Neonicotinoid Pesticide Pollution of Dutch Surface Water on Non- Target Species Abundance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insecticide Residue Analyses in Cucumbers Sampled from Çanakkale Open Markets1 Çanakkale Açık Pazarlarından Örneklenen Hıyarlarda Insektisit Kalıntı Analizleri
Türk. entomol. derg., 2020, 44 (4): 449-460 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.767482 E-ISSN 2536-491X Original article (Orijinal araştırma) Insecticide residue analyses in cucumbers sampled from Çanakkale open markets1 Çanakkale açık pazarlarından örneklenen hıyarlarda insektisit kalıntı analizleri Hayriye ÇATAK2 Osman TİRYAKİ3* Abstract The aim of this study was to investigate four insecticide residues in cucumbers with the aid of QuEChERS 2007.1 method. For method verification assessment, pesticide-free cucumber matrix was spiked with 0.1, 1 and 10 times of MRL for each pesticide. The QuEChERS-LC-MS/MS analytical method revealed that the detection limits of the insecticides were below the MRLs and the overall recovery of method was 97.7%. These figures were within the SANTE recovery limits (60-140%) and the values specified for the repeatability (≤20%). Cucumbers were collected from six different stands (A-F) at Çanakkale open markets for 6 weeks between 23 November and 28 December 2018. Residues of each sampling time and each stand were assessed. Acetamiprid residue of 257g and 236 µg/kg were detected in week 5 from stand B and in week 2 from stand E, respectively. These values are close to MRL (300 µg/kg). Formetanate hydrochloride residue of the week 3 from stand F (36.3 µg/kg) was more than MRL of 10 µg/kg. Pirimiphos methyl and chlorpyrifos residues were not detected in cucumbers. Theoretical maximum daily intake assessment showed that there was no chronic exposure risk for these four pesticides through cucumber consumption. Keywords: Cucumber, insecticide residues, QuEChERS, risk assessment, toxicology Öz Bu çalışma hıyarlarda dört insektisit kalıntısını QuEChERS 2007.1 yöntemi ile belirlemek amacıyla yapılmıştır. -
Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait
International Journal of Environmental Research and Public Health Article Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait Mustapha F. A. Jallow *, Dawood G. Awadh, Mohammed S. Albaho, Vimala Y. Devi and Nisar Ahmad Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; [email protected] (D.G.A.); [email protected] (M.S.A.); [email protected] (V.Y.D.); [email protected] (N.A.) * Correspondence: [email protected]; Tel.: +965-249-8984 Received: 1 May 2017; Accepted: 12 July 2017; Published: 25 July 2017 Abstract: The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. -
EUPT-CF10-Webinar
Results of EUPT-CF10 Incurred and spiked pesticides in rye Mette Erecius Poulsen Holte, 20 September 2016 PTs on cereals/feed 2016 EUPT-CF10 Test material Rye flour Participants 178 (160) Compulsory target pesticides 134 Voluntary target pesticides 7 Incurred pesticides 10 Spiked pesticides 8 Total no. of pesticides 18 National Food Institute, Technical University of Denmark Advisory Group Quality Group Amadeo R. Fernández-Alba Antonio Valverde André de Kok Stewart Reynolds Antonio Valverde Magnus Jezussek Michelangelo Anastassiades Miguel Gamón Organising team at EURL Philippe Gros Mette Erecius Poulsen Ralf Lippold Susan Strange Herrmann Sonja Masselter Parvaneh Hajeb Stewart Reynolds Merete B. Ludwigsen Tuija Pihlström Lisbet Pilhkjær Finbarr Oregan Jens-Ole Frimann National Food Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Activity Dates Announcement Calendar December 2015 Target Pesticide List EUPT-Registration Website 11 January 2016 Deadline for registration 1 February 2016 Release of Specific Protocol 29 February 2016 Distribution of Test items 7 March 2016 Deadline for Receipt and Acceptance of Test Materials within 24 hr on reciept 11 April 2016 Deadline for Result Submission at 13.00 CET Deadline for submission of additional method information for 15 April 2015 false negative results Preliminary Report (only compilation of results) 30 May 2015 Final Report December 2015 National Food Institute, Technical University of Denmark Target list - new pesticides and voluntary compounds -
Chemicals Implicated in Colony Collapse Disorder
Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM. -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Integrated Pest Management Plan 2021-22
Denair Unified School District INTEGRATED PEST MANAGEMENT PLAN Contacts Denair Unified School District 3460 Lester Rd., Denair, CA Mark Hodges (209) 632-7514 Ext 1215 [email protected] District IPM Coordinator Phone Number e-mail address IPM Statement It is the goal of Denair Unified School District to implement IPM by focusing on long-term prevention or suppression of pests through accurate pest identification, by frequent monitoring for pest presence, by applying appropriate action levels, and by making the habitat less conducive to pests using sanitation and mechanical and physical controls. Pesticides that are effective will be used in a manner that minimizes risks to people, property, and the environment, and only after other options have been shown ineffective. Pest Management Objectives: • Focus on long-term pest prevention using minimal pesticides. • Elimination of significant threats caused by pests to the health and safety of students, staff and the public. • Prevention of loss or damage to structures or property by pests. • Protection of environmental quality inside and outside buildings, in playgrounds and athletic areas, and throughout the Denair Unified School District facilities. IPM Team In addition to the IPM Coordinator, other individuals who are involved in purchasing, making IPM decisions, applying pesticides, and complying with the Healthy Schools Act requirements, include: Name Role Mark Hodges Making IPM Decisions Jerri Pierce Recordkeeping, and Making IPM Decisions Daniel Meza Applying Pesticides, Recordkeeping, -
The Impact of the Nation's Most Widely Used Insecticides on Birds
The Impact of the Nation’s Most Widely Used Insecticides on Birds Neonicotinoid Insecticides and Birds The Impact of the Nation’s Most Widely Used Insecticides on Birds American Bird Conservancy, March 2013 Grasshopper Sparrow by Luke Seitz Cover photos: Horned Lark and chicks by Middleton Evans; Corn field, stock.xchng, sxc.hu; Calico Pennant dragonfly by David Cappaert, Michigan State University, Bugwood.org 1 Neonicotinoid Insecticides and Birds American Bird Conservancy would like to thank the Turner Foundation, Wallace Genetic Foundation, Jeff and Connie Woodman, Cornell Douglas Foundation and A.W. Berry Foundation for their ongoing support for American Bird Conservancy’s Pesticides Program. Written by Dr. Pierre Mineau and Cynthia Palmer Designed by Stephanie von Blackwood About the Authors Dr. Pierre Mineau began his long and distinguished scientific career studying the effects of persistent organochlorine compounds, like DDT and PCBs, on fish-eating birds. He then became responsible for the Canadian assessment of new and existing pesticides to determine their adverse impacts on wildlife. In 1994 he transitioned from regulatory reviews to full-time research on the environmental impacts of pesticides, achieving the rank of Senior Research Scientist at Environment Canada. Working with international collaborators and graduate students, he works on assessing globally the environmental footprint of pesticides. He also studies how birds are exposed to pesticides and how bird populations respond to pesticide use and agricultural practices. His work includes defining the ecological values of birds in cropland as well as estimating the incidental take of birds from various other human activities. He has written more than 100 peer-reviewed publications and has authored some 200 presentations. -
Pesticides Registration List 2018
Pesticides Registration List 2018 Name of Chemicals Type Common Name Registration Types Registrant Syngenta AGROIN, 39,Broad Street, Charlestown, Georgetown, Guyana. 592 -689-4624 and 611-3890 Importer/Distributor Actara 25WG Insecticide Thiamethoxam General Use Actellic 50Ec Insecticide Pirimiphos methyl General Use Cruiser 350FS Insecticide Thiamethoxam General Use Demand 2.5CS Insecticide Thiamethoxam & Lambda Cyhalothrin General Use Demon MaX Insecticide Cypermethrin General Use Engeo Insecticide Thiamethoxam & Lambda Cyhalothrin General Use Match 50EC Insecticide Lufenuron General Use Ninja 5EC Insecticide Lambda Cyhalothrin General Use Pegasus 500Sc Insecticide Diafenthiuron General Use Trigard 75WP Insecticide Cyromazine General Use Vertimec 1.8EC Insecticide Abamectin General Use Dual Gold 960EC Herbicide S-Metolachlor General Use Fusilade Herbicide Fluazifop-p-butyl General Use Gramoxone Super Herbicide Paraquat Dichloride Restricted Use Igran 500SC Herbicide Terbutryn General Use Krismat Herbicide Ametryn General Use Reglone Herbicide Diquat Dibromide General Use Touchdown IQ Herbicide Glyphosate General Use Amistar 50WG Fungicide Azoxystrobin General Use Bankit 25 SC Fungicide Azoxystrobin General Use Daconil 720Sc Fungicide Chlorothalonil General Use Tilt 250 EC Fungicide Propiconazole General Use Klerat Wax Blocks Rodenticide Brodifacoum General Use Registrant Rotam Agrochemical Co., Ltd AGROIN, 39,Broad Street, Charlestown, Georgetown, Guyana. 592 -689-4624 and 611-3890 Importer/Distributor Saddler 35 FS Insecticide Thiodicarb -
Manual for Certificate Course on Plant Protection & Pesticide Management
Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4. -
Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template For
water Article Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template for Food Safety Assessment Ayodeji O. Adegun 1, Thompson A. Akinnifesi 1, Isaac A. Ololade 1 , Rosa Busquets 2 , Peter S. Hooda 3 , Philip C.W. Cheung 4, Adeniyi K. Aseperi 2 and James Barker 2,* 1 Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko P.M.B. 001, Ondo State, Nigeria; [email protected] (A.O.A.); [email protected] (T.A.A.); [email protected] (I.A.O.) 2 School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (R.B.); [email protected] (A.K.A.) 3 School of Engineering and the Environment, Kingston University, Kingston-on-Thames KT1 2EE, UK; [email protected] 4 Department of Chemical Engineering, Imperial College, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Received: 17 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: The Owena River Basin in Nigeria is an area of agricultural importance for the production of cocoa. To optimise crop yield, the cocoa trees require spraying with neonicotinoid insecticides (Imidacloprid, Thiacloprid Acetamiprid and Thiamethoxam). It is proposed that rainwater runoff from the treated area may pollute the Owena River and that these pesticides may thereby enter the human food chain via six species of fish (Clarias gariepinus, Clarias anguillaris, Sarotherodon galilaeus, Parachanna obscura, Oreochromis niloticus and Gymnarchus niloticus) which are cultured in the river mostly for local consumption. -
Assessing the Single and Combined Toxicity of Chlorantraniliprole And
toxins Article Assessing the Single and Combined Toxicity of Chlorantraniliprole and Bacillus thuringiensis (GO33A) against Four Selected Strains of Plutella xylostella (Lepidoptera: Plutellidae), and a Gene Expression Analysis Muhammad Zeeshan Shabbir 1,2, Ling He 1,2, Changlong Shu 3, Fei Yin 1,2, Jie Zhang 3 and Zhen-Yu Li 1,2,* 1 Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (M.Z.S.); [email protected] (L.H.); [email protected] (F.Y.) 2 Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China 3 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China; [email protected] (C.S.); [email protected] (J.Z.) * Correspondence: [email protected] Abstract: Concerns about resistance development to conventional insecticides in diamondback moth (DBM) Plutella xylostella (L.), the most destructive pest of Brassica vegetables, have stimulated interest in alternative pest management strategies. The toxicity of Bacillus thuringiensis subsp. aizawai (Bt GO33A) combined with chlorantraniliprole (Chl) has not been documented. Here, we examined sin- gle and combined toxicity of chlorantraniliprole and Bt to assess the levels of resistance in four DBM strains. Additionally, enzyme activities were tested in field-original highly resistant (FOH-DBM), Bt-resistant (Bt-DBM), chlorantraniliprole-resistant (CL-DBM), and Bt + chlorantraniliprole-resistant (BtC-DBM) strains. The Bt product had the highest toxicity to all four DBM strains followed by the Citation: Shabbir, M.Z.; He, L.; Shu, mixture of insecticides (Bt + Chl) and chlorantraniliprole. -
Ants in the Home Fact Sheet No
Ants in the Home Fact Sheet No. 5.518 Insect Series|Home and Garden by W.S. Cranshaw* Almost anywhere in the state one the nest, tend the young and do other Quick Facts travels, ants will be the most common necessary colony duties. Many kinds of insects that can be found in yards, gardens, ants produce workers that are all the • Most ants that are found in fields and forests. Tremendous numbers same size (monomorphic); some, such as homes nest outdoors and of ants normally reside in a typical house field ants, have workers that vary in size enter homes only to search lot, although most lead unobserved lives (polymorphic). for food or water. underground or otherwise out of sight. Each colony contains one or, sometimes, Often it is only when they occur indoors or a few queens (Figure 1). These are fertile • Almost all ants are workers, produce their periodic mating swarms that females that are larger than workers and wingless females that search they come to human attention. dedicated to egg production. The minute for food and maintain the Overall, the activities of ants are quite eggs are taken from the queen and tended colony. beneficial. Many feed on other insects, by the workers. Upon egg hatch, the • A small proportion of an including pest insects. Ant scavenging pale-colored, legless larvae are fed and helps to recycle organic matter and their protected by the workers. When full-grown, ant colony are winged tunneling is useful in aerating and mixing ant larvae produce a smooth silken cocoon reproductive forms.