9, and Tim Waters10 ebra chip (ZC) is a destructive disease of potatoes emerging in North America and Zother parts of the world. The disease has been very costly to manage in potato crops and has caused millions of dollars in losses to the potato industry in the southwestern United States, particularly Texas. ZC was first recorded in Idaho and the Columbia Basin of Washington and Oregon late in the 2011 growing season. This area produces more than © Oregon State University State © Oregon 50 percent of the potatoes grown in the United States, so the presence of ZC in the region has the potential to be economically devastating. Murphy) Brief history and distribution of ZC Lab Entomology Irrigated Agricultural Rondon’s (A Figure 1 Potato psyllid adult ZC was first documented in potato fields around Saltillo, Mexico in 1994. In the early 2000s, the dis- ease was reported in southern Texas, and by 2006 California, Colorado, Kansas, Nebraska, Nevada, ZC had spread to all potato production areas in New Mexico, Wyoming, -
Isoflavones in the Rutaceae Family
INSTITUTE OF CHEMICAL TECHNOLOGY, PRAGUE Faculty of Food and Biochemical Technology Department of Chemistry of Natural Compounds Dissertation Isoflavones in the Rutaceae family Author: Ing. Radka Koblovská Supervisor: Doc. RNDr. Oldřich Lapčík, Dr. Study program: Chemistry Field of study: Organic Chemistry Prague, December 2008 VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta potravinářské a biochemické technologie Ústav chemie přírodních látek Disertační práce Isoflavony rostlin čeledi routovitých (Rutaceae) Autor: Ing. Radka Koblovská Školitel: Doc. RNDr. Oldřich Lapčík, Dr. Studijní program: Chemie Studijní obor: Organická chemie Praha, prosinec 2008 Declaration The thesis was carried out at the Department of Chemistry of Natural Compounds, Institute of Chemical Technology, Prague and in the Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, v.v.i., Prague, during years 10/2002-12/2007. The work was supported by: Ministry of Education, Youth and Sports of the Czech Republic, Project No. FRVS 659/G4 Grant 525/03/0352 from the Grant Agency of the Czech Republic Grant 525/06/0864 from the Grant Agency of the Czech Republic Ministry of Education, Youth and Sports of the Czech Republic, Project No. 6046137305 I hereby declare that I have developed this thesis independently while noting all resources used, as well as all co-authors. I consent to the publication of this thesis under Act No. 111/1998, Coll., on universities, as amended by subsequent regulations. I have been informed of all duties and obligations applicable under Act No. 121/2000, Coll., the Copyright Act, as amended by subsequent regulations. Prague, December 2008 .................................................................................................. Signature Many people have contributed, either scientifically or in some other way, to the realization of this thesis and I would like to express my gratitude to all those who have given me the opportunity to make these few years a great experience. -
A Multimodal Attract-And-Kill Device for the Asian Citrus Psyllid Diaphorina Citri (Hemiptera: Liviidae)
insects Article A Multimodal Attract-and-Kill Device for the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae) Justin George 1,2, Stephen L. Lapointe 3, Larry T. Markle 2, Joseph M. Patt 2, Sandra A. Allan 4 , Mamoudou Setamou 5, Monique J. Rivera 6 , Jawwad A. Qureshi 7 and Lukasz L. Stelinski 1,* 1 Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; [email protected] 2 United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL 34945, USA; [email protected] (L.T.M.); [email protected] (J.M.P.) 3 18 Valle Vista Dr., Asheville, NC 28804, USA; [email protected] 4 Center for Medical, Agricultural, and Veterinary Entomology (CMAVE), Agriculture Research Service (ARS), US Department of Agriculture (USDA), Gainesville, FL 32608, USA; [email protected] 5 Kingsville Citrus Center, Texas A&M University, 312 N. International Blvd, Weslaco, TX 78599, USA; [email protected] 6 Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; [email protected] 7 Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL 34142, USA; jawwadq@ufl.edu * Correspondence: stelinski@ufl.edu Received: 29 October 2020; Accepted: 3 December 2020; Published: 8 December 2020 Simple Summary: Control of Asian citrus psyllid (Diaphorina citri), a vector of Candidatus liberibacter asiaticus (CLas), contributes to management of citrus greening disease (huanglongbing). We developed two prototypes of a multimodal attract-and-kill (AK) device with specific elements of color, attractant, phagostimulant, ultraviolet (UV) reflectant, and toxicant. -
Rootstocks with Dwarfing Effect Investigations Indicate Some Citrus Rootstocks Exert Dwarfing Effect on Scions Budded to Them
Rootstocks With Dwarfing Effect investigations indicate some citrus rootstocks exert dwarfing effect on scions budded to them W. P. Bitters Several of 60-odd rootstocks used in trifoliate root were 43% as large as trees ous trials, the Rusk, the Coleman, the an extensive citrus rootstock trial of the on sweet root but produced 79% as much Cunningham, and others, while they had Citrus Experiment Station at Riverside fruit. The Kumquat also does well on tri- a dwarfing effect on the top, resulted exerted a dwarfing effect on scions bud- foliate. The trees are healthy and fruitful. in combinations which were unhealthy ded onto them. The trifoliate orange is slow growing. in appearance and unproductive. They Dwarfed types of citrus trees might be Budded combinations in the orchard should probably not be used as rootstocks a desirable type for people having limited have been precocious and have produced under California conditions. space in which to grow trees and limited well in proportion to the size of the trees. Severinia buxifolia markedly dwarfed tree care facilities. The fruit is early to mature and is of high the various scions budded onto it. At 17 Citrus rootstocks which have a dwarf- quality. The trees have been disease- years of age, grapefruit trees on this stock ing effect on the scion are used in com- resistant, and have shown a greater hardi- are nine feet tall, whereas comparable mercial plantings in the citrus areas of ness than some other rootstocks. If the trees on sweet root are 14 feet high. These China, Japan, and Palestine.