Occultation Astrometry with Gaia

Total Page:16

File Type:pdf, Size:1020Kb

Occultation Astrometry with Gaia GAIA: SOLAR SYSTEM ASTROMETRY IN DR2 P. Tanga 1, F. Spoto1,2 1Observatoire de la Côte d’Azur, Nice, France 2IMCCE, Observatoire de Paris, France P. Tanga – Gaia and the Solar System 2 Gaia is observing asteroids - Scanning the sky since July 2014 (operational phase) - Solar elongations 45° to 135° - Limiting magnitude V~20.5 - 100.000 asteroid observations (CCD level) / day 45° Sun IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 3 Gaia DR2 - Solar System On the base of a pre-seleCted list of known objeCts > 10 FOV transits over the 22 months of DR2 August 5, 2014 - May 23, 2016 Objects 14 099 Epoch astrometry 1 997 702 CCD positions 287 904 transits (52% : photometry) Typ. accuracy <1 mas (along scan) IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 4 Gaia DR2 - Solar System statistiCs 1:0e5 1200 8e4 1000 6e4 800 600 4e4 400 2e4 200 0 0 10 11 12 13 14 15 16 17 18 19 20 0 100 200 300 400 500 600 Number of observations per object G mag 1000 100 10 1 1 2 5 10 20 50 a (AU) IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 5 Gaia DR2 - Solar System - single transit astrometriC performanCe Residuals from the orbital fit of Gaia DR2 data only (along-scan direction) Spoto et al. 2018 IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 6 Asteroid (386) Siegena - residuals from orbital fit Combining arChive data (2776 obs.) to GDR2 0:4 0:03 4 0:3 0:02 0:2 2 ) ) ) 0:01 s s s a 0:1 a a ( ( ( l l l a a a u 0 u u 0 d d 0 d i i i s s s e e e r r r c c c ¡ : e e 0 01 e ¡0:1 D D D ¡2 ¡0:2 ¡0:02 ¡4 ¡0:3 ¡0:03 ¡0:4 ¡4 ¡2 0 2 4 ¡0:4 ¡0:3 ¡0:2 ¡0:1 0 0:1 0:2 0:3 0:4 ¡0:02 0 0:02 RA residual (as) RA residual (as) RA residual (as) factor 100 X improvement! IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 7 The situation, before Gaia • 1.9 x 108 measurements in the arChives of the Minor Planet Center • mostly CCD imaging • average acCuracy: 0.4 as • ~2000 radar ranging measurements • equivalent acCuracy : 10-50 mag IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 8 Some Challenges for asteroid astrometry Discover asteroid satellites New / precise asteroid masses from their wobbling 0.5 - 10 mas 1000s encounters/year > 10 mas Improve predictions of stellar occultations ~a few mas Measure the orbital drift due to Yarkovsky force IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 9 Yarkovsky effeCt: why we Care • Yarkovsky appliCations: – NEO and meteorite transport – physiCal properties (spin, density…) – family dispersion, ages Spoto et al. 2015 • The Challenge: measure a few, apply to many —> ConneCtion to speCtro- photometry by Gaia: • low-res speCtra: taxonomy in the visible • mmag photometry: shape determinations • Large sample by end of mission: ~ 350 000 Delbo, Galluccio, De Angeli, ESA/Gaia/DPAC IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 10 Yarkovsky and Gaia ? ~ 3 x 10-9 AU Pre-Gaia orbit quality (MPC data) 1/D (1/km) In DR2: – 3 NEOs with measured Yarkovsky – 5 NEOs with marginal deteCtion – about 20 good MB Candidates Orbit uncertainty (km) IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 11 Asteroid family members in DR2 4676 family members in DR2 (from AstDys membership) 0:6 0:5 0:4 ) i ( n : i 0 3 s 0:2 0:1 0 1:6 1:8 2:0 2:2 2:4 2:6 2:8 3:0 3:2 3:4 3:6 3:8 4:0 a (AU) IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 12 Joint exploitation Gaia + pre-Gaia astrometry: bias example Asteroid (1132) Hollandia Liverpool TelesCope + VST (8 hours apart) & MPC ground-based data (~1900 positions) 0.2 0.2 PPMXL calibration Gaia calibration 0.1 VST 0.1 LT+VST 0 0 -0.1 -0.1 O-C Dec (as) O-C Dec (as) LT -0.2 -0.2 -0.4 -0.3 -0.2 -0.1 0 0.1 -0.4 -0.3 -0.2 -0.1 0 0.1 O-C RA (as) O-C RA (as) (credits: Gaia GBOT team) IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 13 The occultation astrometry with Gaia • DR2 already suCCessfully exploited • Triton (OCtobre 3, 2017) • 2014 MU69 (V=27.5, 50 km KBO, ~1.4 mas)!! 1e 4 15 ¡ • OCCultations: very acCurate asteroid 14 ) 13 u 1e 5 a position at the level of the star ¡ s ( 12 n a o ¾ 11 i 1e 6 t astrometry s a n ¡ 10 t l o i u t 9 c a • 1e 7 c …Beyond the duration of Gaia! t l ¡ 8 o u c 7 N c 1e 8 O ¡ equal accuracy 6 5 1e 9 4 ¡1e 9 2e 9 5e 9 1e 8 2e 8 ¡ ¡ ¡ ¡ ¡ All observations ¾a(au) IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 14 RobotiC observations of asteroid oCCultations • Extension to faint magnitudes and small asteroids • Only method providing ~Gaia acCuracy • 50 Cm robotiC telesCope at OCA, FranCe ASTROMETRIC OBSERVATIONS DATA EXPLOITATION: YARKOVSKY, IMPROVED OCCULTATION DYNAMICAL MODEL PREDICTIONS AND ORBITS IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 15 Conclusions • Gaia DR2 asteroid data: the first sample, already useful to test subtle dynamiCal effeCts • Yarkovsky determination • general orbit improvement • appliCation to stellar oCCultations • Combination with other observations: it starts to work… • but weighting of the data is CritiCal • acCurate debiasing is required • a new method suCCessfully implemented and tested • Yarkovsky deteCtion in the Main Belt is getting Closer… IAU 30 GA - Wien - 2018 P. Tanga – Gaia and the Solar System 16 Diffusion of asteroid alertsFrom the Gaia-FUN-SSO web site (the red contours are computed by the SSO-ST pipeline and show the search area on the sky, on three different dates): Topocentric predictions http://gaiafunsso.imcce.fr B. Carry (OCA), W. Thuillot (IMCCE) Register and contribute! IAU 30 GA - Wien - 2018 .
Recommended publications
  • Photometry of Asteroids: Lightcurves of 24 Asteroids Obtained in 1993–2005
    ARTICLE IN PRESS Planetary and Space Science 55 (2007) 986–997 www.elsevier.com/locate/pss Photometry of asteroids: Lightcurves of 24 asteroids obtained in 1993–2005 V.G. Chiornya,b,Ã, V.G. Shevchenkoa, Yu.N. Kruglya,b, F.P. Velichkoa, N.M. Gaftonyukc aInstitute of Astronomy of Kharkiv National University, Sumska str. 35, 61022 Kharkiv, Ukraine bMain Astronomical Observatory, NASU, Zabolotny str. 27, Kyiv 03680, Ukraine cCrimean Astrophysical Observatory, Crimea, 98680 Simeiz, Ukraine Received 19 May 2006; received in revised form 23 December 2006; accepted 10 January 2007 Available online 21 January 2007 Abstract The results of 1993–2005 photometric observations for 24 main-belt asteroids: 24 Themis, 51 Nemausa, 89 Julia, 205 Martha, 225 Henrietta, 387 Aquitania, 423 Diotima, 505 Cava, 522 Helga, 543 Charlotte, 663 Gerlinde, 670 Ottegebe, 693 Zerbinetta, 694 Ekard, 713 Luscinia, 800 Kressmania, 1251 Hedera, 1369 Ostanina, 1427 Ruvuma, 1796 Riga, 2771 Polzunov, 4908 Ward, 6587 Brassens and 16541 1991 PW18 are presented. The rotation periods of nine of these asteroids have been determined for the first time and others have been improved. r 2007 Elsevier Ltd. All rights reserved. Keywords: Asteroids; Photometry; Lightcurve; Rotational period; Amplitude 1. Introduction telescope of the Crimean Astrophysics Observatory in Simeiz. Ground-based observations are the main source of knowledge about the physical properties of the asteroid 2. Observations and their reduction population. The photometric lightcurves are used to determine rotation periods, pole coordinates, sizes and Photometric observations of the asteroids were carried shapes of asteroids, as well as to study the magnitude-phase out in 1993–1994 using one-channel photoelectric photo- relation of different type asteroids.
    [Show full text]
  • Photometry and Models of Selected Main Belt Asteroids IX
    A&A 545, A131 (2012) Astronomy DOI: 10.1051/0004-6361/201219542 & c ESO 2012 Astrophysics Photometry and models of selected main belt asteroids IX. Introducing interactive service for asteroid models (ISAM), A. Marciniak1, P. Bartczak1, T. Santana-Ros1, T. Michałowski1, P. Antonini2,R.Behrend3, C. Bembrick4, L. Bernasconi5, W. Borczyk1,F.Colas6, J. Coloma7, R. Crippa8, N. Esseiva9, M. Fagas1,M.Fauvaud10,S.Fauvaud10, D. D. M. Ferreira11,R.P.HeinBertelsen12, D. Higgins13,R.Hirsch1,J.J.E.Kajava14,K.Kaminski´ 1, A. Kryszczynska´ 1, T. Kwiatkowski1, F. Manzini8, J. Michałowski15,M.J.Michałowski16, A. Paschke17,M.Polinska´ 1, R. Poncy18,R.Roy19, G. Santacana9, K. Sobkowiak1, M. Stasik1, S. Starczewski20, F. Velichko21, H. Wucher9,andT.Zafar22 1 Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] 2 Observatoire de Bédoin, 47 rue Guillaume Puy, 84000 Avignon, France 3 Geneva Observatory, 1290 Sauverny, Switzerland 4 Bathurst, NSW, Australia 5 Les Engarouines Observatory, 84570 Mallemort-du-Comtat, France 6 IMCCE, Paris Observatory, UMR 8028, CNRS, 77 av. Denfert-Rochereau, 75014 Paris, France 7 Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain 8 Stazione Astronomica di Sozzago, 28060 Sozzago, Italy 9 Association AstroQueyras, 05350 Saint-Véran, France 10 Observatoire du Bois de Bardon, 16110 Taponnat, France 11 DTU Space, Technical University of Denmark, Juliane Maries Vej 30, 2200 Copenhagen, Denmak 12 Kapteyn Astronomical Institute, University of Groningen, PO box 800, 9700 AV Groningen, The Netherlands 13 Canberra, ACT, Australia 14 Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu, Finland 15 Forte Software, Os.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • CURRICULUM VITAE, ALAN W. HARRIS Personal: Born
    CURRICULUM VITAE, ALAN W. HARRIS Personal: Born: August 3, 1944, Portland, OR Married: August 22, 1970, Rose Marie Children: W. Donald (b. 1974), David (b. 1976), Catherine (b 1981) Education: B.S. (1966) Caltech, Geophysics M.S. (1967) UCLA, Earth and Space Science PhD. (1975) UCLA, Earth and Space Science Dissertation: Dynamical Studies of Satellite Origin. Advisor: W.M. Kaula Employment: 1966-1967 Graduate Research Assistant, UCLA 1968-1970 Member of Tech. Staff, Space Division Rockwell International 1970-1971 Physics instructor, Santa Monica College 1970-1973 Physics Teacher, Immaculate Heart High School, Hollywood, CA 1973-1975 Graduate Research Assistant, UCLA 1974-1991 Member of Technical Staff, Jet Propulsion Laboratory 1991-1998 Senior Member of Technical Staff, Jet Propulsion Laboratory 1998-2002 Senior Research Scientist, Jet Propulsion Laboratory 2002-present Senior Research Scientist, Space Science Institute Appointments: 1976 Member of Faculty of NATO Advanced Study Institute on Origin of the Solar System, Newcastle upon Tyne 1977-1978 Guest Investigator, Hale Observatories 1978 Visiting Assoc. Prof. of Physics, University of Calif. at Santa Barbara 1978-1980 Executive Committee, Division on Dynamical Astronomy of AAS 1979 Visiting Assoc. Prof. of Earth and Space Science, UCLA 1980 Guest Investigator, Hale Observatories 1983-1984 Guest Investigator, Lowell Observatory 1983-1985 Lunar and Planetary Review Panel (NASA) 1983-1992 Supervisor, Earth and Planetary Physics Group, JPL 1984 Science W.G. for Voyager II Uranus/Neptune Encounters (JPL/NASA) 1984-present Advisor of students in Caltech Summer Undergraduate Research Fellowship Program 1984-1985 ESA/NASA Science Advisory Group for Primitive Bodies Missions 1985-1993 ESA/NASA Comet Nucleus Sample Return Science Definition Team (Deputy Chairman, U.S.
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]
  • Volumes and Bulk Densities of Forty Asteroids from ADAM Shape Modeling
    Astronomy & Astrophysics manuscript no. ADAM_all c ESO 2017 February 8, 2017 Volumes and bulk densities of forty asteroids from ADAM shape modeling J. Hanuš1; 2; 3∗, M. Viikinkoski4, F. Marchis5, J. Durechˇ 3, M. Kaasalainen4, M. Delbo’2, D. Herald6, E. Frappa7, T. Hayamizu8, S. Kerr9, S. Preston9, B. Timerson9, D. Dunham9, and J. Talbot10 1 Centre National d’Études Spatiales, 2 place Maurice Quentin, 75039 Paris cedex 01, France ∗e-mail: [email protected] 2 Université Côte d’Azur, OCA, CNRS, Lagrange, France 3 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 18000 Prague, Czech Re- public 4 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101, Tampere, Finland 5 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA 6 RASNZ Occultation Section, 3 Lupin Pl., Murrumbateman, NSW 2582, Australia 7 Euraster, 8 route de Soulomes, 46240 Labastide-Murat, France 8 JOIN / Japan Occultation Infomation Network 9 International Occultation Timing Association (IOTA) 10 RASNZ Occultation Section, 3 Hughes Street, Waikanae Beach, Kapiti Coast, 5036, New Zealand Received x-x-2016 / Accepted x-x-2016 ABSTRACT Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims. We aim to use all available disk-resolved images of about forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to deter- mine their volumes.
    [Show full text]
  • The Team Adarsh Rajguru
    Asteroid Mapper / Hopper www.inl.gov Mapping and extraction of water from asteroids 1 in the main asteroid belt The team Adarsh Rajguru – University of Southern California (Systems Engineer) Juha Nieminen – University of Southern California (Astronautical Engineer) Nalini Nadupalli – University of Michigan (Electrical & Telecommunications Engineer) Justin Weatherford – George Fox University (Mechanical & Thermal Engineer) Joseph Santora – University of Utah (Chemical & Nuclear Engineer) 2 Mission Objectives Primary Objective – Map and tag the asteroids in the main asteroid belt for water. Secondary Objective – Potentially land on these water-containing asteroids, extract the water and use it as a propellant. Tertiary Objective – Map the asteroids for other important materials that can be valuable for resource utilization. 3 Introduction: Asteroid Commodities and Markets Water – Propellant and life support for future manned deep-space missions (Mapping market) Platinum group metals – Valuable on Earth and hence for future unmanned or manned deep-space mining missions (Mapping market) Regolith – Radiation shielding, 3D printing of structures (fuel tanks, trusses, etc.) for deep-space unmanned or manned spacecrafts, (Determining Regolith composition and material properties market) Aluminum, Iron, Nickel, Silicon and Titanium – Valuable structural materials for deep-space unmanned and manned colonies (Mapping market) 4 Asteroid Hopping: Main Asteroid Belt Class and Types (most interested) Resource Water Platinum Group Metals Metals Asteroid Class Type Hydrated C-Class M-Class M-Class Population (%) 10 5 5 Density (kg/m3) 1300 5300 5300 Resource Mass Fraction 8 % 35 ppm 88 % Asteroid Diameter (10 m) 44 tons 2 x 103 tons 97 kg Asteroid Diameter (100 m) 4350 tons 2 x 106 tons 97 tons Asteroid Diameter (500 m) 11000 tons 3 x 108 tons 12 x 103 tons [1] Badescu V., Asteroids: Prospective Energy and Material Resources, First edition, 2013.
    [Show full text]
  • • Ii/ O I 119 Althaea
    Asteroids, Comets, Meteors 1991, pp. 413-416 Lunar and Planetary Institute, Houston, 1992 Near Infrared Reflectance Spectra: Applications to F V Problems in Asteroid - Meteorite Relationships Lucy A. McFadden & Alan B. Chamberlin California Space Institute, University of California, San Diego, La Jolla, CA 92093 INTRODUCTION _"An observing program cleslgned t'o search for evidence of ordinary chondrite parentbodies near the 3:1 Kirkwood Gap was carried out in i985 _ I986. Studies by Wisdom (1985), Wetherill (1985), _ subsequent work by Milani et al. (1989) indicate that the 3:1 Kirkwood gap is the most probable source region for the majority of ordinary chondrite meteorite§. _ignrc 1 shows the location (in eccentricity vs scmimajor-axis space) of the observed asteroids as wel! as the chaotic zbne+ of tim 3:1 (Wisdom, 1983) and the 5:2 Kirkwood Gaps. " The diversity of the reflectance spectra among this small data set is surprising. Early work by Gaffey and McCord (1978) showed that the inner region of the main asteroid belt is dominated by high albedo objects with mafic silicate surfaces. One would expect to see mostly spectra with 1- and 2-pro absorption bands based on this earlier work. Only 5 (of 12) spectra have these expected features. The distribution of taxonomic types presented by Gradie and Tedesco (1982) is in most cases a useful simplification of the compositional structure of the asteroid belt. The range of sI)cctral characteristics seen with higher resolution in tim near-IR has not been previously reported and is not represented in the standard asteroid taxonomy.
    [Show full text]
  • Photometry and Models of Selected Main Belt Asteroids: IX
    Downloaded from orbit.dtu.dk on: Sep 24, 2021 Photometry and models of selected main belt asteroids: IX. Introducing interactive service for asteroid models (ISAM) Marciniak, A.; Bartczak, P.; Santana-Ros, T.; Michaowski, T.; Borczyk, W.; Fagas, M.; Hirsch, R.; Kaminski, K.; Kryszczynska, A.; Kwiatkowski, T. Total number of authors: 38 Published in: Astronomy & Astrophysics Link to article, DOI: 10.1051/0004-6361/201219542 Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Marciniak, A., Bartczak, P., Santana-Ros, T., Michaowski, T., Borczyk, W., Fagas, M., Hirsch, R., Kaminski, K., Kryszczynska, A., Kwiatkowski, T., Polinska, M., Sobkowiak, K., Stasik, M., Antonini, P., Behrend, R., Bembrick, C., Bernasconi, L., Colas, F., Coloma, J., ... Zafar, T. (2012). Photometry and models of selected main belt asteroids: IX. Introducing interactive service for asteroid models (ISAM). Astronomy & Astrophysics, 545, [A131]. https://doi.org/10.1051/0004-6361/201219542 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Astrometric Asteroid Masses: a Simultaneous Determination
    A&A 565, A56 (2014) Astronomy DOI: 10.1051/0004-6361/201322766 & c ESO 2014 Astrophysics Astrometric asteroid masses: a simultaneous determination Edwin Goffin Aartselaarstraat 14, 2660 Hoboken, Belgium e-mail: [email protected] Received 27 September 2013 / Accepted 18 March 2014 ABSTRACT Using over 89 million astrometric observations of 349 737 numbered minor planets, an attempt was made to determine the masses of 230 of them by simultaneously solving for corrections to all orbital elements and the masses. For 132 minor planets an acceptable result was obtained, 49 of which appear to be new. Key words. astrometry – celestial mechanics – minor planets, asteroids: general 1. Introduction substantial number of test asteroids (349 737). Section 2 explains the basic principles and problems of simultaneous asteroid mass The astrometric determination of asteroid masses is the tech- determination and in Sect. 3 the details of the actual calculations nique of calculating the mass of asteroids (hereafter called “per- are given. Section 4 briefly deals with the observations used and turbing asteroids” or “perturbers”) from the gravitational pertur- explains the statistical analysis of the residuals that was used to bations they exert on the motion of other asteroids (called “test assign weights to, or reject observations. In Sect. 5 the results asteroids”). are presented and Sect. 6 discusses them. The usual procedure to calculate the mass of one aster- Throughout this paper, asteroid masses are expressed in units oid is, first, to identify potential test asteroids by searching −10 of 10 solar masses (M) and generally given to 3 decimal for close approaches with the perturbing asteroids and then places.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • The Minor Planet Bulletin, We Feel Safe in Al., 1989)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 3, A.D. 2016 JULY-SEPTEMBER 199. PHOTOMETRIC OBSERVATIONS OF ASTEROIDS star, and asteroid were determined by measuring a 5x5 pixel 3829 GUNMA, 6173 JIMWESTPHAL, AND sample centered on the asteroid or star. This corresponds to a 9.75 (41588) 2000 SC46 by 9.75 arcsec box centered upon the object. When possible, the same comparison star and check star were used on consecutive Kenneth Zeigler nights of observation. The coordinates of the asteroid were George West High School obtained from the online Lowell Asteroid Services (2016). To 1013 Houston Street compensate for the effect on the asteroid’s visual magnitude due to George West, TX 78022 USA ever changing distances from the Sun and Earth, Eq. 1 was used to [email protected] vertically align the photometric data points from different nights when constructing the composite lightcurve: Bryce Hanshaw 2 2 2 2 George West High School Δmag = –2.5 log((E2 /E1 ) (r2 /r1 )) (1) George West, TX USA where Δm is the magnitude correction between night 1 and 2, E1 (Received: 2016 April 5 Revised: 2016 April 7) and E2 are the Earth-asteroid distances on nights 1 and 2, and r1 and r2 are the Sun-asteroid distances on nights 1 and 2. CCD photometric observations of three main-belt 3829 Gunma was observed on 2016 March 3-5. Weather asteroids conducted from the George West ISD Mobile conditions on March 3 and 5 were not particularly favorable and so Observatory are described.
    [Show full text]