An Introduction to Conditional Random Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Extraction from Electronic Medical Records Using Multitask Recurrent Neural Network with Contextual Word Embedding
applied sciences Article Information Extraction from Electronic Medical Records Using Multitask Recurrent Neural Network with Contextual Word Embedding Jianliang Yang 1 , Yuenan Liu 1, Minghui Qian 1,*, Chenghua Guan 2 and Xiangfei Yuan 2 1 School of Information Resource Management, Renmin University of China, 59 Zhongguancun Avenue, Beijing 100872, China 2 School of Economics and Resource Management, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing 100875, China * Correspondence: [email protected]; Tel.: +86-139-1031-3638 Received: 13 August 2019; Accepted: 26 August 2019; Published: 4 September 2019 Abstract: Clinical named entity recognition is an essential task for humans to analyze large-scale electronic medical records efficiently. Traditional rule-based solutions need considerable human effort to build rules and dictionaries; machine learning-based solutions need laborious feature engineering. For the moment, deep learning solutions like Long Short-term Memory with Conditional Random Field (LSTM–CRF) achieved considerable performance in many datasets. In this paper, we developed a multitask attention-based bidirectional LSTM–CRF (Att-biLSTM–CRF) model with pretrained Embeddings from Language Models (ELMo) in order to achieve better performance. In the multitask system, an additional task named entity discovery was designed to enhance the model’s perception of unknown entities. Experiments were conducted on the 2010 Informatics for Integrating Biology & the Bedside/Veterans Affairs (I2B2/VA) dataset. Experimental results show that our model outperforms the state-of-the-art solution both on the single model and ensemble model. Our work proposes an approach to improve the recall in the clinical named entity recognition task based on the multitask mechanism. -
Benchmarking Approximate Inference Methods for Neural Structured Prediction
Benchmarking Approximate Inference Methods for Neural Structured Prediction Lifu Tu Kevin Gimpel Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA {lifu,kgimpel}@ttic.edu Abstract The second approach is to retain computationally-intractable scoring functions Exact structured inference with neural net- but then use approximate methods for inference. work scoring functions is computationally challenging but several methods have been For example, some researchers relax the struc- proposed for approximating inference. One tured output space from a discrete space to a approach is to perform gradient descent continuous one and then use gradient descent to with respect to the output structure di- maximize the score function with respect to the rectly (Belanger and McCallum, 2016). An- output (Belanger and McCallum, 2016). Another other approach, proposed recently, is to train approach is to train a neural network (an “infer- a neural network (an “inference network”) to ence network”) to output a structure in the relaxed perform inference (Tu and Gimpel, 2018). In this paper, we compare these two families of space that has high score under the structured inference methods on three sequence label- scoring function (Tu and Gimpel, 2018). This ing datasets. We choose sequence labeling idea was proposed as an alternative to gradient because it permits us to use exact inference descent in the context of structured prediction as a benchmark in terms of speed, accuracy, energy networks (Belanger and McCallum, 2016). and search error. Across datasets, we demon- In this paper, we empirically compare exact in- strate that inference networks achieve a better ference, gradient descent, and inference networks speed/accuracy/search error trade-off than gra- dient descent, while also being faster than ex- for three sequence labeling tasks. -
Bayesian Network - Wikipedia
2019/9/16 Bayesian network - Wikipedia Bayesian network A Bayesian network, Bayes network, belief network, decision network, Bayes(ian) model or probabilistic directed acyclic graphical model is a probabilistic graphical model (a type of statistical model) that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network A simple Bayesian network. Rain could represent the probabilistic relationships between diseases and influences whether the sprinkler symptoms. Given symptoms, the network can be used to compute the is activated, and both rain and probabilities of the presence of various diseases. the sprinkler influence whether the grass is wet. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (e.g. speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called influence diagrams. Contents Graphical model Example Inference and learning Inferring unobserved variables Parameter learning Structure learning Statistical introduction Introductory examples Restrictions on priors Definitions and concepts Factorization definition Local Markov property Developing Bayesian networks Markov blanket Causal networks Inference complexity and approximation algorithms Software History See also Notes References https://en.wikipedia.org/wiki/Bayesian_network 1/14 2019/9/16 Bayesian network - Wikipedia Further reading External links Graphical model Formally, Bayesian networks are DAGs whose nodes represent variables in the Bayesian sense: they may be observable quantities, latent variables, unknown parameters or hypotheses. -
An Introduction to Factor Graphs
An Introduction to Factor Graphs Hans-Andrea Loeliger MLSB 2008, Copenhagen 1 Definition A factor graph represents the factorization of a function of several variables. We use Forney-style factor graphs (Forney, 2001). Example: f(x1, x2, x3, x4, x5) = fA(x1, x2, x3) · fB(x3, x4, x5) · fC(x4). fA fB x1 x3 x5 x2 x4 fC Rules: • A node for every factor. • An edge or half-edge for every variable. • Node g is connected to edge x iff variable x appears in factor g. (What if some variable appears in more than 2 factors?) 2 Example: Markov Chain pXYZ(x, y, z) = pX(x) pY |X(y|x) pZ|Y (z|y). X Y Z pX pY |X pZ|Y We will often use capital letters for the variables. (Why?) Further examples will come later. 3 Message Passing Algorithms operate by passing messages along the edges of a factor graph: - - - 6 6 ? ? - - - - - ... 6 6 ? ? 6 6 ? ? 4 A main point of factor graphs (and similar graphical notations): A Unified View of Historically Different Things Statistical physics: - Markov random fields (Ising 1925) Signal processing: - linear state-space models and Kalman filtering: Kalman 1960. - recursive least-squares adaptive filters - Hidden Markov models: Baum et al. 1966. - unification: Levy et al. 1996. Error correcting codes: - Low-density parity check codes: Gallager 1962; Tanner 1981; MacKay 1996; Luby et al. 1998. - Convolutional codes and Viterbi decoding: Forney 1973. - Turbo codes: Berrou et al. 1993. Machine learning, statistics: - Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990. 5 Other Notation Systems for Graphical Models Example: p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x). -
Learning Distributed Representations for Structured Output Prediction
Learning Distributed Representations for Structured Output Prediction Vivek Srikumar∗ Christopher D. Manning University of Utah Stanford University [email protected] [email protected] Abstract In recent years, distributed representations of inputs have led to performance gains in many applications by allowing statistical information to be shared across in- puts. However, the predicted outputs (labels, and more generally structures) are still treated as discrete objects even though outputs are often not discrete units of meaning. In this paper, we present a new formulation for structured predic- tion where we represent individual labels in a structure as dense vectors and allow semantically similar labels to share parameters. We extend this representation to larger structures by defining compositionality using tensor products to give a natural generalization of standard structured prediction approaches. We define a learning objective for jointly learning the model parameters and the label vectors and propose an alternating minimization algorithm for learning. We show that our formulation outperforms structural SVM baselines in two tasks: multiclass document classification and part-of-speech tagging. 1 Introduction In recent years, many computer vision and natural language processing (NLP) tasks have benefited from the use of dense representations of inputs by allowing superficially different inputs to be related to one another [26, 9, 7, 4]. For example, even though words are not discrete units of meaning, tradi- tional NLP models use indicator features for words. This forces learning algorithms to learn separate parameters for orthographically distinct but conceptually similar words. In contrast, dense vector representations allow sharing of statistical signal across words, leading to better generalization. -
Conditional Random Fields
Conditional Random Fields Grant “Tractable Inference” Van Horn and Milan “No Marginal” Cvitkovic Recap: Discriminative vs. Generative Models Suppose we have a dataset drawn from Generative models try to learn Hard problem; always requires assumptions Captures all the nuance of the data distribution (modulo our assumptions) Discriminative models try to learn Simpler problem; often all we care about Typically doesn’t let us make useful modeling assumptions about Recap: Graphical Models One way to make generative modeling tractable is to make simplifying assumptions about which variables affect which other variables. These assumptions can often be represented graphically, leading to a whole zoo of models known collectively as Graphical Models. Recap: Graphical Models One zoo-member is the Bayesian Network, which you’ve met before: Naive Bayes HMM The vertices in a Bayes net are random variables. An edge from A to B means roughly: “A causes B” Or more formally: “B is independent of all other vertices when conditioned on its parents”. Figures from Sutton and McCallum, ‘12 Recap: Graphical Models Another is the Markov Random Field (MRF), an undirected graphical model Again vertices are random variables. Edges show which variables depend on each other: Thm: This implies that Where the are called “factors”. They measure how compatible an assignment of subset of random variables are. Figure from Wikipedia Recap: Graphical Models Then there are Factor Graphs, which are just MRFs with bonus vertices to remove any ambiguity about exactly how the MRF factors An MRF An MRF A factor graph for this MRF Another factor graph for this MRF Circles and squares are both vertices; circles are random variables, squares are factors. -
A Multitask Bi-Directional RNN Model for Named Entity Recognition On
Chowdhury et al. BMC Bioinformatics 2018, 19(Suppl 17):499 https://doi.org/10.1186/s12859-018-2467-9 RESEARCH Open Access A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records Shanta Chowdhury1,XishuangDong1,LijunQian1, Xiangfang Li1*, Yi Guan2, Jinfeng Yang3 and Qiubin Yu4 From The International Conference on Intelligent Biology and Medicine (ICIBM) 2018 Los Angeles, CA, USA. 10-12 June 2018 Abstract Background: Electronic Medical Record (EMR) comprises patients’ medical information gathered by medical stuff for providing better health care. Named Entity Recognition (NER) is a sub-field of information extraction aimed at identifying specific entity terms such as disease, test, symptom, genes etc. NER can be a relief for healthcare providers and medical specialists to extract useful information automatically and avoid unnecessary and unrelated information in EMR. However, limited resources of available EMR pose a great challenge for mining entity terms. Therefore, a multitask bi-directional RNN model is proposed here as a potential solution of data augmentation to enhance NER performance with limited data. Methods: A multitask bi-directional RNN model is proposed for extracting entity terms from Chinese EMR. The proposed model can be divided into a shared layer and a task specific layer. Firstly, vector representation of each word is obtained as a concatenation of word embedding and character embedding. Then Bi-directional RNN is used to extract context information from sentence. After that, all these layers are shared by two different task layers, namely the parts-of-speech tagging task layer and the named entity recognition task layer. -
Lecture Seq2seq2 2019.Pdf
10707 Deep Learning Russ Salakhutdinov Machine Learning Department [email protected] http://www.cs.cmu.edu/~rsalakhu/10707/ Sequence to Sequence II Slides borrowed from ICML Tutorial Seq2Seq ICML Tutorial Oriol Vinyals and Navdeep Jaitly @OriolVinyalsML | @NavdeepLearning Site: https://sites.google.com/view/seq2seq-icml17 Sydney, Australia, 2017 Applications Sentence to Constituency Parse Tree 1. Read a sentence 2. Flatten the tree into a sequence (adding (,) ) 3. “Translate” from sentence to parse tree Vinyals, O., et al. “Grammar as a foreign language.” NIPS (2015). Speech Recognition p(yi+1|y1..i, x) y1..i Decoder / transducer yi+1 Transcript f(x) Cancel cancel cancel Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example prediction derived from Attention vector - where the “attending” to segment model thinks the relevant of input information is to be found time Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example time Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example time Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example time Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example time Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example time Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Attention Example Chan, W., Jaitly, N., Le, Q., Vinyals, O. “Listen Attend and Spell.” ICASSP (2015). Caption Generation with Visual Attention A man riding a horse in a field. -
ML Cheatsheet Documentation
ML Cheatsheet Documentation Team Sep 02, 2021 Basics 1 Linear Regression 3 2 Gradient Descent 21 3 Logistic Regression 25 4 Glossary 39 5 Calculus 45 6 Linear Algebra 57 7 Probability 67 8 Statistics 69 9 Notation 71 10 Concepts 75 11 Forwardpropagation 81 12 Backpropagation 91 13 Activation Functions 97 14 Layers 105 15 Loss Functions 117 16 Optimizers 121 17 Regularization 127 18 Architectures 137 19 Classification Algorithms 151 20 Clustering Algorithms 157 i 21 Regression Algorithms 159 22 Reinforcement Learning 161 23 Datasets 165 24 Libraries 181 25 Papers 211 26 Other Content 217 27 Contribute 223 ii ML Cheatsheet Documentation Brief visual explanations of machine learning concepts with diagrams, code examples and links to resources for learning more. Warning: This document is under early stage development. If you find errors, please raise an issue or contribute a better definition! Basics 1 ML Cheatsheet Documentation 2 Basics CHAPTER 1 Linear Regression • Introduction • Simple regression – Making predictions – Cost function – Gradient descent – Training – Model evaluation – Summary • Multivariable regression – Growing complexity – Normalization – Making predictions – Initialize weights – Cost function – Gradient descent – Simplifying with matrices – Bias term – Model evaluation 3 ML Cheatsheet Documentation 1.1 Introduction Linear Regression is a supervised machine learning algorithm where the predicted output is continuous and has a constant slope. It’s used to predict values within a continuous range, (e.g. sales, price) rather than trying to classify them into categories (e.g. cat, dog). There are two main types: Simple regression Simple linear regression uses traditional slope-intercept form, where m and b are the variables our algorithm will try to “learn” to produce the most accurate predictions. -
CRF, CTC, Word2vec
NPFL114, Lecture 9 CRF, CTC, Word2Vec Milan Straka April 26, 2021 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise stated Structured Prediction Structured Prediction NPFL114, Lecture 9 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings 2/30 Structured Prediction Consider generating a sequence of N given input . y1, … , yN ∈ Y x1, … , xN Predicting each sequence element independently models the distribution . P (yi∣ X) However, there may be dependencies among the themselves, which is difficult to capture by yi independent element classification. NPFL114, Lecture 9 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings 3/30 Maximum Entropy Markov Models We might model the dependencies by assuming that the output sequence is a Markov chain, and model it as P (yi∣ X, yi−1) . Each label would be predicted by a softmax from the hidden state and the previous label. The decoding can be then performed by a dynamic programming algorithm. NPFL114, Lecture 9 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings 4/30 Maximum Entropy Markov Models However, MEMMs suffer from a so-called label bias problem. Because the probability is factorized, each is a distribution and must sum to one. P (yi∣ X, yi−1) Imagine there was a label error during prediction. In the next step, the model might “realize” that the previous label has very low probability of being followed by any label – however, it cannot express this by setting the probability of all following labels low, it has to “conserve the mass”. NPFL114, Lecture 9 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings 5/30 Conditional Random Fields Let G = (V , E) be a graph such that y is indexed by vertices of G. -
Neural Networks for Linguistic Structured Prediction and Their Interpretability
Neural Networks for Linguistic Structured Prediction and Their Interpretability Xuezhe Ma CMU-LTI-20-001 Language Technologies Institute School of Computer Science Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, PA 15213 www.lti.cs.cmu.edu Thesis Committee: Eduard Hovy (Chair), Carnegie Mellon University Jaime Carbonell, Carnegie Mellon University Yulia Tsvetkov, Carnegie Mellon University Graham Neubig, Carnegie Mellon University Joakim Nivre, Uppsala University Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy n Language and Information Technologies Copyright c 2020 Xuezhe Ma Abstract Linguistic structured prediction, such as sequence labeling, syntactic and seman- tic parsing, and coreference resolution, is one of the first stages in deep language understanding and its importance has been well recognized in the natural language processing community, and has been applied to a wide range of down-stream tasks. Most traditional high performance linguistic structured prediction models are linear statistical models, including Hidden Markov Models (HMM) and Conditional Random Fields (CRF), which rely heavily on hand-crafted features and task-specific resources. However, such task-specific knowledge is costly to develop, making struc- tured prediction models difficult to adapt to new tasks or new domains. In the past few years, non-linear neural networks with as input distributed word representations have been broadly applied to NLP problems with great success. By utilizing distributed representations as inputs, these systems are capable of learning hidden representations directly from data instead of manually designing hand-crafted features. Despite the impressive empirical successes of applying neural networks to linguis- tic structured prediction tasks, there are at least two major problems: 1) there is no a consistent architecture for, at least of components of, different structured prediction tasks that is able to be trained in a truely end-to-end setting. -
PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/179506 Please be advised that this information was generated on 2021-09-30 and may be subject to change. Algorithmic composition of polyphonic music with the WaveCRF Umut Güçlü*, Yagmur˘ Güçlütürk*, Luca Ambrogioni, Eric Maris, Rob van Lier, Marcel van Gerven, Radboud University, Donders Institute for Brain, Cognition and Behaviour Nijmegen, the Netherlands {u.guclu, y.gucluturk}@donders.ru.nl *Equal contribution Abstract Here, we propose a new approach for modeling conditional probability distributions of polyphonic music by combining WaveNET and CRF-RNN variants, and show that this approach beats LSTM and WaveNET baselines that do not take into account the statistical dependencies between simultaneous notes. 1 Introduction The history of algorithmically generated music dates back to the musikalisches würfelspiel (musical dice game) of the eighteenth century. These early methods share with modern machine learning techniques the emphasis on stochasticity as a crucial ingredient for “machine creativity”. In recent years, artificial neural networks dominated the creative music generation literature [3]. In several of the most successful architectures, such as WaveNet, the output of the network is an array that specifies the probabilities of each note given the already produced composition [3]. This approach tends to be infeasible in the case of polyphonic music because the network would need to output a probability value for every possible simultaneous combination of notes. The naive strategy of producing each note independently produces less realistic compositions as it ignores the statistical dependencies between simultaneous notes.