Methane Distribution and Oxidation Across Aquatic Interfaces: Case Studies from Arctic Water Bodies and the Elbe Estuary

Total Page:16

File Type:pdf, Size:1020Kb

Methane Distribution and Oxidation Across Aquatic Interfaces: Case Studies from Arctic Water Bodies and the Elbe Estuary Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum Methane distribution and oxidation across aquatic interfaces: case studies from Arctic water bodies and the Elbe estuary Kumulative Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften „doctor rerum naturalium“ -Dr. rer. Nat.- in der Wissenschaftsdisziplin „Mikrobiologie“ Eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam Von Roman Osudar Potsdam, Mai 2016 Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-96799 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96799 Preface Preface This work represents a joint project between Helgoland and Potsdam units of The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research and also between The GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam. The work was supervised by Prof. Dr. Dirk Wagner (GFZ, section 5.3: Geomicrobiology) and Dr. Ingeborg Bussmann (AWI, Helgoland, section: Shelf Sea System Ecology). The aim of the project was to extent our knowledge about environmental controls of methane distribution and aerobic methane oxidation in aquatic ecosystems which are subject to pronounced interaction with bordering environments. Arctic water bodies and estuaries were chosen as study sites which exemplify these aquatic interfaces. The field sampling campaigns took place in the Elbe estuary from 2011 to 2013 and in the Lena Delta in July 2012 (expedition LENA 2012), with a personal participation. The laboratory work was performed at the three mentioned institutes (AWI Helgoland, AWI Potsdam and GFZ) and also partly in the Winogradsky Institute of Microbiology, Russian Academy of Science, Moscow, Russia with the support of Prof. Dr. Nikolay Pimenov. Sampling campaign in the Lena Delta was financially supported by the European cooperation for long-term monitoring (PERGAMON) [COST STSM Reference Number: ECOST-STSM-ES0902-290811-008783]. The workshop and conference attendances were supported by the Helmholtz Graduate School for Polar and Marine Research (POLMAR) and the Association for General and Applied Microbiology (VAAM). This thesis is written in English and submitted as a cumulative dissertation to the Faculty of Mathematics and Natural Science at the University of Potsdam. The main body of the thesis consists of: (1) general introduction to the research topic with the particular objectives of the study and the description of the study area; (2) manuscripts, which describe the carried out research; and (3) synthesis, which summarizes the obtained results. The “Manuscripts” section is composed of three manuscripts with first authorship, two of which are published or accepted for publication in peer- reviewed scientific journals and one is presented as a final draft. i Acknowledgments Acknowledgments I am happy to acknowledge everybody who contributed to the success of my work. I wish to particularly thank… … my supervisors: Prof. Dr. Dirk Wagner and Dr. Ingeborg Bussmann for the invaluable help, support and patience generously granted to me during the whole period of my study. ... heads of the AWI Helgoland, AWI Potsdam and GFZ: Prof. Dr. Karen Helen Wiltshire, Prof. Dr. H.- W. Hubberten, and Prof. Dr. Dr. h.c. R. Hüttl and Dr. S. Schwartze, respectively for the opportunity to work in a great scientific and collegial atmosphere. ... all my colleagues at all three Institutes, Geomicrobiology section and especially: Dr. Mashal Alawi, Prof. Dr. Susanne Liebner, Andrea Kiss, Janine Heise, Dr. Felizitas Bajerski, Dr. Paloma Serrano, Dr. Sizhong Yang, Julia Magritz and Steffi Genderjahn for the scientific contribution and simply for always “being there for me”. … Günther ‘Molo’ Stoof, Waldemar Schneider and all the others involved in the expedition LENA 2012 for a wonderful Arctic summer. … my family and my friends for believing in me. ii Table of contents TABLE OF CONTENTS PREFACE ............................................................................................................................................. i ACKNOWLEDGMENTS ....................................................................................................................... ii TABLE OF CONTENTS ......................................................................................................................... iii SUMMARY ......................................................................................................................................... v ZUSAMMENFASSUNG ........................................................................................................................ vii I. INTRODUCTION .............................................................................................................................. 1 1.1 Methane cycle ............................................................................................................................. 1 1.2 Methane distribution and cycling in bordering aquatic and terrestrial environments .............. 5 1.2.1 Arctic water bodies ............................................................................................................ 5 1.2.2 Estuaries ............................................................................................................................. 6 1.3 Aerobic methanotrophic bacteria (MOB) ................................................................................... 8 1.3.1 Classification of MOB ......................................................................................................... 8 1.3.2 Environmental controls and biogeography of MOB .......................................................... 10 1.3.3 Taxon-specific activity of MOB .......................................................................................... 13 1.3.4 Aquatic MOB ...................................................................................................................... 14 1.4 Molecular tools for the study of MOB ........................................................................................ 15 1.5 Aims and objectives .................................................................................................................... 17 1.6 Study area .................................................................................................................................... 17 1.6.1 The Lena Delta ................................................................................................................... 18 1.6.2 The Elbe estuary ................................................................................................................. 19 1.7 Overview of the publications and manuscripts .......................................................................... 21 II. MANUSCRIPTS ............................................................................................................................... 24 Manuscript I “Methane turnover and methanotrophic communities in Arctic aquatic ecosystems of the Lena Delta, Northeast Siberia” ............................................................................ 24 Manuscript II “Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea)” ....................................................................... 49 Manuscript III “Effect of salinity and light on aerobic bacterial methane oxidation in the marine and freshwater” ..................................................................................................................... 72 III. SYNTHESIS .................................................................................................................................... 87 3.1 Discussion .................................................................................................................................... 87 iii Table of contents 3.2 Conclusion ................................................................................................................................... 92 3.3 Final remarks ............................................................................................................................... 93 IV. REFERENCES ................................................................................................................................. 95 V. APPENDIX ...................................................................................................................................... 108 Additional manuscript I “Assessment of the radio 3H‐CH4 tracer technique to measure aerobic methane oxidation in the water column” ............................................................................ 108 Additional manuscript II “Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany” .......................................................................................................... 138 iv Summary Summary The increase in atmospheric methane concentration, which is determined by an imbalance between its sources and sinks, has led to investigations of the methane cycle in various environments. Aquatic environments are of an exceptional interest due to their active involvement in methane cycling worldwide and in particular in areas sensitive to climate change. Furthermore, being connected with each other aquatic environments form networks that can be spread on vast areas
Recommended publications
  • Identification of Active Methylotroph Populations in an Acidic Forest Soil
    Microbiology (2002), 148, 2331–2342 Printed in Great Britain Identification of active methylotroph populations in an acidic forest soil by stable- isotope probing Stefan Radajewski,1 Gordon Webster,2† David S. Reay,3‡ Samantha A. Morris,1 Philip Ineson,4 David B. Nedwell,3 James I. Prosser2 and J. Colin Murrell1 Author for correspondence: J. Colin Murrell. Tel: j44 24 7652 2553. Fax: j44 24 7652 3568. e-mail: cmurrell!bio.warwick.ac.uk 1 Department of Biological Stable-isotope probing (SIP) is a culture-independent technique that enables Sciences, University of the isolation of DNA from micro-organisms that are actively involved in a Warwick, Coventry CV4 7AL, UK specific metabolic process. In this study, SIP was used to characterize the active methylotroph populations in forest soil (pH 35) microcosms that were exposed 2 Department of Molecular 13 13 13 13 and Cell Biology, to CH3OH or CH4. Distinct C-labelled DNA ( C-DNA) fractions were resolved University of Aberdeen, from total community DNA by CsCl density-gradient centrifugation. Analysis of Institute of Medical 16S rDNA sequences amplified from the 13C-DNA revealed that bacteria related Sciences, Foresterhill, Aberdeen AB25 2ZD, UK to the genera Methylocella, Methylocapsa, Methylocystis and Rhodoblastus had assimilated the 13C-labelled substrates, which suggested that moderately 3 Department of Biological Sciences, University of acidophilic methylotroph populations were active in the microcosms. Essex, Wivenhoe Park, Enrichments targeted towards the active proteobacterial CH3OH utilizers were Colchester, Essex CO4 3SQ, successful, although none of these bacteria were isolated into pure culture. A UK parallel analysis of genes encoding the key enzymes methanol dehydrogenase 4 Department of Biology, and particulate methane monooxygenase reflected the 16S rDNA analysis, but University of York, PO Box 373, YO10 5YW, UK unexpectedly revealed sequences related to the ammonia monooxygenase of ammonia-oxidizing bacteria (AOB) from the β-subclass of the Proteobacteria.
    [Show full text]
  • Widespread Soil Bacterium That Oxidizes Atmospheric Methane
    Widespread soil bacterium that oxidizes atmospheric methane Alexander T. Tveita,1, Anne Grethe Hestnesa,1, Serina L. Robinsona, Arno Schintlmeisterb, Svetlana N. Dedyshc, Nico Jehmlichd, Martin von Bergend,e, Craig Herboldb, Michael Wagnerb, Andreas Richterf, and Mette M. Svenninga,2 aDepartment of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsoe, Norway; bCenter of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; cWinogradsky Institute of Microbiology, Research Center of Biotechnology of Russian Academy of Sciences, 117312 Moscow, Russia; dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; eFaculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04109 Leipzig, Germany; and fCenter of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria Edited by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved March 7, 2019 (received for review October 22, 2018) The global atmospheric level of methane (CH4), the second most as-yet-uncultured clades within the Alpha- and Gammaproteobacteria important greenhouse gas, is currently increasing by ∼10 million (16–18) which were designated as upland soil clusters α and γ tons per year. Microbial oxidation in unsaturated soils is the only (USCα and USCγ, respectively). Interest in soil atmMOB has known biological process that removes CH4 from the atmosphere, increased significantly since then because they are responsible but so far, bacteria that can grow on atmospheric CH4 have eluded for the only known biological removal of atmospheric CH4 all cultivation efforts.
    [Show full text]
  • Large Scale Biogeography and Environmental Regulation of 2 Methanotrophic Bacteria Across Boreal Inland Waters
    1 Large scale biogeography and environmental regulation of 2 methanotrophic bacteria across boreal inland waters 3 running title : Methanotrophs in boreal inland waters 4 Sophie Crevecoeura,†, Clara Ruiz-Gonzálezb, Yves T. Prairiea and Paul A. del Giorgioa 5 aGroupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), 6 Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada 7 bDepartment of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, 8 Catalunya, Spain 9 Correspondence: Sophie Crevecoeur, Canada Centre for Inland Waters, Water Science and Technology - 10 Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Burlington, Ontario, Canada, e-mail: [email protected] 12 † Current address: Canada Centre for Inland Waters, Water Science and Technology - Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada 1 13 Abstract 14 Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby 15 mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and 16 phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain 17 the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here we used high 18 throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic 19 community composition and the environmental factors that influence their distribution and relative 20 abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal 21 landscape. Within one region, soil and soil water samples were additionally taken from the surrounding 22 watersheds in order to cover the full terrestrial-aquatic continuum.
    [Show full text]
  • The Methanol Dehydrogenase Gene, Mxaf, As a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments
    The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lau, Evan, Meredith C. Fisher, Paul A. Steudler, and Colleen Marie Cavanaugh. 2013. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 8(2): e56993. Published Version doi:10.1371/journal.pone.0056993 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11807572 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The Methanol Dehydrogenase Gene, mxaF,asa Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments Evan Lau1,2*, Meredith C. Fisher2, Paul A. Steudler3, Colleen M. Cavanaugh2 1 Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America Abstract The mxaF gene, coding for the large (a) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera.
    [Show full text]
  • Novel Facultative Methylocella Strains Are Active Methane Consumers at Terrestrial Natural Gas Seeps Muhammad Farhan Ul Haque1,2* , Andrew T
    Farhan Ul Haque et al. Microbiome (2019) 7:134 https://doi.org/10.1186/s40168-019-0741-3 RESEARCH Open Access Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps Muhammad Farhan Ul Haque1,2* , Andrew T. Crombie3* and J. Colin Murrell1 Abstract Background: Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites. Results: The community structure of active methane-consuming bacteria in samples from natural gas seeps from Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA- SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas seep environments. We also isolated novel facultative methanotrophs, Methylocella sp.
    [Show full text]
  • Specialized Metabolites from Methylotrophic Proteobacteria Aaron W
    Specialized Metabolites from Methylotrophic Proteobacteria Aaron W. Puri* Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.033.211 Abstract these compounds and strategies for determining Biosynthesized small molecules known as special- their biological functions. ized metabolites ofen have valuable applications Te explosion in bacterial genome sequences in felds such as medicine and agriculture. Con- available in public databases as well as the availabil- sequently, there is always a demand for novel ity of bioinformatics tools for analysing them has specialized metabolites and an understanding of revealed that many bacterial species are potentially their bioactivity. Methylotrophs are an underex- untapped sources for new molecules (Cimerman- plored metabolic group of bacteria that have several cic et al., 2014). Tis includes organisms beyond growth features that make them enticing in terms those traditionally relied upon for natural product of specialized metabolite discovery, characteriza- discovery, and recent studies have shown that tion, and production from cheap feedstocks such examining the biosynthetic potential of new spe- as methanol and methane gas. Tis chapter will cies indeed reveals new classes of compounds examine the predicted biosynthetic potential of (Pidot et al., 2014; Pye et al., 2017). Tis strategy these organisms and review some of the specialized is complementary to synthetic biology approaches metabolites they produce that have been character- focused on activating BGCs that are not normally ized so far. expressed under laboratory conditions in strains traditionally used for natural product discovery, such as Streptomyces (Rutledge and Challis, 2015).
    [Show full text]
  • Diversity of Methane-Cycling Microorganisms in Soils and Their Relation to Oxygen
    Diversity of Methane-cycling Microorganisms in Soils and Their Relation to Oxygen Claudia Knief* Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.033.023 Abstract Introduction Microorganisms are important players in the Methane cycling microorganisms are of interest global methane cycle. Anaerobic methanogenic for microbiologists since more than a century. archaea are largely responsible for methane pro- Research on these microorganisms was initially duction, while aerobic methanotrophic bacteria, largely driven by the curiosity to understand their as well as anaerobic methanotrophic bacteria particular physiology that leads to the production and archaea, are involved in methane oxidation. or consumption of methane. While this interest is In anoxic wetland soils, methanogens produce still a driver, the importance of methane as green- methane, while methanotrophs act as a flter house gas has become another important factor, and reduce methane emissions. In the predomi- promoting further research on methanogenic and nantly oxic upland soils, aerobic methanotrophs methanotrophic microorganisms. Tis leads to a oxidize atmospheric methane. Tis review gives continuously beter understanding of their physi- an overview of the diversity of methanogenic ology and ecology, and it becomes evident that and methanotrophic microorganisms, highlights the processes of microbial methane production recent discoveries and provides information and consumption are mediated by more com- concerning their occurrence in soils. Recent plex functional guilds than initially thought. Te fndings indicate that the methanogenic and improved understanding is not only due to the con- methanotrophic lifestyles are more widespread stantly increasing diversity of methanogenic and in microorganisms than previously thought, and methanotrophic microorganisms (e.g.
    [Show full text]
  • Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
    The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT.
    [Show full text]
  • FINAL 2 FINAL MESMO ESSE é VERDADE.Xlsx
    UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIENCIAS AGRÁRIAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA BARBARA SCHAEDLER FIDELIS SCHNEIDER ANÁLISE METAGENÔMICA DE BACTÉRIAS DIAZOTRÓFICAS DE SOLOS ORGÂNICOS DO ESTADO DO PARANÁ PONTA GROSSA 2016 BARBARA SCHAEDLER FIDELIS SCHNEIDER ANÁLISE METAGENÔMICA DE BACTÉRIAS DIAZOTRÓFICAS DE SOLOS ORGÂNICOS DO ESTADO DO PARANÁ Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Computação Aplicada da Universidade Estadual de Ponta Grossa, como parte dos requisitos para obtenção do título de mestre em Computação Aplicada na Área de Tecnologias para Agricultura. Orientador: Prof. Dr. Rafael Mazer Etto PONTA GROSSA 2016 Dedico este trabalho à minha filha Clara, ao meu esposo Diogo, aos meus pais Rita e Jorge e aos meus irmãos Debora e Ronaldo, por terem me apoiado e por serem minha fortaleza e inspiração. AGRADECIMENTOS À Deus, por ter me dado saúde e forças para realizar este trabalho. À minha família, por ser minha fortaleza, me proporcionar amor e carinho nos momentos mais difíceis que vivenciei durante esta fase, principalmente por acreditarem em mim e me alegrarem com seus abraços apertados e suas palavras de amor. À CAPES, pela bolsa de estudos. Ao meu orientador Prof. Dr Rafael Mazer Etto, por toda paciência e todos os ensinamentos. À toda a equipe do Laboratório de Biologia Molecular Microbiana da Universidade Estadual de Ponta Grossa, pelo coleguismo e ensinamentos que recebi durante esta fase. A todos os professores e colegas do Programa de Pós-Graduação em Computação Aplicada da Universidade Estadual de Ponta Grossa, por todos os ensinamentos, incentivo, conversas e apoio.
    [Show full text]
  • Current Status and Potential Applications of Underexplored Prokaryotes
    microorganisms Review Current Status and Potential Applications of Underexplored Prokaryotes † Kian Mau Goh 1,*, , Saleha Shahar 1, Kok-Gan Chan 2,3 , Chun Shiong Chong 1, Syazwani Itri Amran 1, Mohd Helmi Sani 1,Iffah Izzati Zakaria 4 and † Ummirul Mukminin Kahar 4,*, 1 Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; [email protected] (S.S.); [email protected] (C.S.C.); [email protected] (S.I.A.); [email protected] (M.H.S.) 2 Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 3 International Genome Centre, Jiangsu University, ZhenJiang 212013, China 4 Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; iff[email protected] * Correspondence: [email protected] (K.M.G.); [email protected] (U.M.K.) † These authors contributed equally to this work. Received: 13 August 2019; Accepted: 8 October 2019; Published: 18 October 2019 Abstract: Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications.
    [Show full text]
  • Application for Approval to Import Into Containment Any New Organism That
    ER-AN-02N 10/02 Application for approval to import into FORM 2N containment any new organism that is not genetically modified, under Section 40 of the Page 1 Hazardous Substances and New Organisms Act 1996 FORM NO2N Application for approval to IMPORT INTO CONTAINMENT ANY NEW ORGANISM THAT IS NOT GENETICALLY MODIFIED under section 40 of the Hazardous Substances and New Organisms Act 1996 Application Title: Importation of extremophilic microorganisms from geothermal sites for research purposes Applicant Organisation: Institute of Geological & Nuclear Sciences ERMA Office use only Application Code: Formally received:____/____/____ ERMA NZ Contact: Initial Fee Paid: $ Application Status: ER-AN-02N 10/02 Application for approval to import into FORM 2N containment any new organism that is not genetically modified, under Section 40 of the Page 2 Hazardous Substances and New Organisms Act 1996 IMPORTANT 1. An associated User Guide is available for this form. You should read the User Guide before completing this form. If you need further guidance in completing this form please contact ERMA New Zealand. 2. This application form covers importation into containment of any new organism that is not genetically modified, under section 40 of the Act. 3. If you are making an application to import into containment a genetically modified organism you should complete Form NO2G, instead of this form (Form NO2N). 4. This form, together with form NO2G, replaces all previous versions of Form 2. Older versions should not now be used. You should periodically check with ERMA New Zealand or on the ERMA New Zealand web site for new versions of this form.
    [Show full text]
  • Interactions Between Soil Methane and Ammonia Oxidizers
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 11, 3893–3926, 2014 Open Access www.biogeosciences-discuss.net/11/3893/2014/ Biogeosciences BGD doi:10.5194/bgd-11-3893-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 3893–3926, 2014 This discussion paper is/has been under review for the journal Biogeosciences (BG). Interactions between Please refer to the corresponding final paper in BG if available. soil methane and ammonia oxidizers Competitive interactions between Y. Zheng et al. methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in Title Page paddy soil Abstract Introduction Conclusions References 1,2 1 1 3 1 Y. Zheng , R. Huang , B. Z. Wang , P. L. E. Bodelier , and Z. J. Jia Tables Figures 1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China J I 2University of Chinese Academy of Sciences, Beijing 100049, China 3Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, J I 6708 PB, Wageningen, the Netherlands Back Close Received: 19 February 2014 – Accepted: 25 February 2014 – Published: 7 March 2014 Full Screen / Esc Correspondence to: Z. J. Jia ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 3893 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected inter- 11, 3893–3926, 2014 actions resulting from these similarities are poorly understood, especially in complex, 5 natural environments.
    [Show full text]