Commercial Red Raspberry Production, PNW 598, Please Order by Title and Series Number from One of the Offices Below
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrated Pest Management for Raspberry Beetle
Integrated Pest Management for Raspberry Beetle Order: Coleoptera Family: Byturidae Species: Byturus unicolor The raspberry beetle, also known as the raspberry fruitworm, is a product contaminant pest found in raspberry fields in Washington. The larvae, or fruitworm, may fall off with the fruit during machine harvest. This pest has often been controlled by a diazinon treatment at 5% bloom, before pollinators are brought into the field. The United States Environmental Protection Agency is seeking to reduce the use of organophosphates, such as diazinon, through higher restrictions and cancellations. New monitoring tools for the raspberry beetle have been developed and tested in Whatcom County. The Rebell® Bianco white sticky trap can be used to detect raspberry beetle levels in a field. This may help in determining what treatment, if any, is Figure 1: Adult raspberry required for control of the pest. beetle on a raspberry bud Biology: The adult raspberry beetle is between 0.15 and 0.2” in length, a reddish brown color with short hairs covering its whole body (see figure 1). Overwintering in the soil, the adult emerges in the spring between mid-April and mid-May depending on soil temperatures. The adults feed on leaves, often on the new primocane leaves, but in areas of high populations they will also feed on upper floricane leaves. Adults are then attracted to flower buds and blooms where mating and, subsequently, ovipositing occurs. Larvae (or fruitworm) emerge from the eggs on the flower or immature fruit and begin feeding on the receptacle. The larvae are between 0.1” and 0.25” in length depending on the time of season. -
Premium 275+ Strong Colors
PREMIUM 275+ STRONG COLORS Die weltweit erste Street Art optimierte Sprühdose wurde The worldwide first street art optimized spray can was von Künstlern für Künstler entwickelt. Der hochdeckende developed with artists for artists. The highly opaque classic Klassiker, mit 4-fach gemahlenen Auto-K™ Pigmenten, ist with its 4 times ground Auto-K™ pigments, is the most die zuverlässigste Graffiti-Sprühdose seit 1999. re liable graffiti spray can since 1999. Mit über 275 Farbtönen verfügt das Sortiment der Moreover, with more than 275 color shades MOLOTOW™ MOLOTOW™ PREMIUM außerdem über eine der PREMIUM has one of the biggest spray paint color range. umfangreichsten Sprühdosen-Farbpaletten. PREMIUM PREMIUM Transparent 400 ml | 327300 PREMIUM Transparent PREMIUM Neon 400 ml | 327499 GRAFFITI PREMIUM 400 ml | 327000 SPRAY PAINT SEMI GLOSS MATT MATT HIGHLY HIGHEST UV AND GOOD UV AND GOOD UV RESISTANCE THE ORIGINAL WEATHER RESISTANCE WEATHER RESISTANCE WITH SEALING SINCE 1999 OPAQUE 252 COLOR SHADES TRANSPARENT 15 COLOR SHADES + 2 CLEAR COATINGS NEON 8 COLOR SHADES #181- #001 jasmin yellow 327001 #032 MAD C cherry red 327188 #063 purple violet 327138 #094 shock blue 327032 #122 riviera pastel 327216 #153 grasshopper 327064 nature green middle 327252 #203 cocoa middle 327234 #228 grey blue light 327177 2 zinc yellow 327006 signal red 327014 crocus 327199 tulip blue light 327213 riviera light 327072 cream green 327058 mustard 327049 cocoa 327126 pebble grey 327238 Händlerstempel ∙ dealer stamp Issue 12/20 #002 #033 #064 #095 #123 #154 #182 #204 #229 #182- #204- #003 cadmium yellow 327082 #034 apricot 327116 #065 lavender 327200 #096 tulip blue middle 327214 #124 TASTE riviera middle 327217 #155 hippie green 327063 mustard yellow 327262 caramel light 327253 #230 marble 327239 1 1 #182- #004 signal yellow 327165 #035 salmon orange 327134 #066 lilac 327201 #097 tulip blue 327033 #125 riviera dark 327073 #156 BACON wasabi 327222 khaki green 327263 #205 caramel 327091 #231 signal white 327160 2 4 Item-No. -
Rubus Idaeus (Raspberry ) Size/Shape
Rubus idaeus (raspberry ) Raspberry is an upright deciduous shrub.The shrub has thorns be careful. It ha pinatelly compound leaves with a toothed edge. The plant has two different types of shoots ( canes) One which produces fruits in the given year and one which grows leaves only but will be the next year productive shoot. The fruits are small but very juicy. It grows best in full fun and moderately fertile soil. The best to grow raspberry in a raised bed or in area where any frame or trellis can be put around the plants , otherwise it will fall on the ground. Landscape Information French Name: Framboisier, ﻋﻠﻴﻖ ﺃﺣﻤﺮ :Arabic Name Plant Type: Shrub Origin: North America, Europe, Asia Heat Zones: 4, 5, 6, 7, 8 Hardiness Zones: 4, 5, 6, 7, 8 Uses: Screen, Border Plant, Mass Planting, Edible, Wildlife Size/Shape Growth Rate: Fast Tree Shape: Upright Canopy Symmetry: Symmetrical Plant Image Canopy Density: Medium Canopy Texture: Medium Height at Maturity: 1 to 1.5 m Spread at Maturity: 1 to 1.5 meters Time to Ultimate Height: 2 to 5 Years Rubus idaeus (raspberry ) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Odd Pinnately compund Leaf Blade: 5 - 10 cm Leaf Shape: Ovate Leaf Margins: Double Serrate Leaf Textures: Rough Leaf Scent: No Fragance Color(growing season): Green Flower Image Color(changing season): Brown Flower Flower Showiness: True Flower Size Range: 1.5 - 3 Flower Type: Raceme Flower Sexuality: Monoecious (Bisexual) Flower Scent: No Fragance Flower Color: -
Fruits: Kinds and Terms
FRUITS: KINDS AND TERMS THE IMPORTANT PART OF THE LIFE CYCLE OFTEN IGNORED Technically, fruits are the mature ovaries of plants that contain ripe seeds ready for dispersal • Of the many kinds of fruits, there are three basic categories: • Dehiscent fruits that split open to shed their seeds, • Indehiscent dry fruits that retain their seeds and are often dispersed as though they were the seed, and • Indehiscent fleshy fruits that turn color and entice animals to eat them, meanwhile allowing the undigested seeds to pass from the animal’s gut We’ll start with dehiscent fruits. The most basic kind, the follicle, contains a single chamber and opens by one lengthwise slit. The columbine seed pods, three per flower, are follicles A mature columbine follicle Milkweed seed pods are also large follicles. Here the follicle hasn’t yet opened. Here is the milkweed follicle opened The legume is a similar seed pod except it opens by two longitudinal slits, one on either side of the fruit. Here you see seeds displayed from a typical legume. Legumes are only found in the pea family Fabaceae. On this fairy duster legume, you can see the two borders that will later split open. Redbud legumes are colorful before they dry and open Lupine legumes twist as they open, projecting the seeds away from the parent The bur clover modifies its legumes by coiling them and providing them with hooked barbs, only opening later as they dry out. The rattlepods or astragaluses modify their legumes by inflating them for wind dispersal, later opening to shed their seeds. -
Pruning of Small Fruit Crops Can Affect Habitat Suitability for Drosophila Suzukii
Agriculture, Ecosystems and Environment 294 (2020) 106860 Contents lists available at ScienceDirect Agriculture, Ecosystems and Environment journal homepage: www.elsevier.com/locate/agee Pruning of small fruit crops can affect habitat suitability for Drosophila T suzukii Torsten Schöneberga,1, Arielle Arsenault-Benoita,1, Christopher M. Taylora, Bryan R. Butlerb, Daniel T. Daltonc, Vaughn M. Waltonc, Andrew Petrand, Mary A. Rogersd, Lauren M. Diepenbrocke, Hannah J. Burrackf, Heather Leachg, Steven Van Timmereng, Philip D. Fanningg, Rufus Isaacsg, Brian E. Gressh, Mark P. Boldai, Frank G. Zalomh, Craig R. Roubosj, Richard K. Evansj, Ashfaq A. Sialj, Kelly A. Hambya,* a Department of Entomology, University of Maryland, College Park, MD, 20742, USA b Department of Plant Science and Landscape Architecture, College Park, MD, 20742, USA c Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA d Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA e Entomology and Nematology Department, University of Florida, Lake Alfred, FL, 33850, USA f Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA g Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA h Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA i University of California Cooperative Extension, Santa Cruz County, Watsonville, CA, 95076, USA j Department of Entomology, University of Georgia, Athens, GA 30602, USA ARTICLE INFO ABSTRACT Keywords: Insect activity, survival, and development are affected by climatic conditions that elicit effects at multiple scales. Spotted-wing drosophila Pruning small fruit crop canopies alters the microclimate, which in turn may influence insect pest activity. -
Hymenoptera: Eulophidae)
November - December 2008 633 ECOLOGY, BEHAVIOR AND BIONOMICS Wolbachia in Two Populations of Melittobia digitata Dahms (Hymenoptera: Eulophidae) CLAUDIA S. COPELAND1, ROBERT W. M ATTHEWS2, JORGE M. GONZÁLEZ 3, MARTIN ALUJA4 AND JOHN SIVINSKI1 1USDA/ARS/CMAVE, 1700 SW 23rd Dr., Gainesville, FL 32608, USA; [email protected], [email protected] 2Dept. Entomology, The University of Georgia, Athens, GA 30602, USA; [email protected] 3Dept. Entomology, Texas A & M University, College Station, TX 77843-2475, USA; [email protected] 4Instituto de Ecología, A.C., Ap. postal 63, 91000 Xalapa, Veracruz, Mexico; [email protected] Neotropical Entomology 37(6):633-640 (2008) Wolbachia en Dos Poblaciones de Melittobia digitata Dahms (Hymenoptera: Eulophidae) RESUMEN - Se investigaron dos poblaciones de Melittobia digitata Dahms, un parasitoide gregario (principalmente sobre un rango amplio de abejas solitarias, avispas y moscas), en busca de infección por Wolbachia. La primera población, provenía de Xalapa, México, y fue originalmente colectada y criada sobre pupas de la Mosca Mexicana de la Fruta, Anastrepha ludens Loew (Diptera: Tephritidae). La segunda población, originaria de Athens, Georgia, fue colectada y criada sobre prepupas de avispas de barro, Trypoxylon politum Say (Hymenoptera: Crabronidae). Estudios de PCR de la región ITS2 confi rmaron que ambas poblaciones del parasitoide pertenecen a la misma especie; lo que nos provee de un perfi l molecular taxonómico muy útil debído a que las hembras de las diversas especies de Melittobia son superfi cialmente similares. La amplifi cación del gen de superfi cie de proteina (wsp) de Wolbachia confi rmó la presencia de este endosimbionte en ambas poblaciones. -
2020 Global Color Trend Report
Global Color Trend Report Lip colors that define 2020 for Millennials and Gen Z by 0. Overview 03 1. Introduction 05 2. Method 06 Content 3. Country Color Analysis for Millennials and Gen Z 3.1 Millennial Lip Color Analysis by Country 08 3.2 Gen Z Lip Color Analysis by Country 09 4. 2020 Lip Color Trend Forecast 4.1 2020 Lip Color Trend Forecast for Millennials 12 4.2 2020 Lip Color Trend Forecast for Gen Z 12 5. Country Texture Analysis for Millennials and Gen Z 5.1 Millennial Lip Texture Analysis by Country 14 5.2 Gen Z Lip Texture Analysis by Country 15 6. Conclusion 17 02 Overview Millennial and Generation Z consumers hold enormous influence and spending power in today's market, and it will only increase in the years to come. Hence, it is crucial for brands to keep up with trends within these cohorts. Industry leading AR makeup app, YouCam Makeup, analyzed big data of 611,382 Millennial and Gen Z users over the course of six months. Based on our findings, we developed a lip color trend forecast for the upcoming year that will allow cosmetics The analysis is based on brands to best tailor their marketing strategy. According to the results, pink will remain the most popular color across all countries and age groups throughout 2020. The cranberry pink shade is the top favorite among Millennials and Gen Z across all countries. Gen Z generally prefers darker 611,382 shades of pink, while millennial consumers lean toward brighter shades. The second favorite shade of pink among Gen Z in Brazil, China, Japan, and the US is Ripe Raspberry. -
Konzept Für Lokalfauna
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Entomologischen Arbeitsgemeinschaft Salzkammergut Jahr/Year: 2004 Band/Volume: 2004 Autor(en)/Author(s): Kallies Axel, Pühringer Franz Artikel/Article: Provisional checklist of the Sesiidae of the world (Lepidoptera: Ditrysia) 1-85 ©Salzkammergut Entomologenrunde; download unter www.biologiezentrum.at Mitt.Ent.Arb.gem.Salzkammergut 4 1-85 4.12.2004 Provisional checklist of the Sesiidae of the world (Lepidoptera: Ditrysia) Franz PÜHRINGER & Axel KALLIES Abstract: A checklist of Sesiidae of the world provides 2453 names, 1562 of which are currently considered valid taxa (1 family, 2 subfamilies, 10 tribes, 149 genera, 1352 species, and 48 subspecies). Data concerning distribution, type species or type genus, designation, incorrect spelling and emendation, preoccupation and replacement names, synonyms and homonyms, nomina nuda, and rejected names are given. Several new combinations and synonyms are provided. Key words: Sesioidea, systematics, taxonomy, zoogeographic regions. Introduction: Almost 25 years have passed since HEPPNER & DUCKWORTH (1981) published their 'Classification of the Superfamily Sesioidea'. In the meantime great progress has been made in the investigation and classification of the family Sesiidae (clearwing moths). Important monographs covering the Palearctic and Nearctic regions, and partly South America or South-East Asia have been made available (EICHLIN & DUCKWORTH 1988, EICHLIN 1986, 1989, 1995b and 1998, ŠPATENKA et al. 1999, KALLIES & ARITA 2004), and numerous descriptions of new taxa as well as revisions of genera and species described by earlier authors have been published, mainly dealing with the Oriental region (ARITA & GORBUNOV 1995c, ARITA & GORBUNOV 1996b etc.). -
Plant Collecting Expedition for Berry Crop Species Through Southeastern
Plant Collecting Expedition for Berry Crop Species through Southeastern and Midwestern United States June and July 2007 Glassy Mountain, South Carolina Participants: Kim E. Hummer, Research Leader, Curator, USDA ARS NCGR 33447 Peoria Road, Corvallis, Oregon 97333-2521 phone 541.738.4201 [email protected] Chad E. Finn, Research Geneticist, USDA ARS HCRL, 3420 NW Orchard Ave., Corvallis, Oregon 97330 phone 541.738.4037 [email protected] Michael Dossett Graduate Student, Oregon State University, Department of Horticulture, Corvallis, OR 97330 phone 541.738.4038 [email protected] Plant Collecting Expedition for Berry Crops through the Southeastern and Midwestern United States, June and July 2007 Table of Contents Table of Contents.................................................................................................................... 2 Acknowledgements:................................................................................................................ 3 Executive Summary................................................................................................................ 4 Part I – Southeastern United States ...................................................................................... 5 Summary.............................................................................................................................. 5 Travelog May-June 2007.................................................................................................... 6 Conclusions for part 1 ..................................................................................................... -
'Sanna' Lingonberry Derived by Micropropagation Vs. Stem Cuttings
PROPAGATION & TISSUE CULTURE HORTSCIENCE 35(4):742–744. 2000. (WPM) (Lloyd and McCown, 1980) contain- ing 30 g·L–1 sucrose and 5 mg·L–1 2-isopentenyl adenine (2iP) before being rooted (in the same Field Performance of ‘Sanna’ medium as SC plants) in the greenhouse with high humidity and artificial light (long day) in Lingonberry Derived by Winter 1993–94. No rooting compound was applied to either the TC or the SC plants. Well- Micropropagation vs. Stem Cuttings rooted and approximately similar-sized pot plants from both propagation sources were Björn A. Gustavsson transplanted in Fall 1994 from the nursery to an experimental field at Balsgård (56°7´N, Balsgård–Department of Horticultural Plant Breeding, S–291 94 Kristianstad, 14°10´E). The soil in this field is a low-fertil- Sweden ity, sandy moraine, pH 5.6. Plants were grown in one row with three blocks of 10 plants each Vidmantas Stanys for a total of 30 plants per propagation method, Lithuanian Institute of Horticulture, 4335 Babtai, Kaunas District, Lithuania at a spacing of 40 cm. The field was mulched with 3–4 cm milled Additional index words. Vaccinium, cowberry, mountain cranberry, tissue culture, fruiting, peat 1 year after planting, and broadcast fertil- rhizomes ized each spring with 200 kg·ha–1 Complesal Abstract. Field performance in lingonberry (Vaccinium vitis-idaea L. cv. Sanna) was (Hoechst, Lomma, Sweden) 12N–5P–14K. compared in 1995–97 for plants produced by tissue culture (TC) vs. stem cuttings (SC). Pot Irrigation was provided only in periods with plants of about the same size were transplanted from the nursery to an infertile, sandy prolonged lack of precipitation. -
Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI
The Great Lakes Entomologist Volume 35 Number 1 - Spring/Summer 2002 Number 1 - Article 10 Spring/Summer 2002 April 2002 Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI. Miscellaneous Small Families (Lepidoptera) Edward G. Voss University of Michigan Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Voss, Edward G. 2002. "Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI. Miscellaneous Small Families (Lepidoptera)," The Great Lakes Entomologist, vol 35 (1) Available at: https://scholar.valpo.edu/tgle/vol35/iss1/10 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Voss: Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), 2002 THE GREAT LAKES ENTOMOLOGIST 53 MOTHS OF THE DOUGLAS LAKE REGION (EMMET AND CHEBOYGAN COUNTIES), MICHIGAN: VI. MISCELLANEOUS SMALL FAMILIES (LEPIDOPTERA) Edward G. Voss1 ABSTRACT Forty-seven species in nine families of Lepidoptera (Hepialidae, Psychidae, Alucitidae, Sesiidae, Cossidae, Limacodidae, Thyrididae, Pterophoridae, Epiplemi- dae) are listed with earliest and latest recorded flight dates in Emmet and Cheboy- gan counties, which share the northern tip of the Lower Peninsula of Michigan. The records are from the principal institutional and private collections of Michigan moths and continue the documented listing of Lepidoptera in the region. ____________________ Emmet and Cheboygan counties share the northern tip of the Lower Peninsula of Michigan, the former bordered on the west by Lake Michigan and the latter, on the east by Lake Huron. -
Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses
Molecules 2014, 19, 10998-11029; doi:10.3390/molecules190810998 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses Muhammad Zia-Ul-Haq 1,*, Muhammad Riaz 2, Vincenzo De Feo 3, Hawa Z. E. Jaafar 4,* and Marius Moga 5 1 The Patent Office, Kandawala Building, M.A. Jinnah Road, Karachi-74400, Pakistan 2 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper-2500, Pakistan; E-Mail: [email protected] 3 Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno 84100, Italy; E-Mail: [email protected] 4 Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Selangor, 43400, Malaysia; E-Mail: [email protected] 5 Department of Medicine, Transilvania University of Brasov, Brasov 500036 Romania; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (M.Z.-U.-H.); [email protected] (H.Z.E.J.); Tel.: +92-322-250-6612 (M.Z.-U.-H.); +6-03-8947-4821 (H.Z.E.J.); Fax: +6-03-8947-4918 (H.Z.E.J.). Received: 21 April 2014; in revised form: 14 July 2014 / Accepted: 16 July 2014 / Published: 28 July 2014 Abstract: Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves.