Microrna-31 Negatively Regulates Peripherally Derived Regulatory T-Cell Generation by Repressing Retinoic Acid-Inducible Protein 3

Total Page:16

File Type:pdf, Size:1020Kb

Microrna-31 Negatively Regulates Peripherally Derived Regulatory T-Cell Generation by Repressing Retinoic Acid-Inducible Protein 3 ARTICLE Received 17 Feb 2015 | Accepted 27 May 2015 | Published 13 Jul 2015 DOI: 10.1038/ncomms8639 OPEN MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3 Lingyun Zhang1, Fang Ke1, Zhaoyuan Liu1, Jing Bai1, Jinlin Liu1, Sha Yan1, Zhenyao Xu1, Fangzhou Lou1, Hong Wang1, Huiyuan Zhu1, Yang Sun1, Wei Cai1, Yuanyuan Gao1, Qun Li2, Xue-Zhong Yu3, Youcun Qian4, Zichun Hua5, Jiong Deng6, Qi-Jing Li7 & Honglin Wang1,8 Peripherally derived regulatory T (pTreg) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-b1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pTreg-cell generation. miR-31 conditional deletion results in enhanced induction of pTreg cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pTreg-cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pTreg-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional Treg cells in autoimmune diseases. 1 Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 3 Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA. 4 Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 5 State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China. 6 Key Laboratory of Cell Differentiation and Apoptosis of Minister of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 7 Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA. 8 Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. Correspondence and requests for materials should be addressed to H.W. (email: [email protected]). NATURE COMMUNICATIONS | 6:7639 | DOI: 10.1038/ncomms8639 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8639 cells serve as a central cellular player in adaptive promoter24. Gprc5a was targeted by miR-31 through direct immunity, and their activation and differentiation binding to its 30-untranslated regions (30-UTR), and its deficiency Tare elicited by signals from T-cell receptor (TCR), resulted in the impairment of pTreg-cell induction and increased co-stimulatory receptors and various cytokines1. Once activated EAE severity. Thus, our findings demonstrated that miR-31 þ by an antigen, naive CD4 T cells proliferate and differentiate negatively regulated pTreg-cell generation by targeting Gprc5a, into various T helper (TH) cell subsets, including TH1, TH2, TH17 suggesting a novel epigenetic mechanism for impaired pTreg-cell and regulatory T (Treg) cells, that release different cytokines and induction in autoimmunity. exhibit distinct effector functions2. Besides their critical role in driving immune responses against infections, TH1 and TH17 cells participate in the pathogenesis of autoimmune inflammatory Results diseases, such as experimental autoimmune encephalomyelitis miR-31 expression is triggered by TCR signalling. Report of 3 (EAE) . Moreover, naive T cells differentiate into Treg cells FoxP3 mRNA harbouring the target sequence of miR-31 exhibiting immunosuppressive capacity, and the transcriptional promoted us to investigate its role in the induction and/or 4,5 factor FoxP3 controls their development and fucntion . function of Treg cells which are vital for preventing autoimmune 21 According to their origins, Treg cells are divided into disease . We induced EAE, an animal model of MS, with myelin thymus-derived Treg (tTreg) cells derived from the thymus, oligodendrocyte glycoprotein peptide (MOG35–55) in mice to peripherally derived regulatory T (pTreg) cells generated out investigate expression pattern of miR-31 in pathogenic T cells in of the thymus under various inductive signals, and in vitro- the tissue-specific autoimmune inflammation. miR-31 expression 6,7 þ induced regulatory T (iTreg) cells . It is now clear that naive was assessed in splenocytes and sorted CD4 T cells at day 10 CD4 þ T cells sorted as FoxP3 À in the thymus possess full post immunization. We found that the expression of miR-31 was þ potential to differentiate into pTreg cells, thus are potential targets significantly increased in both splenocytes and pathogenic CD4 for therapeutic interventions for chronic inflammatory T cells in EAE mice compared with healthy controls (Fig. 1a). We 7,8 þ À high diseases . Independent on thymus, pTreg cells differentiate in next stimulated the TCR of naive T (CD4 CD25 CD62L ) secondary lymphoid organs and tissues, and require TCR cells with plate-coated anti-CD3- and soluble anti-CD28-specific signalling and the cytokines TGF-b and IL-2 (ref. 7), and only antibodies, and we detected that the miR-31 expression was a low antigen dose of a high-affinity TCR ligand is optimal to increased B125-fold in activated CD4 þ T cells compared with 9 generate a persistent population of pTreg cells in vivo . untreated naive T cells (Fig. 1b). Together, these data suggest that þ So far, dysfunctional Treg cells are identified in several TCR signalling induces miR-31 expression in CD4 T cells. autoimmune disorders including mutiple sclerosis (MS)10–12. Because the TCR signal coordinating with lineage-specific One of the failures of Treg-cell-mediated immunoregulation is cytokines triggers naive T cells to differentiate into specialized inadequate numbers of Treg cells that may be due to defective effector cells, we sought to examine miR-31 expression in 13 induction of pTreg cells in the periphery . Thus, understanding different T-cell subsets. We differentiated naive T cells in vitro of molecular mechanisms underlying pTreg-cell generation might under polarizing conditions for the generation of TH1, TH17 and provide deeper insights into physiological and pathological iTreg cells in cultures as these T-cell subsets are critical in the immune responses in autoimmune inflammatory diseases. pathology of EAE25–27. At 4 days after activation, miR-31 MicroRNAs (miRNAs) are single-stranded, small noncoding expression was 29.5-fold higher in TH1 cells, 47.4-fold higher in RNAs located in introns or exons of protein-coding genes TH17 cells, but there was 5.6-fold reduction in iTreg cells than that as well as in non-coding genes14. miRNAs have been implicated of naive T cells (Fig. 1c), which suggested a possible regulatory in maintaining immune homeostasis during stress, such as role for miR-31 in CD4 þ T-cell lineage differentiation. Because inflammation, by regulating gene expression at post- miR-31 has been implicated to negatively regulate FoxP3 15 21 transcriptional level . Several studies have reported that expression in human Treg cells , we sought to investigate specific miRNA signatures were observed for specialized whether upregulation of miR-31 coincides with downregulation T-cell subsets, and these miRNAs are dynamically regulated of FoxP3 during iTreg-cell induction. We polarized naive T cells 16,17 gfp during T-cell maturation . Dicer and Drosha are two derived from FoxP3 reporter mice into iTreg cells, and essential components for the generation of miRNA, and loss of examined miR-31 expression in sorted CD25 þ FoxP3 À and these factors leads to defects in lymphocyte differentiation and CD25 þ FoxP3 þ cells. The miR-31 expression in CD25 þ FoxP3 þ autoimmune inflammation18,19. Recently, accumulating evidence cells was B90-fold lower than that in CD25 þ FoxP3 À has demonstrated that miRNAs are also crucial for Treg-cell population (Fig. 1d,e). These data demonstrate that miR-31 is 17–20 development, function and stability .Treg cells display a set preferentially diminished in iTreg cells. Although the expression 21 of miRNAs that is distinct from conventional T cells . However, of miR-31 was slightly increased in tTreg and pTreg cells intrinsic miRNAs involved in the polarization of Treg cells compared with iTreg cells, its expression in either tTreg or pTreg from naive T cells in vitro and in vivo settings are largely was not significantly different between control and EAE mice, undetermined. suggesting that Treg cells maintain baseline miR-31 expression In this study, we showed that miR-31 expression was triggered in vivo (Supplementary Fig. 1a). To further identify why iTreg cells by TCR signalling, and downregulated by TGF-b1-induced exhibit diminished levels of miR-31, we activated naive T cells FoxP3. The conditional deletion of miR-31 in CD4 þ T cells with CD3- and CD28-specific antibodies in the absence or led to enhanced induction of pTreg cells in the periphery, and presence of TGF-b1, and measured the time-dependent decreased severity of EAE. Retinoic acid (RA) regulates the appearance of miR-31. miR-31 abundance was gradually expression of genes required for cell proliferation, differentiation increased during the stimulation with CD3 and CD28 and survival by binding its nuclear retinoic acid receptors (RARs) antibodies in the absence of TGF-b1, however, decreased at and retinoid X receptors (RXRs)22. Although RA has been shown 12 h when FoxP3 was induced by adding TGF-b1 (Fig. 1f). 23 to enforce pTreg-cell generation , the mechanism by which RA Moreover, TGF-b1 dose-dependently decreased miR-31 promotes pTreg-cell induction is ill-defined.
Recommended publications
  • Deciphering the Functions of Ets2, Pten and P53 in Stromal Fibroblasts in Multiple
    Deciphering the Functions of Ets2, Pten and p53 in Stromal Fibroblasts in Multiple Breast Cancer Models DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Julie Wallace Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Michael C. Ostrowski, PhD, Advisor Gustavo Leone, PhD Denis Guttridge, PhD Dawn Chandler, PhD Copyright by Julie Wallace 2013 Abstract Breast cancer is the second most common cancer in American women, and is also the second leading cause of cancer death in women. It is estimated that nearly a quarter of a million new cases of invasive breast cancer will be diagnosed in women in the United States this year, and approximately 40,000 of these women will die from breast cancer. Although death rates have been on the decline for the past decade, there is still much we need to learn about this disease to improve prevention, detection and treatment strategies. The majority of early studies have focused on the malignant tumor cells themselves, and much has been learned concerning mutations, amplifications and other genetic and epigenetic alterations of these cells. However more recent work has acknowledged the strong influence of tumor stroma on the initiation, progression and recurrence of cancer. Under normal conditions this stroma has been shown to have protective effects against tumorigenesis, however the transformation of tumor cells manipulates this surrounding environment to actually promote malignancy. Fibroblasts in particular make up a significant portion of this stroma, and have been shown to impact various aspects of tumor cell biology.
    [Show full text]
  • Tumor-Associated Macrophage Polarization Promotes the Progression of Esophageal Carcinoma
    www.aging-us.com AGING 2021, Vol. 13, No. 2 Research Paper Tumor-associated macrophage polarization promotes the progression of esophageal carcinoma Xin Yuan1, Ya Li1, An Zhi Zhang1, Chen Hao Jiang1, Fan Ping Li1, Yu Fang Xie1, Jiang Fen Li1, Wei Hua Liang1, Hai Jun Zhang1, Chun Xia Liu1, Li Juan Pang1, Xi Hua Shen1, Feng Li1,2, Jian Ming Hu1 1Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China 2Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China Correspondence to: Jian Ming Hu; email: [email protected], https://orcid.org/0000-0001-7790-7979 Keywords: tumour-associated macrophage, FGL2, esophageal carcinoma, immunotherapy, tumour-infiltrating Received: July 17, 2020 Accepted: October 22, 2020 Published: December 15, 2020 Copyright: © 2020 Yuan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The immune response facilitated by tumor-associated macrophages is a vital determinant of tumor progression. We identified differentially expressed genes between various macrophage phenotypes in the Gene Expression Omnibus, and used Kaplan-Meier Plotter to determine which of them altered the prognosis of esophageal carcinoma patients. Fibrinogen-like protein 2 (FGL2), an immunosuppressive factor in the tumor microenvironment of various cancers, was upregulated in M2 macrophages, and higher FGL2 expression was associated with poorer survival in esophageal carcinoma patients.
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • The Role of Ubiquitination in NF-Κb Signaling During Virus Infection
    viruses Review The Role of Ubiquitination in NF-κB Signaling during Virus Infection Kun Song and Shitao Li * Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; [email protected] * Correspondence: [email protected] Abstract: The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions. Keywords: NF-κB; polyubiquitination; linear ubiquitination; inflammation; host defense; viral infection Citation: Song, K.; Li, S. The Role of 1. Introduction Ubiquitination in NF-κB Signaling The nuclear factor κB (NF-κB) is a small family of five transcription factors, including during Virus Infection. Viruses 2021, RelA (also known as p65), RelB, c-Rel, p50 and p52 [1].
    [Show full text]
  • Characterization of Dysregulated Lncrna-Mrna Network Based on Cerna Hypothesis to Reveal the Occurrence and Recurrence of Myocar
    Zhang et al. Cell Death Discovery (2018) 4:35 DOI 10.1038/s41420-018-0036-7 Cell Death Discovery ARTICLE Open Access Characterization of dysregulated lncRNA- mRNA network based on ceRNA hypothesis to reveal the occurrence and recurrence of myocardial infarction Guangde Zhang1,HaoranSun2, Yawei Zhang2, Hengqiang Zhao2, Wenjing Fan1,JianfeiLi3,YingliLv2, Qiong Song2, Jiayao Li2,MingyuZhang1 and Hongbo Shi2 Abstract Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) play important roles in initiation and development of human diseases. However, the mechanism of ceRNA regulated by lncRNA in myocardial infarction (MI) remained unclear. In this study, we performed a multi-step computational method to construct dysregulated lncRNA-mRNA networks for MI occurrence (DLMN_MI_OC) and recurrence (DLMN_MI_Re) based on “ceRNA hypothesis”. We systematically integrated lncRNA and mRNA expression profiles and miRNA-target regulatory interactions. The constructed DLMN_MI_OC and DLMN_MI_Re both exhibited biological network characteristics, and functional analysis demonstrated that the networks were specific for MI. Additionally, we identified some lncRNA-mRNA ceRNA modules involved in MI occurrence and recurrence. Finally, two new panel biomarkers defined by four lncRNAs (RP1-239B22.5, AC135048.13, RP11-4O1.2, RP11-285F7.2) from 1234567890():,; 1234567890():,; DLMN_MI_OC and three lncRNAs (RP11-363E7.4, CTA-29F11.1, RP5-894A10.6) from DLMN_MI_Re with high classification performance were, respectively, identified in distinguishing controls from patients, and patients with recurrent events from those without recurrent events. This study will provide us new insight into ceRNA-mediated regulatory mechanisms involved in MI occurrence and recurrence, and facilitate the discovery of candidate diagnostic and prognosis biomarkers for MI.
    [Show full text]
  • Germline Mutations Causing Familial Lung Cancer
    Journal of Human Genetics (2015) 60, 597–603 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Germline mutations causing familial lung cancer Koichi Tomoshige1,2, Keitaro Matsumoto1, Tomoshi Tsuchiya1, Masahiro Oikawa1, Takuro Miyazaki1, Naoya Yamasaki1, Hiroyuki Mishima2, Akira Kinoshita2, Toru Kubo3, Kiyoyasu Fukushima3, Koh-ichiro Yoshiura2 and Takeshi Nagayasu1 Genetic factors are important in lung cancer, but as most lung cancers are sporadic, little is known about inherited genetic factors. We identified a three-generation family with suspected autosomal dominant inherited lung cancer susceptibility. Sixteen individuals in the family had lung cancer. To identify the gene(s) that cause lung cancer in this pedigree, we extracted DNA from the peripheral blood of three individuals and from the blood of one cancer-free control family member and performed whole-exome sequencing. We identified 41 alterations in 40 genes in all affected family members but not in the unaffected member. These were considered candidate mutations for familial lung cancer. Next, to identify somatic mutations and/or inherited alterations in these 40 genes among sporadic lung cancers, we performed exon target enrichment sequencing using 192 samples from sporadic lung cancer patients. We detected somatic ‘candidate’ mutations in multiple sporadic lung cancer samples; MAST1, CENPE, CACNB2 and LCT were the most promising candidate genes. In addition, the MAST1 gene was located in a putative cancer-linked locus in the pedigree. Our data suggest that several genes act as oncogenic drivers in this family, and that MAST1 is most likely to cause lung cancer.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • A Low Interleukin-2 Receptor Signaling Threshold Supports the Development and Homeostasis of T Regulatory Cells
    Immunity Article A Low Interleukin-2 Receptor Signaling Threshold Supports the Development and Homeostasis of T Regulatory Cells Aixin Yu,1 Linjian Zhu,1 Norman H. Altman,2 and Thomas R. Malek1,3,* 1Department of Microbiology and Immunology 2Department of Pathology 3Diabetes Research Institute Miller School of Medicine, University of Miami, P.O. Box 01960, Miami, FL 33101, USA *Correspondence: [email protected] DOI 10.1016/j.immuni.2008.11.014 SUMMARY of the genetic factors rendering nonobese diabetic (NOD) mice susceptible to autoimmune disease that leads to impaired Treg Interleukin-2 receptor (IL-2R) signaling is essential cells (Yamanouchi et al., 2007). IL-2 is also necessary for the for T regulatory (Treg) cell development and homeo- generation of Foxp3+ induced-Treg (iTreg) cells from naive stasis. Here, we show that expression of IL-2Rb conventional peripheral T lymphocytes (Davidson et al., 2007; chains that lack tyrosine residues important for the Zheng et al., 2007). association of the adaptor Shc and the transcription IL-2R signaling mechanisms have been most extensively factor STAT5 in IL-2Rb-deficient mice resulted in studied in various IL-2-responsive cell lines that approximate activated effector T cells (Gaffen, 2001; Nelson and Willerford, production of a normal proportion of natural Treg 1998). IL-2 signal transduction is initiated upon ligand-induced cells that suppressed severe autoimmunity related oligomerization of the IL-2R, consisting of IL-2Ra, IL-2Rb, and with deficiency in IL-2 or IL-2R. These mutant IL- gc (CD132). This event brings the cytoplasmic tail of IL-2Rb and 2Rb chains supported suboptimal and transient gc in close proximity with their associated Jak-1 and Jak-3 STAT5 activation that upregulate the transcription kinases, respectively, allowing phosphorylation of three key factor Foxp3 to normal amounts in natural, but not tyrosines (Y) residues of IL-2Rb.
    [Show full text]
  • WO 2019/089592 Al 09 May 2019 (09.05.2019) W 1 P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization III International Bureau (10) International Publication Number (43) International Publication Date WO 2019/089592 Al 09 May 2019 (09.05.2019) W 1 P O PCT (51) International Patent Classification: (72) Inventors; and A61K 35/12 (2015.01) C07K 16/30 (2006.01) (71) Applicants: JAN, Max [US/US]; c/o The Broad Institute, A61K 5/7 7 (2015.01) C07K 14/705 (2006.01) Inc., 45 1 Main Street, Cambridge, Massachusetts 02142 (US). SIEVERS, Quinlan [US/US]; c/o The Broad In¬ (21) International Application Number: stitute, Inc., 451 Main Street, Cambridge, Massachusetts PCT/US2018/058210 02142 (US). EBERT, Benjamin [US/US]; c/o The Broad (22) International Filing Date: Institute, Inc., 451 Main Street, Cambridge, Massachusetts 30 October 2018 (30. 10.2018) 02142 (US). MAUS, Marcela [US/US]; c/o The Broad In¬ stitute, Inc., 451 Main Street, Cambridge, Massachusetts (25) Filing Language: English 02142 (US). (26) Publication Language: English (74) Agent: COWLES, Christopher R. et al; Burns & Levin- (30) Priority Data: son, LLP, 125 Summer Street, Boston, Massachusetts 62/579,454 3 1 October 2017 (3 1. 10.2017) U S 021 10 (US). 62/633,725 22 February 2018 (22.02.2018) U S (81) Designated States (unless otherwise indicated, for every (71) Applicants: THE GENERAL HOSPITAL CORPO¬ kind of national protection available): AE, AG, AL, AM, RATION [US/US]; 55 Fruit Street, Boston, Massachu¬ AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, setts 021 14 (US) BRIGHAM & WOMEN'S HOSPITAL CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, [US/US]; 75 Francis Street, Boston, Massachusetts 021 15 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (US) PRESIDENT AND FELLOWS OF HARVARD HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, COLLEGE [US/US]; 17 Quincy Street, Cambridge, Mass¬ KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, achusetts 02138 (US).
    [Show full text]
  • Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury
    BASIC RESEARCH www.jasn.org Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury Jun-Jae Chung ,1 Leonard Goldstein ,2 Ying-Jiun J. Chen,2 Jiyeon Lee ,1 Joshua D. Webster,3 Merone Roose-Girma,2 Sharad C. Paudyal,4 Zora Modrusan,2 Anwesha Dey,5 and Andrey S. Shaw1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background The glomerulus is a specialized capillary bed that is involved in urine production and BP control. Glomerular injury is a major cause of CKD, which is epidemic and without therapeutic options. Single-cell transcriptomics has radically improved our ability to characterize complex organs, such as the kidney. Cells of the glomerulus, however, have been largely underrepresented in previous single-cell kidney studies due to their paucity and intractability. Methods Single-cell RNA sequencing comprehensively characterized the types of cells in the glomerulus from healthy mice and from four different disease models (nephrotoxic serum nephritis, diabetes, doxo- rubicin toxicity, and CD2AP deficiency). Results Allcelltypesintheglomeruluswereidentified using unsupervised clustering analysis. Novel marker genes and gene signatures of mesangial cells, vascular smooth muscle cells of the afferent and efferent arteri- oles, parietal epithelial cells, and three types of endothelial cells were identified. Analysis of the disease models revealed cell type–specific and injury type–specific responses in the glomerulus, including acute activation of the Hippo pathway in podocytes after nephrotoxic immune injury. Conditional deletion of YAP or TAZ resulted in more severe and prolonged proteinuria in response to injury, as well as worse glomerulosclerosis.
    [Show full text]
  • The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function
    Membranes 2011, 1, 354-393; doi:10.3390/membranes1040354 OPEN ACCESS membranes ISSN 2077-0375 www.mdpi.com/journal/membranes Review The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function Nobuhiro Nakamura Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; E-Mail: [email protected]; Tel.: +81-45-924-5726; Fax: +81-45-924-5824 Received: 26 October 2011; in revised form: 24 November 2011 / Accepted: 5 December 2011 / Published: 9 December 2011 Abstract: A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance. Keywords: endocytosis; ERAD; immune regulation; membrane trafficking; mitochondrial dynamics; proteasome; quality control; RNF; ubiquitin; ubiquitin ligase 1. Introduction Ubiquitination is a posttranslational modification that mediates the covalent attachment of ubiquitin (Ub), a small, highly conserved, cytoplasmic protein of 76 amino acid residues, to target proteins.
    [Show full text]
  • RNF128 Promotes Invasion and Metastasis Via the EGFR/MAPK/MMP-2 Pathway in Esophageal Squamous Cell Carcinoma
    cancers Article RNF128 Promotes Invasion and Metastasis Via the EGFR/MAPK/MMP-2 Pathway in Esophageal Squamous Cell Carcinoma Jing Gao, Yang Wang, Jie Yang, Weixia Zhang, Kun Meng, Yue Sun, Yangjia Li and Qing-Yu He * Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; [email protected] (J.G.); [email protected] (Y.W.); [email protected] (J.Y.); [email protected] (W.Z.); [email protected] (K.M.); [email protected] (Y.S.); [email protected] (Y.L.) * Correspondence: [email protected]; Tel.: +86-20-85227039; Fax: +86-20-85227039 Received: 5 May 2019; Accepted: 12 June 2019; Published: 18 June 2019 Abstract: Background: The prognosis of esophageal squamous cell carcinoma (ESCC) is generally poor, and the identification of molecular markers related to the regulation of ESCC invasion and migration is important. Methods and Results: In this study, we report that ring finger protein-128 (RNF128) enhances the invasiveness and motility of ESCC cells by using transwell assays and Western blotting. A xenograft nude mouse model showed that RNF128 promotes the metastasis of ESCC cells in the lung. A signal pathway analysis identified the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK)/matrix matalloproteinases 2 (MMP-2) cascade as a mediator of RNF128-induced enhancement of ESCC progression. Inhibition experiments using inhibitors of EGFR, ERK kinase (MEK)/extracellular-signal-regulated-kinase (ERK), and MMP-2 reversed this progression. Co-immunoprecipitation demonstrated that RNF128 promotes the activation of the EGFR/ERK/MMP-2 pathway by interacting with p53 and p53 interacting with EGFR.
    [Show full text]