Hydride Abstraction As the Rate-Limiting Step of The

Total Page:16

File Type:pdf, Size:1020Kb

Hydride Abstraction As the Rate-Limiting Step of The International Journal of Molecular Sciences Article Hydride Abstraction as the Rate-Limiting Step of the Irreversible Inhibition of Monoamine Oxidase B by Rasagiline and Selegiline: A Computational Empirical Valence Bond Study Tana Tandari´c 1, Alja Prah 2,3, Jernej Stare 2, Janez Mavri 2 and Robert Vianello 1,* 1 Division of Organic Chemistry and Biochemistry, Ruder¯ Boškovi´cInstitute, BijeniˇckaCesta 54, HR-10000 Zagreb, Croatia; [email protected] 2 Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; [email protected] (A.P.); [email protected] (J.S.); [email protected] (J.M.) 3 Faculty of Pharmacy, University of Ljubljana, AškerˇcevaCesta 7, SI-1000 Ljubljana, Slovenia * Correspondence: [email protected] Received: 21 July 2020; Accepted: 21 August 2020; Published: 26 August 2020 Abstract: Monoamine oxidases (MAOs) catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders, and are, accordingly, used as primary pharmacological targets to treat these debilitating cognitive diseases. Still, despite this practical significance, the precise molecular mechanism underlying the irreversible MAO inhibition with clinically used propargylamine inhibitors rasagiline and selegiline is still not unambiguously determined, which hinders the rational design of improved inhibitors devoid of side effects current drugs are experiencing. To address this challenge, we present empirical valence bond QM/MM simulations of the rate-limiting step of the MAO inhibition involving the hydride anion transfer from the inhibitor α-carbon onto the N5 atom of the flavin adenin dinucleotide (FAD) cofactor. The proposed mechanism is strongly supported by the obtained free energy profiles, which confirm a higher reactivity of selegiline over rasagiline, while the calculated difference in the activation Gibbs 1 energies of DDGz = 3.1 kcal mol− is found to be in very good agreement with that from the measured 1 literature kinact values that predict a 1.7 kcal mol− higher selegiline reactivity. Given the similarity with the hydride transfer mechanism during the MAO catalytic activity, these results verify that both rasagiline and selegiline are mechanism-based irreversible inhibitors and offer guidelines in designing new and improved inhibitors, which are all clinically employed in treating a variety of neuropsychiatric and neurodegenerative conditions. Keywords: irreversible inhibition; monoamine oxidase; hydride transfer; antiparkinsonian drugs; neurodegeneration; flavoenzymes 1. Introduction Monoamine oxidases (MAOs) are flavoenzymes that metabolize a wide range of biogenic and dietary amines, including monoamine neurotransmitters, such as dopamine, serotonin, and adrenaline, in both the central nervous system and peripheral tissues [1]. Proper degradation of these molecules is responsible for the stable function of synaptic neurotransmission, resulting in a healthy brain condition. Since different concentrations of these small monoaminergic neurotransmitters influence our mood and emotions, as well as the control of motor, perceptual, and cognitive functions, any imbalance in their Int. J. Mol. Sci. 2020, 21, 6151; doi:10.3390/ijms21176151 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 6151 2 of 13 concentration leads to the development and progression of a number of, if not all, neuropsychiatric andInt. J. neurological Mol. Sci. 2020, 21 diseases., x FOR PEER REVIEW 2 of 13 Int. J. ThereMol. Sci. are 2020 two, 21, x known FOR PEER isoforms REVIEW of the MAO enzyme—MAO A and MAO B [2,3]—which share2 of 13 There are two known isoforms of the MAO enzyme—MAO A and MAO B [2,3]—which share around 70% sequence identity and the same FAD cofactor covalently attached at a conserved cysteine around 70% sequence identity and the same FAD cofactor covalently attached at a conserved cysteine residueThere [4]. Theirare two active known site cavitiesisoforms are of placed the MAO deep enzyme—MAO inside the enzyme, A and and MAO differ B in [2,3]—which volume and shapeshare residue [4]. Their active site cavities are placed deep inside the enzyme, and differ in volume and betweenaround 70% isoforms sequence [5], identity which results and the in same different FADsubstrate cofactor covalently and inhibitor attached affinities at a conserved [6]. The chemical cysteine shape between isoforms [5], which results in different substrate and inhibitor affinities [6]. The reactionresidue [4]. catalyzed Their active by both site MAO cavities isoforms are placed involves deep the inside oxidation the enzyme, of the amine and differ moiety in via volume oxidative and chemical reaction catalyzed by both MAO isoforms involves the oxidation of the amine moiety via cleavageshape between of the substrate isoformsα [5],-CH which bond whichresults consequently in different generatessubstrate anand imine inhibitor intermediate. affinities This [6]. stepThe chemicaloxidative reaction cleavage catalyzed of the substrate by both α -CHMAO bond isoforms which involves consequently the oxidation generates of an the imine amine intermediate. moiety via is accomplished by the reduction of FAD to FADH2 that is followed by reoxidation back to FAD oxidativeThis step cleavageis accomplished of the substrate by the reduction α-CH bond of FAD which to consequentlyFADH2 that is ge followednerates anby imine reoxidation intermediate. back to with molecular oxygen and a simultaneous H2O2 release. The imine intermediate is hydrolyzed FAD with molecular oxygen and a simultaneous H2O2 release. The imine intermediate is hydrolyzed nonenzymaticallyThis step is accomplished to the corresponding by the reduction aldehyde of FAD and to ammonia FADH2 that (with is primaryfollowed amines) by reoxidation or a substituted back to nonenzymatically to the corresponding aldehyde and ammonia (with primary amines) or a amineFAD with (from molecular secondary oxygen amines) and [7 a]. simultaneous The overall catalytic H2O2 release. MAO The reaction imine is intermediate given as: is hydrolyzed nonenzymaticallysubstituted amine (fromto the secondary corresponding amines) aldehyde [7]. The overalland ammonia catalytic MAO(with reaction primary is givenamines) as: or a substituted amine (from secondary amines) [7]. The overall catalytic MAO reaction is given as: All products of the MAO-mediated reactions are highly reactive species, and include a number of potentiallyAllAll productsproducts neurotoxic ofof the the MAO-mediated MAO-mediated agents [8–10]. reactionsBecause reactions of are arethat, highly highly constant reactive reactive excessive species, species, activity and and include includeof MAO a number a enzymes number of potentiallyofmay potentially lead to neurotoxic mitochondrialneurotoxic agents agents damages [8 –[8–10].10]. Becausewhich Because lead of of that, that,to the constant constant cell damage excessive excessive and activity activitydysfunction, of of MAOMAO resulting enzymesenzymes in maymayneurodegenerative leadlead toto mitochondrialmitochondrial disturbances. damagesdamages These whichwhich premises leadlead toto are thethe cellthecell damagemaindamage reason andand dysfunction,dysfunction,why MAO inhibition resultingresulting ininis neurodegenerativeneurodegenerativerecognized as an disturbances.important disturbances. tool These inThese the premises therapypremises are of theare various main the reason mainpsychiatric whyreason MAO and why inhibition neurological MAO isinhibition recognized diseases, is asrecognizedranging an important from as moodan tool important indisorders the therapy tool to Parkinson’sin ofthe various therapy (PD) psychiatric of [11]various and and Alzheimer’spsychiatric neurological and diseases diseases, neurological (AD). ranging Additional diseases, from moodrangingstudies disorders onfrom MAO mood to knock-out Parkinson’s disorders mice (PD)to [12,13]Parkinson’s [11] andhave Alzheimer’s revealed(PD) [11] that and diseases the Alzheimer’s inactivation (AD). Additional diseases of this enzyme(AD). studies Additional onproduces MAO knock-outstudiesa number on of miceMAO functional [12knock-out,13] haveand micebehavioral revealed [12,13] thatchanges, have the revealed inactivation some ofthat which the of inactivation thisare interesting enzyme of produces this for enzymetherapeutical a number produces use. of functionalaThe number modulation andof functional behavioral of the brainand changes, behavioral and behavior some changes, of which induced aresome interestingby of MAO which inhibitors for are therapeutical interesting [14] made for use. therapeuticalthe The design modulation of newuse. ofTheand the modulationmore brain potent and behavior ofMAO the braininhibitors—one induced and behavior by MAO of the induced inhibitors central by topics [14MAO] madeof inhibitorsinterest the design for [14] both ofmade academia new the and design moreand industry of potent new MAOandover more the inhibitors—one last potent 60 years MAO [15–20]. ofinhibitors—one the central topics of the of central interest topics for both of interest academia for both and academia industry overand industry the last 60over years theFirst [last15 discovered– 2060]. years [15–20].MAO inhibitors were the nonselective reversible inhibitors ipronazid [21] and phenelzine,FirstFirst discovereddiscovered yet these MAOcompoundsMAO inhibitorsinhibitors
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas Et Al
    US 20130253 056A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas et al. (43) Pub. Date: Sep. 26, 2013 (54) CONTINUOUS ADMINISTRATION OF (60) Provisional application No. 61/179,511, filed on May LEVODOPA AND/OR DOPA 19, 2009. DECARBOXYLASE INHIBITORS AND COMPOSITIONS FOR SAME Publication Classification (71) Applicant: NEURODERM, LTD., Ness-Ziona (IL) (51) Int. Cl. A63L/216 (2006.01) (72) Inventors: Mara Nemas, Gedera (IL); Oron (52) U.S. Cl. Yacoby-Zeevi, Moshav Bitsaron (IL) CPC .................................... A6 IK3I/216 (2013.01) USPC .......................................................... 514/538 (73) Assignee: Neuroderm, Ltd., Ness-Ziona (IL) (57) ABSTRACT (21) Appl. No.: 13/796,232 Disclosed herein are for example, liquid aqueous composi (22) Filed: Mar 12, 2013 tions that include for example an ester or salt of levodopa, or an ester or salt of carbidopa, and methods for treating neuro Related U.S. Application Data logical or movement diseases or disorders such as restless leg (63) Continuation-in-part of application No. 12/961,534, syndrome, Parkinson's disease, secondary parkinsonism, filed on Dec. 7, 2010, which is a continuation of appli Huntington's disease, Parkinson's like syndrome, PSP. MSA, cation No. 12/836,130, filed on Jul. 14, 2010, now Pat. ALS, Shy-Drager syndrome, dystonia, and conditions result No. 7,863.336, which is a continuation of application ing from brain injury including carbon monoxide or manga No. 12/781,357, filed on May 17, 2010, now Pat. No. nese intoxication, using Substantially continuous administra 8,193,243. tion of levodopa and/or carbidopa or ester and/or salt thereof.
    [Show full text]
  • Parkinson Disease-Associated Cognitive Impairment
    PRIMER Parkinson disease-associated cognitive impairment Dag Aarsland 1,2 ✉ , Lucia Batzu 3, Glenda M. Halliday 4, Gert J. Geurtsen 5, Clive Ballard 6, K. Ray Chaudhuri 3 and Daniel Weintraub7,8 Abstract | Parkinson disease (PD) is the second most common neurodegenerative disorder, affecting >1% of the population ≥65 years of age and with a prevalence set to double by 2030. In addition to the defining motor symptoms of PD, multiple non-motor symptoms occur; among them, cognitive impairment is common and can potentially occur at any disease stage. Cognitive decline is usually slow and insidious, but rapid in some cases. Recently, the focus has been on the early cognitive changes, where executive and visuospatial impairments are typical and can be accompanied by memory impairment, increasing the risk for early progression to dementia. Other risk factors for early progression to dementia include visual hallucinations, older age and biomarker changes such as cortical atrophy, as well as Alzheimer-type changes on functional imaging and in cerebrospinal fluid, and slowing and frequency variation on EEG. However, the mechanisms underlying cognitive decline in PD remain largely unclear. Cortical involvement of Lewy body and Alzheimer-type pathologies are key features, but multiple mechanisms are likely involved. Cholinesterase inhibition is the only high-level evidence-based treatment available, but other pharmacological and non-pharmacological strategies are being tested. Challenges include the identification of disease-modifying therapies as well as finding biomarkers to better predict cognitive decline and identify patients at high risk for early and rapid cognitive impairment. Parkinson disease (PD) is the most common movement The full spectrum of cognitive impairment occurs in disorder and the second most common neurodegenera­ individuals with PD, from subjective cognitive decline tive disorder after Alzheimer disease (AD).
    [Show full text]
  • Medical Review Officer Manual
    Department of Health and Human Services Substance Abuse and Mental Health Services Administration Center for Substance Abuse Prevention Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs EFFECTIVE OCTOBER 1, 2010 Note: This manual applies to Federal agency drug testing programs that come under Executive Order 12564 dated September 15, 1986, section 503 of Public Law 100-71, 5 U.S.C. section 7301 note dated July 11, 1987, and the Department of Health and Human Services Mandatory Guidelines for Federal Workplace Drug Testing Programs (73 FR 71858) dated November 25, 2008 (effective October 1, 2010). This manual does not apply to specimens submitted for testing under U.S. Department of Transportation (DOT) Procedures for Transportation Workplace Drug and Alcohol Testing Programs (49 CFR Part 40). The current version of this manual and other information including MRO Case Studies are available on the Drug Testing page under Medical Review Officer (MRO) Resources on the SAMHSA website: http://www.workplace.samhsa.gov Previous Versions of this Manual are Obsolete 3 Table of Contents Chapter 1. The Medical Review Officer (MRO)........................................................................... 6 Chapter 2. The Federal Drug Testing Custody and Control Form ................................................ 7 Chapter 3. Urine Drug Testing ...................................................................................................... 9 A. Federal Workplace Drug Testing Overview..................................................................
    [Show full text]
  • Dexmethylphenidate Hydrochloride Extended-Release Capsules These
    DEXMETHYLPHENIDATE HYDROCHLORIDE- dexmethylphenidate hydrochloride capsule, extended release Granules Pharmaceuticals Inc. ---------- HIGHLIGHTS OF PRESCRIBING INFORMATION Dexmethylphenidate hydrochloride extended-release capsules These highlights do not include all the information needed to use DEXMETHYLPHENIDATE HYDROCHLORIDE EXTENDED-RELEASE CAPSULES safely and effectively. See full prescribing information for DEXMETHYLPHENIDATE HYDROCHLORIDE EXTENDED RELEASE CAPSULES. DEXMETHYLPHENIDATE HYDROCHLORIDE extended-release capsules, for oral use, CII Initial U.S. Approval: 2005 WARNING: ABUSE AND DEPENDENCE See full prescribing information for complete boxed warning. • CNS stimulants, including dexmethylphenidate hydrochloride extended-release, other methylphenidate-containing products, and amphetamines, have a high potential for abuse and dependence( 5.1, 9.2, 9.3). • Assess the risk of abuse prior to prescribing and monitor for signs of abuse and dependence while on therapy ( 5.1, 9.2). INDICATIONS AND USAGE Dexmethylphenidate hydrochloride extended-release capsules are a central nervous system (CNS) stimulant indicated for the treatment of Attention Deficit Hyperactivity Disorder (ADHD) ( 1) DOSAGE AND ADMINISTRATION • Patients new to methylphenidate: Recommended starting dose is 5 mg once daily for pediatric patients and 10 mg once daily for adults with or without food in the morning ( 2.2) • Patients currently on methylphenidate: Dexmethylphenidate hydrochloride extended-release dosage is half the current total daily dosage of methylphenidate
    [Show full text]
  • Azilect, INN-Rasagiline
    SCIENTIFIC DISCUSSION 1. Introduction AZILECT is indicated for the treatment of idiopathic Parkinson’s disease (PD) as monotherapy (without levodopa) or as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Rasagiline is administered orally, at a dose of 1 mg once daily with or without levodopa. Parkinson’s disease is a common neurodegenerative disorder typified by loss of dopaminergic neurones from the basal ganglia, and by a characteristic clinical syndrome with cardinal physical signs of resting tremor, bradikinesia and rigidity. The main treatment aims at alleviating symptoms through a balance of anti-cholinergic and dopaminergic drugs. Parkinson’s disease (PD) treatment is complex due to the progressive nature of the disease, and the array of motor and non-motor features combined with early and late side effects associated with therapeutic interventions. Rasagiline is a chemical inhibitor of the enzyme monoamine oxidase (MAO) type B which has a major role in the inactivation of biogenic and diet-derived amines in the central nervous system. MAO has two isozymes (types A and B) and type B is responsible for metabolising dopamine in the central nervous system; as dopamine deficiency is the main contributing factor to the clinical manifestations of Parkinson’s disease, inhibition of MAO-B should tend to restore dopamine levels towards normal values and this improve the condition. Rasagiline was developed for the symptomatic treatment of Parkinson’s disease both as monotherapy in early disease and as adjunct therapy to levodopa + aminoacids decarboxylase inhibitor (LD + ADI) in patients with motor fluctuations. 2. Quality Introduction Drug Substance • Composition AZILECT contains rasagiline mesylate as the active substance.
    [Show full text]
  • 3 Drugs That May Cause Delirium Or Problem Behaviors CARD 03 19 12 JUSTIFIED.Pub
    Drugs that May Cause Delirium or Problem Behaviors Drugs that May Cause Delirium or Problem Behaviors This reference card lists common and especially problemac drugs that may Ancholinergics—all drugs on this side of the card. May impair cognion cause delirium or contribute to problem behaviors in people with demena. and cause psychosis. Drugs available over‐the‐counter marked with * This does not always mean the drugs should not be used, and not all such drugs are listed. If a paent develops delirium or has new problem Tricyclic Andepressants Bladder Anspasmodics behaviors, a careful review of all medicaons is recommended. Amitriptyline – Elavil Darifenacin – Enablex Be especially mindful of new medicaons. Clomipramine – Anafranil Flavoxate – Urispas Desipramine – Norpramin Anconvulsants Psychiatric Oxybutynin – Ditropan Doxepin – Sinequan Solifenacin – VESIcare All can cause delirium, e.g. All psychiatric medicaons should be Imipramine – Tofranil Tolterodine – Detrol Carbamazepine – Tegretol reviewed as possible causes, as Nortriptyline – Aventyl, Pamelor Gabapenn – Neuronn effects are unpredictable. Trospium – Sanctura Anhistamines / Allergy / Leveracetam – Keppra Notable offenders include: Insomnia / Sleep Valproic acid – Depakote Benzodiazepines e.g. Cough & Cold Medicines *Diphenhydramine – Sominex, ‐Alprazolam – Xanax *Azelasne – Astepro Pain Tylenol‐PM, others ‐Clonazepam – Klonopin *Brompheniramine – Bromax, All opiates can cause delirium if dose *Doxylamine – Unisom, Medi‐Sleep ‐Lorazepam – Avan Bromfed, Lodrane is too high or
    [Show full text]
  • Selegiline) in Monkeys*
    Intravenous self-administration studies with /-deprenyl (selegiline) in monkeys* /-Deprenyl and its stereoisomer d-deprenyl did not maintain intravenous self-administration behavior in rhesus monkeys. In contrast, /-methamphetamine, the major metabolite of /-deprenyl, as well as the baseline drug, cocaine, maintained high rates of intravenous self-administration behavior. Treatment with /-deprenyl doses up to 1.0 mg/kg before self-administration sessions failed to alter self-administra- tion of either cocaine or /-methamphetamine. Thus /-deprenyl did not appear to have cocaine- or meth- amphetamine-like reinforcing properties in monkeys and was ineffective in altering established patterns of psychomotor-stimulant self-administration behavior. These results support clinical findings that de- spite long-term use of /-deprenyl for the treatment of Parkinson's disease by large numbers of patients, no instances of abuse have been documented. /-Deprenyl has recently been suggested as a potential med- ication for the treatment of various types of drug abuse, including cocaine abuse, but its failure to pro- duce selective effects in decreasing cocaine or methamphetamine self-administration behavior in the present experiments makes such an application seem unlikely. (CLIN PHARMACOL THER 1994;56:774-80.) Gail D. Winger, PhD,a Sevil Yasar, MD,b'd'e S. Steven Negus, PhD,a and Steven R. Goldberg, pIli/i d'e Ann Arbor, Mich., and Baltimore, Md. From the 'Department of Pharmacology, University of Michigan /-Deprenyl (selegiline) has been known for several
    [Show full text]
  • Drug-Induced Movement Disorders
    Medical Management of Early PD Samer D. Tabbal, M.D. May 2016 Associate Professor of Neurology Director of The Parkinson Disease & Other Movement Disorders Program Mobile: +961 70 65 89 85 email: [email protected] Conflict of Interest Statement No drug company pays me any money Outline So, you diagnosed Parkinson disease .Natural history of the disease .When to start drug therapy? .Which drug to use first for symptomatic treatment? ● Levodopa vs dopamine agonist vs MAOI Natural History of Parkinson Disease Before levodopa: Death within 10 years After levodopa: . “Honeymoon” period (~ 5-7 years) . Motor (ON/OFF) fluctuations & dyskinesias: ● Drug therapy effective initially ● Surgical intervention by 10-15 years - Deep brain stimulation (DBS) therapy Motor Response Dyskinesia 5-7 yrs >10 yrs Dyskinesia ON state ON state OFF state OFF state time time Several days Several hours 1-2 hour Natural History of Parkinson Disease Prominent gait impairment and autonomic symptoms by 20-25 years (Merola 2011) Behavioral changes before or with motor symptoms: . Sleep disorders . Depression . Anxiety . Hallucinations, paranoid delusions Dementia at anytime during the illness . When prominent or early: diffuse Lewy body disease Symptoms of Parkinson Disease Motor Symptoms Sensory Symptoms Mental Symptoms: . Cognitive and psychiatric Autonomic Symptoms Presenting Symptoms of Parkinson Disease Mood disorders: depression and lack of motivation Sleep disorders: “acting out dreams” and nightmares Early motor symptoms: Typically Unilateral . Rest tremor: chin, arms or legs or “inner tremor” . Bradykinesia: focal and generalized slowness . Rigidity: “muscle stiffness or ache” Also: (usually no early postural instability) . Facial masking with hypophonia: “does not smile anymore” or “looks unhappy all the time” .
    [Show full text]
  • Treatment Options for Motor and Non-Motor Symptoms of Parkinson’S Disease
    biomolecules Review Treatment Options for Motor and Non-Motor Symptoms of Parkinson’s Disease Frank C. Church Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] Abstract: Parkinson’s disease (PD) usually presents in older adults and typically has both motor and non-motor dysfunctions. PD is a progressive neurodegenerative disorder resulting from dopamin- ergic neuronal cell loss in the mid-brain substantia nigra pars compacta region. Outlined here is an integrative medicine and health strategy that highlights five treatment options for people with Parkinson’s (PwP): rehabilitate, therapy, restorative, maintenance, and surgery. Rehabilitating begins following the diagnosis and throughout any additional treatment processes, especially vis-à-vis consulting with physical, occupational, and/or speech pathology therapist(s). Therapy uses daily administration of either the dopamine precursor levodopa (with carbidopa) or a dopamine ago- nist, compounds that preserve residual dopamine, and other specific motor/non-motor-related compounds. Restorative uses strenuous aerobic exercise programs that can be neuroprotective. Maintenance uses complementary and alternative medicine substances that potentially support and protect the brain microenvironment. Finally, surgery, including deep brain stimulation, is pursued when PwP fail to respond positively to other treatment options. There is currently no cure for PD. In conclusion, the best strategy for treating PD is to hope to slow disorder progression and strive to achieve stability with neuroprotection. The ultimate goal of any management program is to improve the quality-of-life for a person with Parkinson’s disease.
    [Show full text]
  • Re-Submission Rasagiline 1Mg Tablet (Azilectò) (No
    Scottish Medicines Consortium Re-Submission rasagiline 1mg tablet (AzilectÒ) (No. 255/06) Lundbeck Ltd / Teva Pharmaceuticals Ltd 10 November 2006 The Scottish Medicines Consortium (SMC) has completed its assessment of the above product and advises NHS Boards and Area Drug and Therapeutic Committees (ADTCs) on its use in NHS Scotland. The advice is summarised as follows: ADVICE: following a resubmission rasagiline (AzilectÒ) is not recommended within NHS Scotland for the treatment of idiopathic Parkinson’s disease as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Rasagiline reduces off-time in patients with Parkinson’s disease and end of dose fluctuations on levodopa, similar to reductions shown with the less effective of two currently marketed catechol-O-methyl transferase inhibitors. The economic case has not been demonstrated. Overleaf is the detailed advice on this product. Chairman Scottish Medicines Consortium 1 Indication Treatment of idiopathic Parkinson’s disease as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Dosing information 1mg once daily Product availability date 4th July 2005 Summary of evidence on comparative efficacy Rasagiline is an irreversible inhibitor of the monoamine oxidase-B (MAO-B) enzyme. One effect of this enzyme inhibition is an increase in extracellular dopamine levels in the striatum, with subsequently increased dopaminergic activity. This is thought to be the mechanism of action of rasagiline in Parkinson’s disease (PD). Two double-blind trials recruited 687 and 472 adults, aged >30 years, with idiopathic PD defined by the presence of two cardinal signs (resting tremor, bradykinesia or rigidity) who experienced motor fluctuations for at least 1 hour per day (excluding morning akinesia) in the first study and for at least 2.5 hours per day in the second study, with a Hoehn and Yahr score <5 in the off-state.
    [Show full text]
  • Recommended Methods for the Identification and Analysis Of
    Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.
    [Show full text]
  • Guideline for Preoperative Medication Management
    Guideline: Preoperative Medication Management Guideline for Preoperative Medication Management Purpose of Guideline: To provide guidance to physicians, advanced practice providers (APPs), pharmacists, and nurses regarding medication management in the preoperative setting. Background: Appropriate perioperative medication management is essential to ensure positive surgical outcomes and prevent medication misadventures.1 Results from a prospective analysis of 1,025 patients admitted to a general surgical unit concluded that patients on at least one medication for a chronic disease are 2.7 times more likely to experience surgical complications compared with those not taking any medications. As the aging population requires more medication use and the availability of various nonprescription medications continues to increase, so does the risk of polypharmacy and the need for perioperative medication guidance.2 There are no well-designed trials to support evidence-based recommendations for perioperative medication management; however, general principles and best practice approaches are available. General considerations for perioperative medication management include a thorough medication history, understanding of the medication pharmacokinetics and potential for withdrawal symptoms, understanding the risks associated with the surgical procedure and the risks of medication discontinuation based on the intended indication. Clinical judgement must be exercised, especially if medication pharmacokinetics are not predictable or there are significant risks associated with inappropriate medication withdrawal (eg, tolerance) or continuation (eg, postsurgical infection).2 Clinical Assessment: Prior to instructing the patient on preoperative medication management, completion of a thorough medication history is recommended – including all information on prescription medications, over-the-counter medications, “as needed” medications, vitamins, supplements, and herbal medications. Allergies should also be verified and documented.
    [Show full text]