Application and Further Development of Trueskill™ Ranking in Sports
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bayesian Network - Wikipedia
2019/9/16 Bayesian network - Wikipedia Bayesian network A Bayesian network, Bayes network, belief network, decision network, Bayes(ian) model or probabilistic directed acyclic graphical model is a probabilistic graphical model (a type of statistical model) that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network A simple Bayesian network. Rain could represent the probabilistic relationships between diseases and influences whether the sprinkler symptoms. Given symptoms, the network can be used to compute the is activated, and both rain and probabilities of the presence of various diseases. the sprinkler influence whether the grass is wet. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (e.g. speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called influence diagrams. Contents Graphical model Example Inference and learning Inferring unobserved variables Parameter learning Structure learning Statistical introduction Introductory examples Restrictions on priors Definitions and concepts Factorization definition Local Markov property Developing Bayesian networks Markov blanket Causal networks Inference complexity and approximation algorithms Software History See also Notes References https://en.wikipedia.org/wiki/Bayesian_network 1/14 2019/9/16 Bayesian network - Wikipedia Further reading External links Graphical model Formally, Bayesian networks are DAGs whose nodes represent variables in the Bayesian sense: they may be observable quantities, latent variables, unknown parameters or hypotheses. -
An Introduction to Factor Graphs
An Introduction to Factor Graphs Hans-Andrea Loeliger MLSB 2008, Copenhagen 1 Definition A factor graph represents the factorization of a function of several variables. We use Forney-style factor graphs (Forney, 2001). Example: f(x1, x2, x3, x4, x5) = fA(x1, x2, x3) · fB(x3, x4, x5) · fC(x4). fA fB x1 x3 x5 x2 x4 fC Rules: • A node for every factor. • An edge or half-edge for every variable. • Node g is connected to edge x iff variable x appears in factor g. (What if some variable appears in more than 2 factors?) 2 Example: Markov Chain pXYZ(x, y, z) = pX(x) pY |X(y|x) pZ|Y (z|y). X Y Z pX pY |X pZ|Y We will often use capital letters for the variables. (Why?) Further examples will come later. 3 Message Passing Algorithms operate by passing messages along the edges of a factor graph: - - - 6 6 ? ? - - - - - ... 6 6 ? ? 6 6 ? ? 4 A main point of factor graphs (and similar graphical notations): A Unified View of Historically Different Things Statistical physics: - Markov random fields (Ising 1925) Signal processing: - linear state-space models and Kalman filtering: Kalman 1960. - recursive least-squares adaptive filters - Hidden Markov models: Baum et al. 1966. - unification: Levy et al. 1996. Error correcting codes: - Low-density parity check codes: Gallager 1962; Tanner 1981; MacKay 1996; Luby et al. 1998. - Convolutional codes and Viterbi decoding: Forney 1973. - Turbo codes: Berrou et al. 1993. Machine learning, statistics: - Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990. 5 Other Notation Systems for Graphical Models Example: p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x). -
When NBA Teams Don't Want To
GAMES TO LOSE When NBA teams don’t want to win Team X Stefano Bertani Federico Fabbri Jorge Machado Scott Shapiro MBA 211 Game Theory, Spring 2010 Games to Lose – MBA 211 Game Theory Games to lose – When NBA teams don’t want to win 1. Introduction ................................................................................................................................................. 3 1.1 Situation ................................................................................................................................................ 3 1.2 NBA Structure ........................................................................................................................................ 3 1.3 NBA Playoff Seeding ............................................................................................................................... 4 1.4 NBA Playoff Tournament ........................................................................................................................ 4 1.5 Home Court Advantage .......................................................................................................................... 5 1.6 Structure of the paper ............................................................................................................................ 5 2. Situation analysis ......................................................................................................................................... 6 2.1 Scenario analysis ................................................................................................................................... -
Conditional Random Fields
Conditional Random Fields Grant “Tractable Inference” Van Horn and Milan “No Marginal” Cvitkovic Recap: Discriminative vs. Generative Models Suppose we have a dataset drawn from Generative models try to learn Hard problem; always requires assumptions Captures all the nuance of the data distribution (modulo our assumptions) Discriminative models try to learn Simpler problem; often all we care about Typically doesn’t let us make useful modeling assumptions about Recap: Graphical Models One way to make generative modeling tractable is to make simplifying assumptions about which variables affect which other variables. These assumptions can often be represented graphically, leading to a whole zoo of models known collectively as Graphical Models. Recap: Graphical Models One zoo-member is the Bayesian Network, which you’ve met before: Naive Bayes HMM The vertices in a Bayes net are random variables. An edge from A to B means roughly: “A causes B” Or more formally: “B is independent of all other vertices when conditioned on its parents”. Figures from Sutton and McCallum, ‘12 Recap: Graphical Models Another is the Markov Random Field (MRF), an undirected graphical model Again vertices are random variables. Edges show which variables depend on each other: Thm: This implies that Where the are called “factors”. They measure how compatible an assignment of subset of random variables are. Figure from Wikipedia Recap: Graphical Models Then there are Factor Graphs, which are just MRFs with bonus vertices to remove any ambiguity about exactly how the MRF factors An MRF An MRF A factor graph for this MRF Another factor graph for this MRF Circles and squares are both vertices; circles are random variables, squares are factors. -
PERVASIVE BEHAVIOR INTERVENTIONS Using Mobile Devices for Overcoming Barriers for Physical Activity
PERVASIVE BEHAVIOR INTERVENTIONS Using Mobile Devices for Overcoming Barriers for Physical Activity Vom Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation von DIPL.-INF. UNIV. TIM ALEXANDER DUTZ Geboren am 20. Juli 1978 in Darmstadt Vorsitz: Prof. Dr. techn. Heinz Koeppl Referent: Prof. Dr.-Ing. habil. Ralf Steinmetz Korreferent: Prof. Dr. rer. nat. Rainer Malaka Tag der Einreichung: 14. September 2016 Tag der Disputation: 28. November 2016 Hochschulkennziffer D17 Darmstadt 2017 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der Technischen Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de [email protected] Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-61270 URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6127 Die Veröffentlichung steht unter folgender Creative Commons Lizenz: International 4.0 – Namensnennung, nicht kommerziell, keine Bearbeitung https://creativecommons.org/licenses/by-nc-nd/4.0/ Für meine Eltern Abstract Extensive cohort studies show that physical inactivity is likely to have negative consequences for one’s health. The World Health Organization thus recommends a minimum of thirty minutes of medium- intensity physical activity per day, an amount that can easily be reached by doing some brisk walking or leisure cycling. Recently, a Taiwanese-American team of scientists was able to prove that even less effort is required for positive health effects and that as little as fifteen minutes of physical activity per day will increase one’s life expectancy by up to three years on the average. However, simply spreading this knowledge is not sufficient. -
Bayesian Analysis of Home Advantage in North American Professional Sports Before and During COVID‑19 Nico Higgs & Ian Stavness*
www.nature.com/scientificreports OPEN Bayesian analysis of home advantage in North American professional sports before and during COVID‑19 Nico Higgs & Ian Stavness* Home advantage in professional sports is a widely accepted phenomenon despite the lack of any controlled experiments at the professional level. The return to play of professional sports during the COVID‑19 pandemic presents a unique opportunity to analyze the hypothesized efect of home advantage in neutral settings. While recent work has examined the efect of COVID‑19 restrictions on home advantage in European football, comparatively few studies have examined the efect of restrictions in the North American professional sports leagues. In this work, we infer the efect of and changes in home advantage prior to and during COVID‑19 in the professional North American leagues for hockey, basketball, baseball, and American football. We propose a Bayesian multi‑level regression model that infers the efect of home advantage while accounting for relative team strengths. We also demonstrate that the Negative Binomial distribution is the most appropriate likelihood to use in modelling North American sports leagues as they are prone to overdispersion in their points scored. Our model gives strong evidence that home advantage was negatively impacted in the NHL and NBA during their strongly restricted COVID‑19 playofs, while the MLB and NFL showed little to no change during their weakly restricted COVID‑19 seasons. In professional sports, home teams tend to win more on average than visiting teams1–3. Tis phenomenon has been widely studied across several felds including psychology4,5, economics6,7, and statistics8,9 among others10. -
How Much of the NBA Home Court Advantage Is Explained by Rest?
How Much of the NBA Home Court Advantage Is Explained by Rest? Oliver Entine Dylan Small Department of Statistics, The Wharton School, University of Pennsylvania Home Court Advantage in Different Pro Sports Home Team Winning % Basketball (NBA) 0.608 Football (NFL) 0.581 Hockey (NHL) 0.550 Baseball (Major Leagues) 0.535 Data from NBA 2001-2002 through 2005-2006 seasons; NFL 2001 through 2005 seasons; NHL 1998-1999 through 2002- 2003 seasons; baseball 1991-2002 seasons. Summary: The home advantage in basketball is the biggest of the four major American pro sports. Possible Sources of Home Court Advantage in Basketball • Psychological support of the crowd. • Comfort of being at home, rather than traveling. • Referees give home teams the benefit of the doubt? • Teams are familiar with particulars/eccentricities of their home court. • Different distributions of rest between home and away teams (we will focus on this). Previous Literature • Martin Manley and Dean Oliver have studied how the home court advantage differs between the regular season and the playoffs: They found no evidence of a big difference between the home court advantage in the playoffs vs. regular season. Oliver estimated that the home court advantage is about 1% less in the playoffs. • We focus on the regular season. Distribution of Rest for Home vs. Away Teams Days of Rest Home Team Away Team 0 0.14 0.33 1 0.59 0.47 2 0.18 0.13 3 0.06 0.05 4+ 0.04 0.03 Source: 1999-2000 season. Summary: Away teams are much more likely to play back to back games, and are less likely to have two or more days of rest. -
The Core in Random Hypergraphs and Local Weak Convergence 3
THE CORE IN RANDOM HYPERGRAPHS AND LOCAL WEAK CONVERGENCE KATHRIN SKUBCH∗ Abstract. The degree of a vertex in a hypergraph is defined as the number of edges incident to it. In this paper we study the k-core, defined as the max- imal induced subhypergraph of minimum degree k, of the random r-uniform r−1 hypergraph Hr(n,p) for r ≥ 3. We consider the case k ≥ 2 and p = d/n for which asymptotically every vertex has fixed average degree d/(r − 1)! > 0. We derive a multi-type branching process that describes the local structure of the k-core together with the mantle, i.e. the vertices outside the k-core. This paper provides a generalization of prior work on the k-core problem in random graphs [A. Coja-Oghlan, O. Cooley, M. Kang, K. Skubch: How does the core sit inside the mantle?, Random Structures & Algorithms 51 (2017) 459–482]. Mathematics Subject Classification: 05C80, 05C65 (primary), 05C15 (sec- ondary) Key words: Random hypergraphs, core, branching process, Warning Prop- agation 1. Introduction r−1 Let r ≥ 3 and let d > 0 be a fixed constant. We denote by H = Hr(n,d/n ) the random r-uniform hypergraph on the vertex set [n] = {1,...,n} in which any subset a of [n] of cardinality r forms an edge with probability p = d/nr−1 inde- pendently. We say that the random hypergraph H enjoys a property with high probability (‘w.h.p.’) if the probability of this event tends to 1 as n tends to infinity. 1.1. -
Home Advantage and Tied Games in Soccer
HOME ADVANTAGE AND TIED GAMES IN SOCCER P.C. van der Kruit 0. Introduction. Home advantage and the occurence of tied matches are an important feature of soccer. In the national competition in the Netherlands about half the games end in a victory for the home team, one quarter end up tied, while only one quarter results in a win for the visiting team. In addition, the number of goals scored per game (one average about 3) is rather low. The home advantage is supposedly evened out between the teams by playing a full competition, where each two teams play two matches with both as home team in turn. I have wondered about the matter of the considerable home advantage in soccer ever since I first became interested in it.1 This was the result of the book “Speel nooit een uitwedstrijd – Topprestaties in sport en management”2 by Pieter Winsemius (1987). In this book he discusses various aspects of business management and illustrates these with facts and anecdotes from sports. In the first chapter he notes that in the German Bundesliga the top teams get their high positions in the standings on the basis of regularly winning away games. Teams on lower positions have often lost only a few more home matches, but it is the away games where they have gained much fewer points. The message is clear: never play an away game! In management terms this lesson means, according to Winsemius, for example that you arrange difficult meetings to take place in your own office. Clearly, home advantage plays an important role in soccer competitions. -
NBA Team Home Advantage: Identifying Key Factors Using an Artificial Neural Network
RESEARCH ARTICLE NBA team home advantage: Identifying key factors using an artificial neural network ☯ ☯ Austin R. HarrisID *, Paul J. Roebber Atmospheric Science Program, Department of Mathematical Science, University of Wisconsin±Milwaukee, Milwaukee, Wisconsin, United States of America ☯ These authors contributed equally to this work. * [email protected] Abstract a1111111111 a1111111111 What determines a team's home advantage, and why does it change with time? Is it some- a1111111111 thing about the rowdiness of the hometown crowd? Is it something about the location of the a1111111111 a1111111111 team? Or is it something about the team itself, the quality of the team or the styles it may or may not play? To answer these questions, season performance statistics were downloaded for all NBA teams across 32 seasons (83±84 to 17±18). Data were also obtained for other potential influences identified in the literature including: stadium attendance, altitude, and team market size. Using an artificial neural network, a team's home advantage was diag- OPEN ACCESS nosed using team performance statistics only. Attendance, altitude, and market size were Citation: Harris AR, Roebber PJ (2019) NBA team unsuccessful at improving this diagnosis. The style of play is a key factor in the home advan- home advantage: Identifying key factors using an artificial neural network. PLoS ONE 14(7): tage. Teams that make more two point and free-throw shots see larger advantages at e0220630. https://doi.org/10.1371/journal. home. Given the rise in three-point shooting in recent years, this finding partially explains pone.0220630 the gradual decline in home advantage observed across the league over time. -
CS242: Probabilistic Graphical Models Lecture 1B: Factor Graphs, Inference, & Variable Elimination
CS242: Probabilistic Graphical Models Lecture 1B: Factor Graphs, Inference, & Variable Elimination Professor Erik Sudderth Brown University Computer Science September 15, 2016 Some figures and materials courtesy David Barber, Bayesian Reasoning and Machine Learning http://www.cs.ucl.ac.uk/staff/d.barber/brml/ CS242: Lecture 1B Outline Ø Factor graphs Ø Loss Functions and Marginal Distributions Ø Variable Elimination Algorithms Factor Graphs set of hyperedges linking subsets of nodes f F ✓ V set of N nodes or vertices, 1, 2,...,N V 1 { } p(x)= f (xf ) Z = (x ) Z f f f x f Y2F X Y2F Z>0 normalization constant (partition function) (x ) 0 arbitrary non-negative potential function f f ≥ • In a hypergraph, the hyperedges link arbitrary subsets of nodes (not just pairs) • Visualize by a bipartite graph, with square (usually black) nodes for hyperedges • Motivation: factorization key to computation • Motivation: avoid ambiguities of undirected graphical models Factor Graphs & Factorization For a given undirected graph, there exist distributions with equivalent Markov properties, but different factorizations and different inference/learning complexities. 1 p(x)= (x ) Z f f f Y2F Undirected Pairwise (edge) Maximal Clique An Alternative Graphical Model Potentials Potentials Factorization 1 1 Recommendation: p(x)= (x ,x ) p(x)= (x ) Use undirected graphs Z st s t Z c c (s,t) c for pairwise MRFs, Y2E Y2C and factor graphs for higher-order potentials 6 K. Yamaguchi, T. Hazan, D. McAllester, R. Urtasun > 2pixels > 3pixels > 4pixels > 5pixels Non-Occ -
Sport Analytics
SPORT ANALYTICS Dr. Jirka Poropudas, Director of Analytics, SportIQ [email protected] Outline 1. Overview of sport analytics • Brief introduction through examples 2. Team performance evaluation • Ranking and rating teams • Estimation of winning probabilities 3. Assignment: ”Optimal betting portfolio for Liiga playoffs” • Poisson regression for team ratings • Estimation of winning probabilities • Simulation of the playoff bracket • Optimal betting portfolio 11.3.2019 1. Overview of sport analytics 11.3.2019 What is sport analytics? B. Alamar and V. Mehrotra (Analytics Magazine, Sep./Oct. 2011): “The management of structured historical data, the application of predictive analytic models that utilize that data, and the use of information systems to inform decision makers and enable them to help their organizations in gaining a competitive advantage on the field of play.” 11.3.2019 Applications of sport analytics • Coaches • Tactics, training, scouting, and planning • General managers and front offices • Player evaluation and team building • Television, other broadcasters, and news media • Entertainment, better content, storytelling, and visualizations • Bookmakers and bettors • Betting odds and point spreads 11.3.2019 Data sources • Official summary statistics • Aggregated totals from game events • Official play-by-play statistics • Record of game events as they take place • Manual tracking and video analytics • More detailed team-specific events • Labor intensive approach • Data consistency? • Automated tracking systems • Expensive