Classical Probabilistic Models and Conditional Random Fields Roman Klinger Katrin Tomanek Algorithm Engineering Report TR07-2-013 December 2007 ISSN 1864-4503 Faculty of Computer Science Algorithm Engineering (Ls11) 44221 Dortmund / Germany http://ls11-www.cs.uni-dortmund.de/ Classical Probabilistic Models and Conditional Random Fields Roman Klinger∗ Katrin Tomanek∗ Fraunhofer Institute for Jena University Algorithms and Scientific Computing (SCAI) Language & Information Engineering (JULIE) Lab Schloss Birlinghoven F¨urstengraben 30 53754 Sankt Augustin, Germany 07743 Jena, Germany Dortmund University of Technology
[email protected] Department of Computer Science Chair of Algorithm Engineering (Ls XI) 44221 Dortmund, Germany
[email protected] [email protected] Contents 1 Introduction 2 2 Probabilistic Models 3 2.1 Na¨ıve Bayes ................................... 4 2.2 Hidden Markov Models ............................ 5 2.3 Maximum Entropy Model ........................... 6 3 Graphical Representation 10 3.1 Directed Graphical Models .......................... 12 3.2 Undirected Graphical Models ......................... 13 4 Conditional Random Fields 14 4.1 Basic Principles ................................. 14 4.2 Linear-chain CRFs ............................... 15 4.2.1 Training ................................. 19 4.2.2 Inference ................................ 23 4.3 Arbitrarily structured CRFs .......................... 24 4.3.1 Unrolling the graph .......................... 25 4.3.2 Training and Inference ......................... 26 5Summary 26 ∗ The authors contributed equally to this work. version 1.0 1 Introduction 1 Introduction Classification is known as the assignment of a class y to an observation x .This ∈Y ∈X task can be approached with probability theory by specifying a probability distribution to select the most likely class y for a given observation x. A well-known example (Russell and Norvig, 2003) is the classification of weather observations into categories, such as good or bad, = good, bad .