Guide To: 17Th Edition Consumer Units Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Residential Distribution
Residential Distribution. If home is where the heart is, then the consumer unit is its heartbeat. Discover our range of consumer units and small enclosures (conforming to EN 61439-3 standards) are available in functional, stylish and innovative options for any home. Whilst our protection devices, including RCCBs, MCB’s and RCBO’s, offer protection from any unwanted bumps in the road. 4.1 04 Page Consumer Units Surface Mounted Consumer Units 4.3 Flush Mounted Consumer Units 4.9 Enclosures Surface Mounted Enclosures 4.11 Flush Mounted Enclosures 4.26 Protection Devices RCCBs 4.29 MCBs 4.29 RCBOs 4.29 Locking Kit 4.31 Arc Fault Detection Devices 4.31 Surge Protection 4.32 Switching Switch Disconnectors 4.33 Auxiliaries & Accessories 4.36 Changeover Switches 4.37 Residential Distribution Technical Pages 4.38 4.2 Surface Mounted Consumer Units I.S.10101 Gamma, Meter Tail Kit I.S.10101 Gamma IP30 Characteristics: - Surface mounting enclosures, 1 - 4 rows, 13 - 52 modules. - Conforms to EN 61439-3 and I.S.10101 - Made of insulating material coloured RAL 9010. - Insulating chassis and frame. - Fixed DIN rail for devices of a maximum shoulder measurement of 45mm. - Distance between rail 125mm - Premarked cable entries on top, bottom and side. SBE8101 - Delivered with plain door and back plate, blanking strips and marking strip - Optional; additional connection assemblies, cable trunking, back plates, plain and transparent doors, door locks. Description Dimensions mm Pre–fitted devices Cat ref. Incomer: Isolator 1 row 13 modulels h.250 x w.250 x d.103 1 x 80A Isolator (SBR280) SBE7101 1 x 63A RCD (CDA263U) 4 x 20A MCB (MBN120W) 1 x 32A MCB (MBN132W) 2 x 6A RCBO (ADA306G) 2 rows 26 modules h.375 x w. -
Miniature Circuit Breakers, Isolators & Earth Leakage Units: Part 1
Electrical Miniature circuit breakers, isolators & earth leakage units: Part 1 Heading Here Hi I’m Bra Build• Click it to add text This week Clint is talking about electrical isolators & earth leakage units, explaining the basic applications & mounting options. Remember to use the correct load rated device for your application, ensuring the cable & equipment’s protection at all times. Note ! For the purpose of this presentation, we will be focusing on the miniature circuit breakers (MCBs), isolators & earth leakage units that are more commonly used in the modern day domestic/residential distribution board installations, however these devices are also used in commercial & industrial distribution boards & control panels. Lets Talk device mounting options Lets help you understand how the MCBs, isolators & E/L units are secured in an electrical DB or panel. Commonly used mounting options Electrical distribution board suited for Electrical distribution board suited for DIN mount devices SAMITE/MINI rail mount devices DIN rail SAMITE/MINI rail Important When selecting electrical equipment for a DB or panel installation, you will need to ensure that you select a device that has a mounting base compatible with the mounting rail in the DB or panel where the device is to be installed. Note! Sales staff need to be aware that when supplying a MCB intended to fit into an existing DB installation, although the din MCB may be a cheaper option, a din MCB is not always suitable for use in a mini rail DB & likewise the other way around. It’s always advisable to supply the customer with a MCB that matches the mounting rail currently installed in the customer’s DB. -
Rahi Chu Hydro Electric Project (25 Mw), Sikkim
RAHI CHU HYDRO ELECTRIC PROJECT (25 MW), SIKKIM EXECUTIVE SUMMARY LOCATION AND ACCESS TO PROJECT SITE Rahi Chu Hydo Electric Project with an installed capacity of 3 x 8.33MW is located in North Sikkim District of Sikkim and is proposed on river Rahi Chu, a tributary of Tolung Chu. The project site is located at about 197 km from Siliguri by road via Singtam & Mangan. Singtam is 100 km from Siliguri (on Siliguri-Gangtok NH-31A) & Singtam to Mangan is about 55 Km. The Diversion site is located at about 42 km from Mangan via Tung Bridge (on River Teesta) & Saffu village. The Diversion site is about 7 km from Saffu village on the Saffu-Sangkalan road presently under construction by BRO. Access road of about 8 Km will be required to be constructed from the Saffu- Sangkalan road to reach the Diversion site. HYDROLOGY The Rahi Chu, is a tributary of Tolung Chu, which in turn is a major tributary of the Teesta. The Rahi The catchment area up to the dam site is about 50 Km2 and lies between Longitude 88o32'25"E to 88o30'55"E and Latitude 27o32'58"N to 27o31'55"N. No site specific G&D data of Rahi Chu is available. Stream flow records (10-daily) of the Tolung Chu at the Sankalang gauge site (Catchment Area = 777 Km2) are available for the period May 1990 – Apr 2004). The flow series for the Panan Hydro-Electric Project was generated by applying a reduction factor of 0.89 on the observed stream flow series at Sankalang (1991-91 to 2003-04) with an annual runoff of 4140 mm, thus arriving at 3684 mm. -
Developing Brazil's Market for Distributed Solar Generation
Developing Brazil’s Market for Distributed Solar Generation Juliano Assunção Climate Policy Initiative (CPI) & Núcleo de Avaliação de Políticas Climáticas da PUC-Rio (NAPC/PUC-Rio) | Department of Economics, PUC-Rio [email protected] Amanda Schutze Climate Policy Initiative (CPI) & Núcleo de Avaliação de Políticas Climáticas da PUC-Rio (NAPC/PUC-Rio) [email protected] September 2017 Abstract We show the availability of solar resources is a poor predictor of the penetration of distributed photovoltaic (PV) generation in Brazil. Analyzing data from 5,563 municipalities in Brazil, we show that demand-side factors such as population, GDP, and electricity tariffs prevail as key determinants of PV undertake. Solar radiation only appears as positively correlated with PV adoption when comparing municipalities within the same influence area of electricity providers. Public policies should target frictions on the demand for electricity to promote PV. In addition, estimates of the potential of renewable sources to mitigate climate change are upward biased if demand-side factors are not taken into account. Keywords distributed generation, solar photovoltaic, radiation Jel codes Q01, Q40, Q41 Acknowledgments Isabela Salgado and Maria Mittelbach provided excellent research assistance. 1. Introduction Renewable technologies are seen as a key instrument in combatting greenhouse gas emissions and climate change, and the availability of renewable natural resources is regarded as the main requirement for a nation’s ability to reduce climate risk (IPCC, 2014). However, the development of the renewable energy sector occurs not only through determinants of supply, i.e., the availability of natural resources, but also through aspects of demand. -
Paralleling Power System Design Considerations and System Level Control Powerhour Webinar Series for Consulting Engineers Experts You Trust
Paralleling Power System Design Considerations and System Level Control PowerHour webinar series for consulting engineers Experts you trust. Excellence you count on. August 22nd, 2019 11:00 PDT / 13:00 CDT (1PDH issued by Cummins) Welcome! PowerHour is designed to help our engineer partners to… • Keep up to date on products, technology, and codes and standards development • Interact with Cummins experts and gain access to ongoing technical support • Participate at your convenience, live or on-demand • Earn Professional Development Hours (PDH) Technical tips: . Audio is available through teleconference, or your computer (don’t forget to unmute) . You are in “listen only” mode throughout the event . Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation . If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect . Report technical issues using the WebEx Q&A Panel, or email [email protected] 2 Meet your panelists Cummins presenter: Cummins facilitator: High Resolution Headshot Hassan R Obeid Tom Bakritzes, Global Technical Advisor – Systems and Controls Global Sales Training Manager Cummins Inc. Cummins Inc. Your local Cummins contacts: Western Canada: Ian Lindquist ([email protected]), Western Canada Region South IL, East MO: Jeff Yates ([email protected]), Central Region Eastern Canada: Gianluca Ianiro ([email protected]), Eastern Canada Region TX, OK, AR, LA, MS, AL, -
Smart Solutions for Electrical Distribution in Commercial And
• MCB Distribution boards • Enclosed motor, heating and enclosures and lighting control • MCCB Panelboards • HRC cartridge fuselinks • Switch and protection devices & fuse units Power distribution components • Industrial switch and fusegear • Power factor correction capacitors Smart solutions for electrical distribution in commercial and industrial applications 2 POWER DISTRIBUTION COMPONENTS PG01414001U – March 2015 Power distribution components Contents 1 Product overview 5 2 Memshield 3 MCB distribution boards and enclosures 31 3 Distribution board switch and protection devices 45 4 Modular control and switching devices 53 5 Memshield 3 MCCB panelboards 65 6 Industrial switch & fusegear 93 7 HRC cartridge fuselinks & fuse units 105 8 Enclosed motor, heating and lighting control 115 9 Power factor correction capacitors 121 10 Technical data 125 Indices 185 POWER DISTRIBUTION COMPONENTS PG01414001U – March 2015 3 4 POWER DISTRIBUTION COMPONENTS PG01414001U – March 2015 Product overview 1 Eaton’s comprehensive range of power distribution solutions have been developed to meet today’s challenging electrical sub-distribution applications in commercial and industrial buildings. Through a proven competency in electrical distribution, Eaton delivers an innovative approach to aid compliance with the wider regulatory requirements associated with modern buildings. 1.1 TYPE A, SPN 125A DISTRIBUTION BOARDS AND PAN ASSEMBLIES ................................................................................... 6 1.2 TYPE B, TPN 125A/250A DISTRIBUTION -
8196606* 06/2017
Service, Parts Manual for 6, 3-Row Models, Fan-Cooled and Natural Convection UHC-HD Frymaster, a member of the Commercial Food Equipment Service Association, recommends using CFESA Certified Technicians. Price: $6.00 24-Hour Service Hotline 1-800-551-8633 819-6606 *8196606* 06/2017 NOTICE IF, DURING THE WARRANTY PERIOD, THE CUSTOMER USES A PART FOR THIS FRYMASTER EQUIPMENT OTHER THAN AN UNMODIFIED NEW OR RECYCLED PART PURCHASED DIRECTLY FROM FRYMASTER DEAN, OR ANY OF ITS AUTHORIZED SERVICE CENTERS, AND/OR THE PART BEING USED IS MODIFIED FROM ITS ORIGINAL CONFIGURATION, THIS WARRANTY WILL BE VOID. FURTHER, FRYMASTER DEAN AND ITS AFFILIATES WILL NOT BE LIABLE FOR ANY CLAIMS, DAMAGES OR EXPENSES INCURRED BY THE CUSTOMER WHICH ARISE DIRECTLY OR INDIRECTLY, IN WHOLE OR IN PART, DUE TO THE INSTALLATION OF ANY MODIFIED PART AND/OR PART RECEIVED FROM AN UNAUTHORIZED SERVICE CENTER. THE CABINET IS NOT SUITABLE FOR OUTDOOR USE. WHEN OPERATING THIS UNIT, IT MUST BE PLACED ON A HORIZONTAL SURFACE. THE CABINET IS NOT SUITABLE FOR INSTALLATION IN AN AREA WHERE A WATER JET CAN BE USED. THIS APPLIANCE MUST NOT BE CLEANED WITH A WATER JET. FOR YOUR SAFETY DO NOT STORE OR USE GASOLINE OR OTHER FLAMMABLE VAPORS AND LIQUIDS IN THE VICINITY OF THIS OR ANY OTHER APPLIANCE. DO NOT OPERATE OR SERVICE THE CABINET WITHOUT FIRST READING THIS MANUAL. DO NOT OPERATE THE CABINET UNLESS IT HAS BEEN PROPERLY INSTALLED AND CHECKED. DO NOT OPERATE THE CABINET UNLESS ALL SERVICE AND ACCESS PANELS ARE IN PLACE AND PROPERLY SECURED. DO NOT ATTEMPT TO REPAIR OR REPLACE ANY COMPONENT OF THE CABINET UNLESS ALL POWER TO THE UNIT HAS BEEN DISCONNECTED. -
Energy Monitoring
Technical Data sheet Energy monitoring MONITORING A simple installation SINGLE PHASE SENSOR The Voltaware single phase and three phase sensors are quick and easy to install with minimum disruption to your supply. Clamp or clamps are placed 3 PHASE around the mains cable and voltage SENSOR detectors are magnetically located on the appropriate fuses. The transmitter is small enough to fit unobtrusively inside most fuseboxes. The transmitter connects securely your local WiFi network or via GSM and immediately starts sending live data to our servers. You can be connected in 5 minutes. Data analysis STORAGE Total consumption and cost data is available immediately; live, daily, or monthly. Our machine learning algorithm takes about a week before it begins to identify appliances by their electrical signatures. We use artificial intelligence to ANALYSIS model consumer behaviour and this allows us to deliver periodic detailled breakdowns of cost and consumption. MOBILE APP CUSTOM DASHBOARD INTEGRATED API Data where you need it Voltaware electricity monitoring data is available to you anywhere via our free iOS and Android app available at Google Play and the App Store but for larger installations we can develop custom dashboards. Or you can integrate our MEASUREMENT AND COMMUNICATION OF DATA data into your own systems using our API. Single Phase sensor Three-phase sensor METER METER K K K L L L K L A1 I ON N O OFF OFF OFF ON ON ON ON ON ON L N ELECTRICAL CHARACTERISTICS ELECTRICAL CHARACTERISTICS Operating voltage: 85 - 250 V ac Operating voltage: -
Installation / User Manual
Installation / User Manual APsystems YC1000-3 3-Phase Microinverter (For South Africa) ALTENERGY POWER SYSTEM Inc. Please scan the QR code emea.APsystems.com to get mobile app and more support to help the installation. APsystems Europe © All Rights Reserved Cypresbaan 7, 2908 LT,Capelle aan den Ijssel The Netherlands TEL: +31-10-2582670 EMAIL: [email protected] Table of Contents Important Safety Instructions...................................................................................................2 Radio interference statement.................................................................................................................... 2 Safety Instructions......................................................................................................................................... 3 Symbols replace words on the equipment, on a display................................................................. 3 APsystems YC1000-3 System Introduction.........................................................................4 APsystems 3-phase Microinverter YC1000-3..................................................................... 6 APsystems Microinverter System Installation.................................................................... 7 Additional Installation components from APsystems...................................................................... 7 Required Parts and Tools from you.........................................................................................................7 Installation Procedures................................................................................................................................ -
Consumer Unit Design 10 Multi Tariff Switch Disconnector
Design 10 Multi Tariff Switch Disconnector Consumer Unit Consumer Unit Design 10 Multi Tariff Switch Disconnector For the distribution of power in a residential application, conforming to BS EN 61439-3 including Annex ZB (16kA rating). Design 10 is the entry level board designed for all applications and, when fitted with RCBO on outgoing circuits, allows compliance with BS 7671:2008 regulations; 411.3.3 additional protection by means of a 30mA RCD, 314.1&2 segregation of circuits to avoid danger and minimise inconvenience in the event of a fault, 522.6.7 protection of wiring concealed in walls or partitions. Metal enclosure manufactured to allow compliance with BS 7671 regulation 421.1.201 Multi tariff boards allow more than one supply to an installation. Certain loads such as heating can then be assigned to the relevant supply. Sw/D/I Sw/D/I Sw/D/I 63 100 100 VML9651 Description Size Cat ref. 18 Way Twin Tariff Configurable 2 X 100A Switch 7 VML918C 12 Way Multi Tariff 6+5+1 2X100A 1X63A Switch 6 VML9651 Features & Benefits - Square cable entry points top and bottom for use with cable trunking - Optimised cabling space – DIN rail position allows maximum cabling - Rear Knockouts for ease of cable entry – Cable protector plate space available as an accessory - Top mounted terminal rail makes the wiring of the neutral and earth - Rigid top wall – Enhances rigidity to prevent distortion when removing connections neat and simple. knockouts - Snap-able busbar – Quick and easy configuration of circuits - Front cover retained screws – Prevents loss during installation - Full metal DIN rail – Secure and stable attachment of devices - Quick release clip on MCB/RCBO – Allows removal of MCB/RCBO with busbar still in place - Torque settings shown on inside of front cover to ensure settings are always available Hager Ltd. -
7 CONTROL and PROTECTION of HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System the Main Control And
CHAPTER –7 CONTROL AND PROTECTION OF HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System The main control and automation system in a hydroelectric power plant are associated with start and stop sequence for the unit and optimum running control of power (real and reactive), voltage and frequency. Data acquisition and retrieval is used to cover such operations as relaying plant operating status, instantaneous system efficiency, or monthly plant factor, to the operators and managers. Type of control equipment and levels of control to be applied to a hydro plant are affected by such factors as number, size and type of turbine and generator. The control equipment for a hydro power plant include control circuits/logic, control devices, indication, instrumentation, protection and annunciation at the main control board and at the unit control board for generation, conversion and transmission operation including grid interconnected operation of hydro stations including small hydro stations. These features are necessary to provide operators with the facilities required for the control and supervision of the station’s major and auxiliary equipment. In the design of these features consideration must be given to the size and importance of the station with respect to other stations in the power system, location of the main control room with respect to the equipments to be controlled and all other station features which influence the control system. The control system of a power station plays an important role in the station’s rendering reliable service; this function should be kept in mind in the design of all control features. -
Distribution Board
Released By: The Development Commissioner (SSI), Ministry of SSI, New Delhi Distribution Board PRODUCT CODE (ASICC) 77308 QUALITY AND STANDARDS IS 8623:1977 IS 2675:1983 PRODUCTION CAPACITY Qty.: 600 Nos. (per annum) Value Rs. 75,00,000 YEAR OF PREPARATION 2002- 2003 PREPARED BY Small Industries Service Institute Vikas Sadan College Square Cuttack - 753003 and Office of the Development Commissioner Small Scale Industries Electrical and Electronics Division 7th Floor, Nirman Bhavan, New Delhi - 110 011. Introduction The Distribution Board, refers to an equipment which consists of bus bars, and possible switches, fuse links and Automatic protective equipment, bypass equipment, for connecting, controlling and protecting a number of branch circuits fed from one main circuit of a wiring installation in a building or premises for easy and safe handling of incoming power supply. These are, also used to protect the electrical distribution system in turn, connected electrical equipment from being damaged due to various faults like short circuit, over load, earth leakage, etc. The Conductor system by means of which electrical energy is conveyed from bulk power source or sources to the consumers is known as distribution system, which may be divided into two systems known as high voltage (primary) distribution and low voltage (secondary distribution). From generating stations the Electrical Power is usually transmitted to various Sub- stations, through extra high tension transmission lines at voltages from 33 to 220 kV and at these Sub-stations this voltage is stepped down to 11 or 6.6 or 3.3 kV and power at this voltage is conveyed to different sub-stations for distribution and to the bulk supply consumer.