The Rcd Handbook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRUE DC Isolators for PV Systems N Market-Leading Design N 2, 4, 6 & 8 Pole Versions Available N Max
SI TRUE DC Solar Isolator Brighter Solutions AC vs DC Safe Switching As any electrician is aware the nature of DC switching has to be considered with care because on disconnection an arc can occur that is more arduous than that produced with an AC load because there is no zero point on DC. The nature of this arc means that design considerations have to be made within the switch in order to quench this phenomenon; that not only includes significant contact gaps with high speed of operation, but also thermal transmissive materials. What must be considered is that any AC isolator is predominantly designed with materials chosen such that the load will be AC. This means that the load supply will be a 50/60Hz sine wave, whether it be 230VAC or 400VAC, etc. When switching AC it should be remembered that the nature of the load supply will always pass through ØVAC twice in every cycle and therefore although loads can be ardu- ous in type the supply is self-extinguishing. By that we mean that even if the isolator switches at peak load and an arc is formed between contacts, the action of the supply reducing to ØV means that the load will tend to zero and the arc will be extinguished. DC load, on the other hand, is always there and unless the load becomes zero, the power being pulled through the contacts will always be the same. So if the load is 500VDC 25A it will be 500V 25A now, in 1s , in 1min, in 1hour – that is constant. -
Miniature Circuit Breakers, Isolators & Earth Leakage Units: Part 1
Electrical Miniature circuit breakers, isolators & earth leakage units: Part 1 Heading Here Hi I’m Bra Build• Click it to add text This week Clint is talking about electrical isolators & earth leakage units, explaining the basic applications & mounting options. Remember to use the correct load rated device for your application, ensuring the cable & equipment’s protection at all times. Note ! For the purpose of this presentation, we will be focusing on the miniature circuit breakers (MCBs), isolators & earth leakage units that are more commonly used in the modern day domestic/residential distribution board installations, however these devices are also used in commercial & industrial distribution boards & control panels. Lets Talk device mounting options Lets help you understand how the MCBs, isolators & E/L units are secured in an electrical DB or panel. Commonly used mounting options Electrical distribution board suited for Electrical distribution board suited for DIN mount devices SAMITE/MINI rail mount devices DIN rail SAMITE/MINI rail Important When selecting electrical equipment for a DB or panel installation, you will need to ensure that you select a device that has a mounting base compatible with the mounting rail in the DB or panel where the device is to be installed. Note! Sales staff need to be aware that when supplying a MCB intended to fit into an existing DB installation, although the din MCB may be a cheaper option, a din MCB is not always suitable for use in a mini rail DB & likewise the other way around. It’s always advisable to supply the customer with a MCB that matches the mounting rail currently installed in the customer’s DB. -
Rahi Chu Hydro Electric Project (25 Mw), Sikkim
RAHI CHU HYDRO ELECTRIC PROJECT (25 MW), SIKKIM EXECUTIVE SUMMARY LOCATION AND ACCESS TO PROJECT SITE Rahi Chu Hydo Electric Project with an installed capacity of 3 x 8.33MW is located in North Sikkim District of Sikkim and is proposed on river Rahi Chu, a tributary of Tolung Chu. The project site is located at about 197 km from Siliguri by road via Singtam & Mangan. Singtam is 100 km from Siliguri (on Siliguri-Gangtok NH-31A) & Singtam to Mangan is about 55 Km. The Diversion site is located at about 42 km from Mangan via Tung Bridge (on River Teesta) & Saffu village. The Diversion site is about 7 km from Saffu village on the Saffu-Sangkalan road presently under construction by BRO. Access road of about 8 Km will be required to be constructed from the Saffu- Sangkalan road to reach the Diversion site. HYDROLOGY The Rahi Chu, is a tributary of Tolung Chu, which in turn is a major tributary of the Teesta. The Rahi The catchment area up to the dam site is about 50 Km2 and lies between Longitude 88o32'25"E to 88o30'55"E and Latitude 27o32'58"N to 27o31'55"N. No site specific G&D data of Rahi Chu is available. Stream flow records (10-daily) of the Tolung Chu at the Sankalang gauge site (Catchment Area = 777 Km2) are available for the period May 1990 – Apr 2004). The flow series for the Panan Hydro-Electric Project was generated by applying a reduction factor of 0.89 on the observed stream flow series at Sankalang (1991-91 to 2003-04) with an annual runoff of 4140 mm, thus arriving at 3684 mm. -
Paralleling Power System Design Considerations and System Level Control Powerhour Webinar Series for Consulting Engineers Experts You Trust
Paralleling Power System Design Considerations and System Level Control PowerHour webinar series for consulting engineers Experts you trust. Excellence you count on. August 22nd, 2019 11:00 PDT / 13:00 CDT (1PDH issued by Cummins) Welcome! PowerHour is designed to help our engineer partners to… • Keep up to date on products, technology, and codes and standards development • Interact with Cummins experts and gain access to ongoing technical support • Participate at your convenience, live or on-demand • Earn Professional Development Hours (PDH) Technical tips: . Audio is available through teleconference, or your computer (don’t forget to unmute) . You are in “listen only” mode throughout the event . Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation . If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect . Report technical issues using the WebEx Q&A Panel, or email [email protected] 2 Meet your panelists Cummins presenter: Cummins facilitator: High Resolution Headshot Hassan R Obeid Tom Bakritzes, Global Technical Advisor – Systems and Controls Global Sales Training Manager Cummins Inc. Cummins Inc. Your local Cummins contacts: Western Canada: Ian Lindquist ([email protected]), Western Canada Region South IL, East MO: Jeff Yates ([email protected]), Central Region Eastern Canada: Gianluca Ianiro ([email protected]), Eastern Canada Region TX, OK, AR, LA, MS, AL, -
Smart Solutions for Electrical Distribution in Commercial And
• MCB Distribution boards • Enclosed motor, heating and enclosures and lighting control • MCCB Panelboards • HRC cartridge fuselinks • Switch and protection devices & fuse units Power distribution components • Industrial switch and fusegear • Power factor correction capacitors Smart solutions for electrical distribution in commercial and industrial applications 2 POWER DISTRIBUTION COMPONENTS PG01414001U – March 2015 Power distribution components Contents 1 Product overview 5 2 Memshield 3 MCB distribution boards and enclosures 31 3 Distribution board switch and protection devices 45 4 Modular control and switching devices 53 5 Memshield 3 MCCB panelboards 65 6 Industrial switch & fusegear 93 7 HRC cartridge fuselinks & fuse units 105 8 Enclosed motor, heating and lighting control 115 9 Power factor correction capacitors 121 10 Technical data 125 Indices 185 POWER DISTRIBUTION COMPONENTS PG01414001U – March 2015 3 4 POWER DISTRIBUTION COMPONENTS PG01414001U – March 2015 Product overview 1 Eaton’s comprehensive range of power distribution solutions have been developed to meet today’s challenging electrical sub-distribution applications in commercial and industrial buildings. Through a proven competency in electrical distribution, Eaton delivers an innovative approach to aid compliance with the wider regulatory requirements associated with modern buildings. 1.1 TYPE A, SPN 125A DISTRIBUTION BOARDS AND PAN ASSEMBLIES ................................................................................... 6 1.2 TYPE B, TPN 125A/250A DISTRIBUTION -
8196606* 06/2017
Service, Parts Manual for 6, 3-Row Models, Fan-Cooled and Natural Convection UHC-HD Frymaster, a member of the Commercial Food Equipment Service Association, recommends using CFESA Certified Technicians. Price: $6.00 24-Hour Service Hotline 1-800-551-8633 819-6606 *8196606* 06/2017 NOTICE IF, DURING THE WARRANTY PERIOD, THE CUSTOMER USES A PART FOR THIS FRYMASTER EQUIPMENT OTHER THAN AN UNMODIFIED NEW OR RECYCLED PART PURCHASED DIRECTLY FROM FRYMASTER DEAN, OR ANY OF ITS AUTHORIZED SERVICE CENTERS, AND/OR THE PART BEING USED IS MODIFIED FROM ITS ORIGINAL CONFIGURATION, THIS WARRANTY WILL BE VOID. FURTHER, FRYMASTER DEAN AND ITS AFFILIATES WILL NOT BE LIABLE FOR ANY CLAIMS, DAMAGES OR EXPENSES INCURRED BY THE CUSTOMER WHICH ARISE DIRECTLY OR INDIRECTLY, IN WHOLE OR IN PART, DUE TO THE INSTALLATION OF ANY MODIFIED PART AND/OR PART RECEIVED FROM AN UNAUTHORIZED SERVICE CENTER. THE CABINET IS NOT SUITABLE FOR OUTDOOR USE. WHEN OPERATING THIS UNIT, IT MUST BE PLACED ON A HORIZONTAL SURFACE. THE CABINET IS NOT SUITABLE FOR INSTALLATION IN AN AREA WHERE A WATER JET CAN BE USED. THIS APPLIANCE MUST NOT BE CLEANED WITH A WATER JET. FOR YOUR SAFETY DO NOT STORE OR USE GASOLINE OR OTHER FLAMMABLE VAPORS AND LIQUIDS IN THE VICINITY OF THIS OR ANY OTHER APPLIANCE. DO NOT OPERATE OR SERVICE THE CABINET WITHOUT FIRST READING THIS MANUAL. DO NOT OPERATE THE CABINET UNLESS IT HAS BEEN PROPERLY INSTALLED AND CHECKED. DO NOT OPERATE THE CABINET UNLESS ALL SERVICE AND ACCESS PANELS ARE IN PLACE AND PROPERLY SECURED. DO NOT ATTEMPT TO REPAIR OR REPLACE ANY COMPONENT OF THE CABINET UNLESS ALL POWER TO THE UNIT HAS BEEN DISCONNECTED. -
B4 Building Works Standard Specifications
THE REPUBLIC OF UGANDA MINISTRY OF WORKS AND TRANSPORT STANDARD SPECIFICATIONS (DRAFT) August 2012 B4 BUILDING WORKS BUILDING B4 FOREWORD The mission of the Ministry of Works and Transport (MoWT) is to promote an adequate, safe and well maintained works and transport infrastructure and services so as to effectively contribute to the socio-economic development of the country. In exercising this mission and in discharging its responsibilities, the Ministry is issuing a series of Design Manuals, Guidelines, Codes and Standards, of which the “Standard Specifications for Building Works” is one part thereof. The Standard Specifications for Building Works will be a nationally recognized document which will serve as a standard reference for the preparation of specifications for works to be undertaken on building construction projects. The major benefits to be gained in applying this document are the harmonization of professional practice in the building construction in Uganda and curtailment of informal developments so as to ensure well-planned, well- maintained, safe, cost effective and decent building developments and human settlements throughout the country. The Standard Specifications will be periodically updated and new editions issued to cater for the dynamic technological developments in the construction industry. Abraham Byandala Minister of Works and Transport August 2012 Ministry of Works and Transport Standard Specifications for Building Works General Table of Contents Part 1: Architectural, Structural and General Works Part 2: Building Sanitation Part 3: Electrical Services Ministry of Works and Transport i Standard Specifications for Building Works TABLE OF CONTENTS PART 1. ARCHITECTURAL, STRUCTURAL and GENERAL WORKS Page 1.0 GENERAL MATTERS ...................................................................................................... 2 1.1 General Conditions of Contract .............................................................................. -
A Practical Guide to the 17Th Edition of the Wiring Regulations
A Practical Guide to the 17th Edition of the Wiring Regulations This page intentionally left blank A Practical Guide to the 17th Edition of the Wiring Regulations Christopher Kitcher AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier Newnes is an imprint of Elsevier The Boulevard, Langford Lane, Oxford OX5, 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803 First edition 2010 Copyright © 2010, Christopher Kitcher. Published by Elsevier Ltd. All rights reserved The right of Christopher Kitcher to be identified as the author of this work has been asserted in accordance with the Copyright, Design and Patents Act 1988. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. -
Guide To: 17Th Edition Consumer Units Introduction
Guide to: 17th Edition Consumer Units Introduction For well over one hundred years the Wiring Regulations have provided the rules which must be followed to make sure that electrical installations are safe. The introduction of the 17th Edition of the Wiring Regulations and subsequent amendments have had major implications for all Electrical Contractors, Designers and Consultants. Several regulations have an impact upon circuit design, consumer unit layout and even the construction of the consumer unit itself. This guide will help you understand the new Wiring Regulations and current Building Regulations, providing the necessary facts to construct compliant installations including Consumer Units. If after reading this guide you would like to find out further information regarding the new regulations Hager offer tailored training courses. If you are interested in registering interest in attending one of these courses please visit www.hager.co.uk 2 Guide to | 17th Edition Consumer Units Contents Building Regulations Page 5 Requirements of the 17th Edition Wiring Regulations Page 6 Socket Outlets Page 9 Cables Buried in the Wall Page 10 Special locations Page 12 Other Considerations Page 14 Fire Detection and Alarm Systems for Buildings Page 16 Consumer Unit Arangements Page 18 Conclusions and Training Courses Page 24 Residual Current Devices Used in Consumer Units Page 25 While the author believes that the information and guidance given in this document is correct, all parties must rely upon their own skill and judgement when making use of it. The author does not assume any liability to anyone for loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. -
7 CONTROL and PROTECTION of HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System the Main Control And
CHAPTER –7 CONTROL AND PROTECTION OF HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System The main control and automation system in a hydroelectric power plant are associated with start and stop sequence for the unit and optimum running control of power (real and reactive), voltage and frequency. Data acquisition and retrieval is used to cover such operations as relaying plant operating status, instantaneous system efficiency, or monthly plant factor, to the operators and managers. Type of control equipment and levels of control to be applied to a hydro plant are affected by such factors as number, size and type of turbine and generator. The control equipment for a hydro power plant include control circuits/logic, control devices, indication, instrumentation, protection and annunciation at the main control board and at the unit control board for generation, conversion and transmission operation including grid interconnected operation of hydro stations including small hydro stations. These features are necessary to provide operators with the facilities required for the control and supervision of the station’s major and auxiliary equipment. In the design of these features consideration must be given to the size and importance of the station with respect to other stations in the power system, location of the main control room with respect to the equipments to be controlled and all other station features which influence the control system. The control system of a power station plays an important role in the station’s rendering reliable service; this function should be kept in mind in the design of all control features. -
JUNE, 2020 Implementation Guide Implementation Guide
BUILDING INSPECTION BOOKLET JUNE, 2020 Implementation Guide Implementation Guide TABLE OF CONTENTS Foreward ............................................................................................................................................................3 Disclaimer ......................................................................................................................................................... 4 1.0 PROJECT DETAILS ...........................................................................................................................5 2.0 DESCRIPTION OF WORKS...........................................................................................................5 3.0 PROJECT TEAM .................................................................................................................................5 3.1 DEVELOPERS TEAM ...................................................................................................................5 3.2 CONSULTANTS TEAM ............................................................................................................... 6 3.3 CONTRACTORS TEAM .............................................................................................................. 7 4.0 BUILDING ARCHITECTURE ........................................................................................................ 8 4.1 BUILDING ARCHITECTURE FOR CLASS A AND B BUILDINGS .......................... 8 4.2 BUILDING ARCHITECTURE FOR CLASS C BUILDINGS .........................................19 -
Distribution Board
Released By: The Development Commissioner (SSI), Ministry of SSI, New Delhi Distribution Board PRODUCT CODE (ASICC) 77308 QUALITY AND STANDARDS IS 8623:1977 IS 2675:1983 PRODUCTION CAPACITY Qty.: 600 Nos. (per annum) Value Rs. 75,00,000 YEAR OF PREPARATION 2002- 2003 PREPARED BY Small Industries Service Institute Vikas Sadan College Square Cuttack - 753003 and Office of the Development Commissioner Small Scale Industries Electrical and Electronics Division 7th Floor, Nirman Bhavan, New Delhi - 110 011. Introduction The Distribution Board, refers to an equipment which consists of bus bars, and possible switches, fuse links and Automatic protective equipment, bypass equipment, for connecting, controlling and protecting a number of branch circuits fed from one main circuit of a wiring installation in a building or premises for easy and safe handling of incoming power supply. These are, also used to protect the electrical distribution system in turn, connected electrical equipment from being damaged due to various faults like short circuit, over load, earth leakage, etc. The Conductor system by means of which electrical energy is conveyed from bulk power source or sources to the consumers is known as distribution system, which may be divided into two systems known as high voltage (primary) distribution and low voltage (secondary distribution). From generating stations the Electrical Power is usually transmitted to various Sub- stations, through extra high tension transmission lines at voltages from 33 to 220 kV and at these Sub-stations this voltage is stepped down to 11 or 6.6 or 3.3 kV and power at this voltage is conveyed to different sub-stations for distribution and to the bulk supply consumer.