Genetic Murine Models of Spinal Development and Degeneration Provide Valuable Insights Into Intervertebral Disc Pathobiology

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Murine Models of Spinal Development and Degeneration Provide Valuable Insights Into Intervertebral Disc Pathobiology EuropeanJ Melrose etCells al. and Materials Vol. 41 2021 (pages 52-72) DOI: 10.22203/eCM.v041a05 Murine ISSN spine 1473-2262 models GENETIC MURINE MODELS OF SPINAL DEVELOPMENT AND DEGENERATION PROVIDE VALUABLE INSIGHTS INTO INTERVERTEBRAL DISC PATHOBIOLOGY J. Melrose1,2,3,§,*, S. Tessier4,5,§ and M.V. Risbud5,6,* 1 Research Associate, Kolling Institute of Medical Research and the Institute of Bone and Joint Research, North Sydney Area Health Authority, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia 2 Department of Surgery, Northern Clinical School, University of Sydney, Australia 3 Professor Graduate School of Biomedical Engineering, The University of New South Wales, Australia 4 Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA 5 Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 6 Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA § These authors contributed equally to this work Abstract Disc degeneration and associated back and neck pain elicits a substantial burden on healthcare systems and the individuals affected, necessitating the development of novel therapeutic strategies. This goal can only be achieved by a better understanding of intervertebral disc development, homeostasis and pathogenesis. A number of genetic and in-bred murine models are reviewed to underscore the importance of the mouse as an animal model of choice for the assessment of intervertebral disc pathobiology. Appraisals of the differences between mouse and human musculoskeletal systems and proteoglycan structures are also included. A number of important target pathways and molecules have been identified, many of which are worthy of further examination, requiring that the activity of these be confirmed in large animal models and assessed in the context of therapeutic intervention. Keywords: Murine model, intervertebral disc, nucleus pulposus, annulus fibrosus, spine. *Address for correspondence: Makarand V. Risbud, PhD, Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, USA. Fax number: +1 215 9559159 Email: [email protected] Copyright policy: This article is distributed in accordance with Creative Commons Attribution Licence (http://creativecommons.org/licenses/by-sa/4.0/). List of Abbreviations BACH-1 BTB and CNC homology-1 BGN biglycan ADAMTS a disintegrin and BMP bone morphogenic protein metalloproteinase with BNIP3 BLC2 interacting protein 3 thrombospondin motifs CA3 carbonic anhydrase 3 AF annulus fibrosus Can aggrecan Akr1b1 aldo-keto reductase family 1 Ccl2 monocyte chemoattractant member B protein-1, aka MCP-1 ALPL alkaline phosphatase CD44 cluster of differentiation 44 ANK ankyrin CDK2 cyclin-dependent kinase 2 AP-1 activator protein 1 CEP cartilaginous endplates Aqp2 aquaporin-2 Chm1 chondromodulin I ARP2/3 actin-related proteins 2/3 COL1A1 collagen type I alpha chain ATM ataxia-telangiectasia mutated COL2A1 collagen type II alpha chain kinase COX-2 cyclooxygenase-2 B3gat3 beta-1,3-glucuronyltransferase 3 CS chondroitin sulphate www.ecmjournal.org 52 J Melrose et al. Murine spine models CTGF connective tissue growth factor NP nucleus pulposus E2F elongation factor 2 OREBP osmotic response element binding ENPP1 ectonucleotide pyrophosphatase/ protein phosphodiesterase 1 p16 cyclin-dependent kinase inhibitor ENT1 equilibrative nucleoside 2A transporter 1 PAX1/9 paired box 1/9 ERCC1 excision repair 1 endonuclease PHLPP1 PH domain leucine-rich repeat non-catalytic subunit protein phosphatase ERK extracellular signal-regulated PRG4 lubricin kinase Pt Pintail FasL Fas ligand PTCH1 Patched 1 FGF fibroblast growth factor QTL quantitative trait locus FGFRs fibroblast growth factor receptors RAS rat sarcoma FLNB filamin B RB1 retinoblastoma transcriptional FMOD fibromodulin corepressor 1 FOXA1/2 forkhead box A1/A2 RHAMM receptor for HA-mediated motility FOXO1/3/4 forkhead box O1/O3/O4 SCX scleraxis GAG glycosaminoglycan Sd Danforths short tail Gal D-galactose SHH Sonic Hedgehog GalNAc N-acetylgalactosamine Skt Sickle tail GDF5 growth differentiation factor 5 Slc6A6 sodium- and chloride-dependent GlcA glucuronic acid taurine transporter GlcNAc β1-3 D-N-acetylglucosamine SLRP small leucine-rich proteoglycan GlcUA glucuronic acid SMAD3 mothers against decapentaplegic HA hyaluronic acid homologue 3 HAS2 hyaluronan synthase 2 Smo smoothened HIF-1/2α hypoxia-inducible factor SOX5/6/9 Sry-related HMG box 5/6/9 1alpha/2alpha SPARC secreted protein acidic and rich in HO-1 haem oxygenase-1 cysteine HOX homeobox T brachyury HS heparan sulphate Tc truncate Hspg2 perlecan Tgfb2 TGF-β type II receptor IGD interglobular domain TGF-β transforming growth factor beta IGF-1 insulin-like growth factor 1 TNF-α tumour necrosis factor alpha IGFR insulin-like growth factor receptor TNMD tenomodulin IL-1rn interleukin 1 receptor antagonist TonEBP tonicity enhancer binding protein IL-1α/β interleukin 1 alpha/beta TSC tuberous sclerosis complex IL-6 interleukin-6 VEGF vascular endothelial growth factor IVD intervertebral disc WNT wingless/integrated JNK1/2 Jun N-terminal kinase 1/2 KS keratan sulphate LAMSHF Lamb-Shaffer syndrome Introduction LDL low density lipoprotein LDLR low density lipoprotein receptor Insight into disc pathobiology through the LP link protein murine model LRP6 low-density lipoprotein receptor- The murine model is an invaluable experimental related protein 6 tool for the investigation of several degenerative MAPK mitogen-activated protein kinase human conditions. Studies of a number of genetically MCP-1 monocyte chemoattractant modified mice have contributed immensely to protein-1 our understanding of spinal development and MCT4 monocarboxylate transporter 4 homeostasis (Table 1-4). Indeed, manipulations of the MKX Mohawk mouse genome through mis-expression, knocking- MMP matrix metalloproteinase out, knocking-in, or the introduction of mutations MT1-MMP membrane type 1-matrix into genes, as well as inbred mouse models, metalloproteinase, aka MMP14 have transformed our understanding of spinal mTOR mechanistic target of rapamycin development and the complex functional properties NF-1 neurofibromatosis type 1 of the IVD. In many cases, such mutants are also NFAT5 nuclear factor of activated T-cells 5 genetic models of relevant human degenerative NF-κB nuclear factor kappa-light-chain- disorders characterised by, for example, reduced bone enhancer of activated B cells mass (osteopenia, osteoporosis) or abnormalities in NOTO homeobox protein notochord endochondral bone formation affecting development 53 www.ecmjournal.org J Melrose et al. Murine spine models and growth of the skeleton (chondrodysplasias). The polyaxial, diarthrodial joint that allows for wide value of the murine model is further underscored ranges of 3-dimensional movement (Shapiro et al., by the high conservation of skeletal development 2012). between mice and humans, despite differences The murine IVD shares the structural characteristics in skeletal size and time required for reaching described above with that of humans. An important skeletal maturity. From a regenerative perspective, difference to highlight, nonetheless, is that notochord- understanding the regulatory molecules that are like NP cells persist longer in the murine model operative during such developmental processes than in humans. The murine and human IVD are provides information applicable to therapeutic tissue embryonically derived from the aggregation of the repair strategies (Tessier and Risbud, 2020). Moreover, notochord and perinotochordal mesenchyme during the development of quantitative histopathological vertebral column development. Notochordal cells scoring schemes for murine IVDs have further produce a matrix rich in proteoglycan, important for increased the utility of the murine model for generating central swelling pressure in the developing pathobiological evaluations. It is within this context IVD and essential for normal NP formation (Adams et that we have summarised numerous studies, whose al., 1977). In humans, within 4 to 10 years of age after insightful conclusions relied heavily upon the use of birth, the notochordal cells of the disc disappear or the mouse as an experimental model. undergo significant morphological changes, whereas they persist throughout adulthood in the healthy Intervertebral disc structure and comparative murine system (Trout et al., 1982). Human NP cells anatomy acquire a round, chondrocytic appearance as they The spinal column was evolutionarily preceded by age, becoming increasingly dispersed throughout the the notochord, a rod-like structure that provided matrix. By contrast, the adult vacuolated NP cells of protection to the underlying neural tube and the healthy mouse disc assemble into a central band. mechanical support to the chordate organism. In For reference to the histomorphology of human disc higher vertebrates, which possess the advantage tissue, please consult the studies cited here (Boos et of distinct spinal joints (syndesmosis/symphysis) al., 2002; Rutges et al., 2013). Notochordal NP cells consisting of mineralised vertebral bodies joined are large and vacuolated, often forming groups and by IVDs, the notochord exits as merely a transient clusters and described as a physaliforous cell type embryonic structure. While transient, it
Recommended publications
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes
    NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes This information is current as Mónica Tellechea, Maria Buxadé, Sonia Tejedor, Jose of February 12, 2018. Aramburu and Cristina López-Rodríguez J Immunol 2018; 200:305-315; Prepublished online 17 November 2017; doi: 10.4049/jimmunol.1601942 http://www.jimmunol.org/content/200/1/305 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/11/17/jimmunol.160194 Material 2.DCSupplemental http://www.jimmunol.org/ Why The JI? • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Speedy Publication! 4 weeks from acceptance to publication by guest on February 12, 2018 *average References This article cites 61 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/200/1/305.full#ref-list-1 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes Mo´nica Tellechea, Maria Buxade´, Sonia Tejedor, Jose Aramburu, and Cristina Lo´pez-Rodrı´guez Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • The Expression of Genes Contributing to Pancreatic Adenocarcinoma Progression Is Influenced by the Respective Environment – Sagini Et Al
    The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment – Sagini et al Supplementary Figure 1: Target genes regulated by TGM2. Figure represents 24 genes regulated by TGM2, which were obtained from Ingenuity Pathway Analysis. As indicated, 9 genes (marked red) are down-regulated by TGM2. On the contrary, 15 genes (marked red) are up-regulated by TGM2. Supplementary Table 1: Functional annotations of genes from Suit2-007 cells growing in pancreatic environment Categoriesa Diseases or p-Valuec Predicted Activation Number of genesf Functions activationd Z-scoree Annotationb Cell movement Cell movement 1,56E-11 increased 2,199 LAMB3, CEACAM6, CCL20, AGR2, MUC1, CXCL1, LAMA3, LCN2, COL17A1, CXCL8, AIF1, MMP7, CEMIP, JUP, SOD2, S100A4, PDGFA, NDRG1, SGK1, IGFBP3, DDR1, IL1A, CDKN1A, NREP, SEMA3E SERPINA3, SDC4, ALPP, CX3CL1, NFKBIA, ANXA3, CDH1, CDCP1, CRYAB, TUBB2B, FOXQ1, SLPI, F3, GRINA, ITGA2, ARPIN/C15orf38- AP3S2, SPTLC1, IL10, TSC22D3, LAMC2, TCAF1, CDH3, MX1, LEP, ZC3H12A, PMP22, IL32, FAM83H, EFNA1, PATJ, CEBPB, SERPINA5, PTK6, EPHB6, JUND, TNFSF14, ERBB3, TNFRSF25, FCAR, CXCL16, HLA-A, CEACAM1, FAT1, AHR, CSF2RA, CLDN7, MAPK13, FERMT1, TCAF2, MST1R, CD99, PTP4A2, PHLDA1, DEFB1, RHOB, TNFSF15, CD44, CSF2, SERPINB5, TGM2, SRC, ITGA6, TNC, HNRNPA2B1, RHOD, SKI, KISS1, TACSTD2, GNAI2, CXCL2, NFKB2, TAGLN2, TNF, CD74, PTPRK, STAT3, ARHGAP21, VEGFA, MYH9, SAA1, F11R, PDCD4, IQGAP1, DCN, MAPK8IP3, STC1, ADAM15, LTBP2, HOOK1, CST3, EPHA1, TIMP2, LPAR2, CORO1A, CLDN3, MYO1C,
    [Show full text]
  • In Vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 In vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3 4 Clarissa S. Santoso1, Zhaorong Li2, Jaice T. Rottenberg1, Xing Liu1, Vivian X. Shen1, Juan I. 5 Fuxman Bass1,2 6 7 1Department of Biology, Boston University, Boston, MA 02215, USA; 2Bioinformatics Program, 8 Boston University, Boston, MA 02215, USA 9 10 Corresponding author: 11 Juan I. Fuxman Bass 12 Boston University 13 5 Cummington Mall 14 Boston, MA 02215 15 Email: [email protected] 16 Phone: 617-353-2448 17 18 Classification: Biological Sciences 19 20 Keywords: COVID-19, cytokine release syndrome, cytokine storm, drug repurposing, 21 transcriptional regulators 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 22 Abstract 23 Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing 24 hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators 25 of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription 26 factors (TFs) for therapeutic targeting using approved drugs.
    [Show full text]
  • NFAT5, Which Protects Against Hypertonicity, Is Activated by That Stress Via Structuring of Its Intrinsically Disordered Domain
    NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain Raj Kumara, Jenna F. DuMondb, Shagufta H. Khanc, E. Brad Thompsond,YiHee, Maurice B. Burgb,1, and Joan D. Ferrarisb aDepartment of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX 77204; bSystems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892; cDepartment of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509; dDepartment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555; and eBiochemistry and Biophysics Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892 Contributed by Maurice B. Burg, June 20, 2020 (sent for review July 19, 2019; reviewed by Prakash Kulkarni, S. Stoney Simons, Jr., and Vladimir N. Uversky) Nuclear Factor of Activated T cells 5 (NFAT5) is a transcription factor extracellular tonicity (13–15). NFAT5 is a multidomain transcrip- (TF) that mediates protection from adverse effects of hypertonicity tion factor (TF) in which the ID N-terminal domain (NTD) in- by increasing transcription of genes, including those that lead to cludes a tonicity-dependent auxiliary export region responsible for cellular accumulation of protective organic osmolytes. NFAT5 has nuclear and cytoplasmic localization and AD1 (amino acids 1–76), three intrinsically ordered (ID) activation domains (ADs). Using the one of NFAT5’s three activation domains (16–22). NFAT5 ID NFAT5 N-terminal domain (NTD), which contains AD1, as a model, C-terminal domain (CTD) contains two tonicity-dependent trans- we demonstrate by biophysical methods that the NTD senses osmo- activation domains, AD2 and AD3.
    [Show full text]
  • The Untold Stories of the Speech Gene, the FOXP2 Cancer Gene
    www.Genes&Cancer.com Genes & Cancer, Vol. 9 (1-2), January 2018 The untold stories of the speech gene, the FOXP2 cancer gene Maria Jesus Herrero1,* and Yorick Gitton2,* 1 Center for Neuroscience Research, Children’s National Medical Center, NW, Washington, DC, USA 2 Sorbonne University, INSERM, CNRS, Vision Institute Research Center, Paris, France * Both authors contributed equally to this work Correspondence to: Yorick Gitton, email: [email protected] Keywords: FOXP2 factor, oncogene, cancer, prognosis, language Received: March 01, 2018 Accepted: April 02, 2018 Published: April 18, 2018 Copyright: Herrero and Gitton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT FOXP2 encodes a transcription factor involved in speech and language acquisition. Growing evidence now suggests that dysregulated FOXP2 activity may also be instrumental in human oncogenesis, along the lines of other cardinal developmental transcription factors such as DLX5 and DLX6 [1–4]. Several FOXP family members are directly involved during cancer initiation, maintenance and progression in the adult [5–8]. This may comprise either a pro- oncogenic activity or a deficient tumor-suppressor role, depending upon cell types and associated signaling pathways. While FOXP2 is expressed in numerous cell types, its expression has been found to be down-regulated in breast cancer [9], hepatocellular carcinoma [8] and gastric cancer biopsies [10]. Conversely, overexpressed FOXP2 has been reported in multiple myelomas, MGUS (Monoclonal Gammopathy of Undetermined Significance), several subtypes of lymphomas [5,11], as well as in neuroblastomas [12] and ERG fusion-negative prostate cancers [13].
    [Show full text]
  • NFAT3 Transcription Factor Inhibits Breast Cancer Cell Motility by Targeting the Lipocalin 2 Gene
    Oncogene (2010) 29, 2292–2301 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc SHORT COMMUNICATION NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene M Fouge` re1, B Gaudineau1, J Barbier2, F Guaddachi1, J-P Feugeas1, D Auboeuf2 and S Jauliac1 1CNRS UMR7212, INSERM U944, Universite´ Paris Diderot, Institut d’He´matologie, Hoˆpital Saint-Louis, Paris Cedex 10, France and 2INSERM U685/AVENIR, Centre Hayem, Institut d’He´matologie, Hoˆpital Saint-Louis, Paris Cedex 10, France NFAT1 and NFAT5 act as pro-invasive and pro- are also present in non-immune cells (Ho et al., 1998; migratory transcription factors in breast carcinoma, Molkentin et al., 1998; Ranger et al., 2000; Jauliac et al., contributing to the formation of metastases. We report 2002; Hill-Eubanks et al., 2003; Benedito et al., 2005) that NFAT3 is specifically expressed in estrogen receptor and regulate a variety of signaling pathways involved in a positive (ERA þ ) breast cancer cells. We show that cell growth and development (Xanthoudakis et al., 1996; NFAT3 inhibits by itself the invasion capacity of ERA þ Baksh et al., 2002; Chuvpilo et al., 2002). Owing to their breast cancer cells and needs to cooperate with ERA to function in critical signaling pathways controlling cell inhibit their migration. Conversely, NFAT3 downregula- fate, one could expect that disturbing signaling of tion results in actin reorganization associated with NFAT factors may impact on carcinogenesis. Indeed, increased migration and invasion capabilities. NFAT3 molecular pathways involving specific members of the signaling reduces migration through inhibition of Lipoca- NFAT family were recently highlighted in the migratory lin 2 (LCN2) gene expression.
    [Show full text]
  • NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes
    NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes This information is current as Mónica Tellechea, Maria Buxadé, Sonia Tejedor, Jose of September 24, 2021. Aramburu and Cristina López-Rodríguez J Immunol published online 17 November 2017 http://www.jimmunol.org/content/early/2017/11/17/jimmun ol.1601942 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/11/17/jimmunol.160194 Material 2.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 17, 2017, doi:10.4049/jimmunol.1601942 The Journal of Immunology NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes Mo´nica Tellechea, Maria Buxade´, Sonia Tejedor, Jose Aramburu, and Cristina Lo´pez-Rodrı´guez Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment.
    [Show full text]
  • Isoform-Selective NFAT Inhibitor: Potential Usefulness and Development
    International Journal of Molecular Sciences Review Isoform-Selective NFAT Inhibitor: Potential Usefulness and Development Noriko Kitamura 1 and Osamu Kaminuma 1,2,* 1 Laboratory of Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; [email protected] 2 Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan * Correspondence: [email protected]; Tel.: +81-82-257-5819 Abstract: Nuclear factor of activated T cells (NFAT), which is the pharmacological target of immuno- suppressants cyclosporine and tacrolimus, has been shown to play an important role not only in T cells (immune system), from which their name is derived, but also in many biological events. There- fore, functional and/or structural abnormalities of NFAT are linked to the pathogenesis of diseases in various organs. The NFAT protein family consists of five isoforms, and each isoform performs diverse functions and has unique expression patterns in the target tissues. This diversity has made it difficult to obtain ideal pharmacological output for immunosuppressants that inhibit the activity of almost all NFAT family members, causing serious and wide-ranging side effects. Moreover, it remains unclear whether isoform-selective NFAT regulation can be achieved by targeting the struc- tural differences among NFAT isoforms and whether this strategy can lead to the development of better drugs than the existing ones. This review summarizes the role of the NFAT family members in biological events, including the development of various diseases, as well as the usefulness of and Citation: Kitamura, N.; problems associated with NFAT-targeting therapies, including those dependent on current immuno- Kaminuma, O.
    [Show full text]
  • A Role for Alternative Splicing in Circadian Control of Exocytosis and Glucose Homeostasis
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A role for alternative splicing in circadian control of exocytosis and glucose homeostasis Biliana Marcheva,1,5 Mark Perelis,1,2,5 Benjamin J. Weidemann,1,5 Akihiko Taguchi,1 Haopeng Lin,3 Chiaki Omura,1 Yumiko Kobayashi,1 Marsha V. Newman,1 Eugene J. Wyatt,4 Elizabeth M. McNally,4 Jocelyn E. Manning Fox,3 Heekyung Hong,1 Archana Shankar,2 Emily C. Wheeler,2 Kathryn Moynihan Ramsey,1 Patrick E. MacDonald,3 Gene W. Yeo,2 and Joseph Bass1 1Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; 2Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA; 3Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; 4Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alter- native splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are − − − − perturbed in Clock / and Bmal1 / β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain).
    [Show full text]