<<

1

www.inl.gov AsteroidHopper Mapper / Mapping and extraction of water from asteroids from water of extraction and Mapping in the mainthe in belt

The team

Adarsh Rajguru – University of Southern California (Systems Engineer)

Juha Nieminen – University of Southern California (Astronautical Engineer)

Nalini Nadupalli – University of Michigan (Electrical & Telecommunications Engineer)

Justin Weatherford – George Fox University (Mechanical & Thermal Engineer)

Joseph Santora – University of Utah (Chemical & Nuclear Engineer)

2 Mission Objectives

Primary Objective – Map and tag the asteroids in the main for water. Secondary Objective – Potentially land on these water-containing asteroids, extract the water and use it as a propellant.

Tertiary Objective – Map the asteroids for other important materials that can be valuable for resource utilization.

3 Introduction: Asteroid Commodities and Markets Water – Propellant and life support for future manned deep-space missions (Mapping market)

Platinum group metals – Valuable on Earth and hence for future unmanned or manned deep-space mining missions (Mapping market)

Regolith – Radiation shielding, 3D printing of structures (fuel tanks, trusses, etc.) for deep-space unmanned or manned spacecrafts, (Determining Regolith composition and material properties market)

Aluminum, Iron, Nickel, Silicon and Titanium – Valuable structural materials for deep-space unmanned and manned colonies (Mapping market)

4 Asteroid Hopping: Main Asteroid Belt Class and Types (most interested)

Resource Water Platinum Group Metals Metals Asteroid Class Type Hydrated C-Class M-Class M-Class Population (%) 10 5 5 Density (kg/m3) 1300 5300 5300 Resource Fraction 8 % 35 ppm 88 % Asteroid Diameter (10 m) 44 tons 2 x 103 tons 97 kg Asteroid Diameter (100 m) 4350 tons 2 x 106 tons 97 tons Asteroid Diameter (500 m) 11000 tons 3 x 108 tons 12 x 103 tons [1] Badescu V., Asteroids: Prospective Energy and Material Resources, First edition, 2013.

5 Asteroid Hopping: Confirmed Water containing Massive Hydrated C-Class Asteroids I

1 [2] – [2] – [3] – 13 Egeria [4] – 952.4. km 545 km 407.12 km 207.64 km : 9.1 Rotation Period: 7.8 hours Rotation Period: 27.623 hours Rotation Period: 7.045 hours

24 Themis [5] – 36 Atalante [6] – 74 [7] – 139 Juewa [8] – 198 km 105.61 km 118.71 km 156.6 km Rotation Period: 8.374 hours Rotation Period: 9.93 hours Rotation Period: 17.268 hours Rotation Period: 21 hours

6 Asteroid Hopping: Confirmed Water containing Massive Hydrated C-Class Asteroids II

247 Eukrate [9] – 324 Bamberga [10] – 344 Desiderata [11] – 386 Siegena [12] – 134.4 km 229.44 km 132.27 km 165.01 km Rotation Period: 12 hours Rotation Period: 29.43 hours Rotation Period: 10.747 hours Rotation Period: 9.763 hours

410 Chloris [13] – 451 Patientia [14] – [15] – 776 Berbericia [16] – 123.57 km 224.96 km 326.06 km 151.17 km Rotation Period: 32.50 hours Rotation Period: 9.727 hours Rotation Period: 5.131 hours Rotation Period: 7.668 hours

7 8

www.inl.gov Water Detection

Asteroid Compositions Molecules bonded to water - Saponite - Ferrihydrite - Hexahydrite - Epsomite - Sodium Thiosulfate - Borax

Element / Molecule Min % Max % Element / Molecule Min % Max % Fe-Ni granular 5 35 Co 0.1 0.5

Iron-oxide (Magnetite, Silicates) 15 30 Na2O 0.3 0.9

Magnetite Traces 9.7 K2O 0.04 0.1

Silica (SiO2) 28 40 P2O5 0.23 0.28 Magnesia (MgO) 20 25 Clay matrix - -

Aluminum (Al2O3) 2 3 Olivine 7.2 - Calcia (CaO) 2 - Mg - Olivine with FeO - - Iron Sulfides (FeS) 6 - Pyroxene - - Water (Clay matrix) 10 - Troilite 2.1 - Water (Epsomite) 5 15 Pyrrhotite 4.5 - Carbon 1 5 Saponite - Serpentine - 71.5 Sulphur 1 5 Ferrihydrite 5 - Sodium & Magnesium Salts 10 -

9 Data on Curium-244 Fuel source

Cm-244 Spontaneous Fission Data Values Units Neutrons Production 2.66 n/fission Weight of Curium 4.1 kg Neutron Production Total 5.1 × 1010 n/s

10 Nozzle, Asteroid Surface, & Detector in MCNP

37 cm

35 cm 30 cm

30 cm 10 cm

Neutron detector 100 cm

Beryllium cladding 100 cm

Asteroid Surface 100 cm

11 Curium Core Configurations in MCNP

12 Core Configuration 4 in MCNP

13 Neutron Gun in MCNP

20 25 cm cm

60 cm 80 cm

10 cm

Asteroid Surface 14 Neutron Gun in MCNP

15 Neutron Gun in MCNP

16 Neutron Gun in MCNP

17 Neutron Detectors

n + He3  H3 + H1 + γ n + Li6  He4 + H3 + γ 10 7+ 4 7 4 18 n + B  Li + He  Li + He + γ 19

www.inl.gov Ground PenetratingRadar Ground Penetrating Radar

20 Ground Penetrating Radar: Relative Permittivities Composition (%) Relative Asteroid Soil Material Chemical Formula Permittivity

Epsomite MgSO4·7H2O 5 – 15 0.23 [J2] Sodium Thiosulphate Na S O + 2 2 3 10 6.55 [J3] + Borax (Na2B4O7.10H2O) 3+ Ferrihydrite (Fe )2O3.0.5H2O 5 30

Water / Ice H2O 10 80.4 / 3.15

Andesite (Na,Ca)Al1-2Si3-2O8 TBD 5.83

21 Ground Penetrating Radar: Performance

22 Ground Penetrating Radar: System Architecture

T/R Switch Signal from main MPM or Communication subsystem Transmitter

Parabolic To SDST Analog to General Band RF Low Antenna Low Pass for Digital Purpose Pass noise Filter Modulation Converter Amplifier Filter amplifier

23 Neutron Detector v/s Ground Penetrating Radar

Radar Neutron Detection • Pros • Pros - Longer Range - Simplicity in Instrumentation - High TRL & Data Processing • Cons - Hydrogen interaction only - Complexity in Data • Cons Processing - Shorter Range - Calibration Issues - Not very directional

24 25

www.inl.gov Water Extraction

Water Collection – Process Selection

Water Vapor Collection • Pros - Light - Simple equipment - Quick - No landing • Cons - Complex application - Vapor collection in vacuum

26 Water Extraction – Equipment Selection

Auger Drill Bit Internally Collecting Drill Bit

Weight (6 Augers + Housing) Total Weight (6 Drill Bits) = 10.7 kg = 3.6 kg

27 Water Extraction – Equipment Selection

Internally Collecting Drill Bit

Total Weight (6 Drill Bits)

28 = 3.6 kg Water Extraction – Required

Ferrihydrite

3+ 598 K (Fe )2O3  0.5 H2O Fe2O3 + 0.5 H2O

Hexahydrite

363 K Mg(SO4)  6 H2O Mg(SO4) H2O + 5 H2O

Epsomite

400 K MgSO4  7 H2O MgSO4 + 7 H2O

Sodium Thiosulfate

373 K 413 K Na2S2O3  5 H2O Na2S2O3  3 H2O + 2 H2O Na2S2O3 + 5 H2O

Borax

333 K 393 K Na2B4O7  10 H2O Na2B4O7  5 H2O + 5 H2O Na2B4O7  2 H2O + 8 H2O

29 Water Extraction – Energy Required

Soil Data Value Units Temperature of asteroid surface 200 K Volume of soil extracted 1,000 cm3

C M T Dissociation ΔT Q/m Density Q Molecules p water % in soil (J/mol*K) (g/mol) (K) (K) (J/g) (g/cm3) (kJ) Ferrihydrite 105 169 598 398 247 5% 3.8 46.9 Hexahydrite 268 228 363 163 191 10% 1.57 30.0 Epsomite 255 246 400 200 207 10% 1.68 34.7 Sodium 361 158 413 213 486 10% 1.67 81.1 Thiosulfate Borax 381 381 393 193 193 10% 1.73 33.4 Total 1,325 226.2

30 Water Extraction – Energy Required

Energy Required to Remove Water 500 90

450 80

400 70

350 60

300

50 250

Q (kJ) Q/m (J/g) 40 Q/m (J/g) 200 Q (kJ) 30 150

20 100

50 10

0 0 Ferrihydrite Hexahydrite Epsomite Sodium Thiosulfate Borax Molecular Compounds

31 Weight of Extraction & Separation Equipment

Neutron gun weight excluded • Investigate an ideal fuel and housing volume • Approximately 50 – 100 kg expected

32 Future Work: Proposed Mother / Daughter Spacecraft Architecture

33 Acknowledgements • Dr. Steve Howe, Ph.D., Director, Center for Space Nuclear Research (CSNR) – NIAC Phase I Progress Report (Micro Asteroid Prospector Powered by Energetic Radioisotopes: MAPPER) • Mr. Nathan Jerred, Research Scientist II, Center for Space Nuclear Research (CSNR) – NIAC Phase I Final Report (Dual Mode Propulsion System Enabling CubeSat Exploration of the Solar System). • Mr. Troy Howe, Research Scientist I, Center for Space Nuclear Research (CSNR) – NIAC Phase I Final Report (Dual Mode Propulsion System Enabling CubeSat Exploration of the Solar System) & COMSOL Support. • Mr. Russell Joyner, Aerojet Rocketdyne – Support on NTR with LOX Augmentation • Mr. Rolando Jordan, Jet Propulsion Laboratory – Support for the GPR • Mr. Lance Hone, Research Assistant, Center for Space Nuclear Research (CSNR) – Information on Strontium (Sr-90), Nickel (Ni-63), Technetium (Tc-99) & Cesium (Cs-137). • Mr. Peter Husemeyer, Research Assistant, Center for Space Nuclear Research (CSNR) –Information on LEU NTR Design and Thermal Analysis Support • Mr. Wes Deason, Research Assistant, Center for Space Nuclear Research (CSNR) – Information on LEU NTR and MCNP Support • Mr. Vishal Patel, Research Fellow, Center for Space Nuclear Research (CSNR) – MCNP Support • Ms. Delisa Rogers & Ms. Kristi Martin

34• All CSNR Summer 2014 Fellows

Questions???

35 36

www.inl.gov Slides Up Back Neutron Gun in MCNP

37 Water Phase Diagram

38 Electrolysis – Volume Production

+ + - Oxidization reaction at the Anode: 2H2O  O2 + 4H 4e - - Reduction reaction at the Cathode: 4H2O + 4e  2H2+ 4OH

Overall Electrolysis Equation: 2H2O  2H2+ O2 39 Electrolysis – Mass Production

+ + - Oxidization reaction at the Anode: 2H2O  O2 + 4H 4e - - Reduction reaction at the Cathode: 4H2O + 4e  2H2+ 4OH

Overall Electrolysis Equation: 2H2O  2H2+ O2 40 Asteroid Hopping: Brute force Trajectory Optimization

41 Asteroid Hopping: ΔVavg as a function of transit time

Asteroids ΔVavg per hop

540,000 1.5 km/s

107 1.1 km/s

108 0.7 km/s

42 Asteroid Hopping: Number of asteroids v/s Size

43 Core Configuration 1 in MCNP

44 Core Configuration 2 in MCNP

45 Core Configuration 3 in MCNP

46 Core Configuration 5 in MCNP

47 Core Configuration 6 in MCNP

48 Additional Slide – Transporting Water

Collect heated water vapor in separate condensing container Water from internal drill bit

Height of capillary action Height A = 9.3 cm

Inner Radius = 15 cm Lower thin capillary tubes to transport to electrolysis container

49 References I • [1] Badescu V., Asteroids: Prospective Energy and Material Resources, First edition, 2013. • [2] JPL Small-Body Database Browser, “1 Ceres”, Orbital Elements at 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [3] JPL Small-Body Database Browser, “2 Pallas”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [4] JPL Small-Body Database Browser, “13 Egeria”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [5] JPL Small-Body Database Browser, “36 Atalante”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [6] JPL Small-Body Database Browser, “74 Galatea”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [7] JPL Small-Body Database Browser, “139 Juewa”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [8] JPL Small-Body Database Browser, “247 Eukrate”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [9] JPL Small-Body Database Browser, “324 Bamberga”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [10] JPL Small-Body Database Browser, “344 Desiderata”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [11] JPL Small-Body Database Browser, “386 Siegena”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [12] JPL Small-Body Database Browser, “410 Chloris”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [13] JPL Small-Body Database Browser, “451 Patientia”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014].

50

References II • [14] JPL Small-Body Database Browser, “776 Berbericia”, Orbital Elements at Epoch 2456800.5 (23 May 2014), heliocentric ecliptic J2000, URL: http://ssd.jpl.nasa.gov/sbdb.cgi#top [cited 18 July 2014]. • [17] Diamant D. K. and Cohen R. B., “High Power Microwave Electrothermal Thrsuter Performance on Water”, AIAA 2002- 3662, 38th AIAA Joint Propulsion Conference, 2002. • [J1] ICRP Publication 103, “Annals of the ICRP”, 2007 recommendations of the international commission on radiological protection, Vol. 37, Nos. 2 – 4, 2007, ISSN 0146-6543. • [J2] Ferdous S and Podder J., “Growth and characterization of Epsomite single crystals doped with KCl from low temperature aqueous solutions,” Journal of Bangladesh Academy of Sciences, Vol. 33, No. 1, 47-54, 2009. • [J3] Rosehnoltz L. J and Smith T. D., “The dielectric constant of mineral powders,” The American Mineralogist, Journal Mineralogical Society of America, 115 – 120. URL: http://www.minsocam.org/ammin/AM21/AM21_115.pdf.

Books

• [B1] Humble W. Ronald, et. al., Space Propulsion Analysis and Design, First Edition (revised), Section 8.3.1, pg. 460. • [B2] Balmer T. Robert, Thermodynamics Tables to Accompany Modern Engineering Thermodynamics, Table C.14b. • [B3] Curtis Howard, Orbital Mechanics for Engineering Students, Figure 5.3, Equation 5.23, 5.26, 5.27a, 5.27b, 5.31a and 5.31b.

Proceedings

• [P1] Farinella, P. and Davis, D.R. 1994. “Will the real asteroid size distribution please step forward”, Lunar Planetary Science Conference XXV, 365 – 366. – Asteroid distribution. • [P2] Zacny Kris, Chu Phil and Craft Jack, et. al., “Asteroid Mining”, AIAA SPACE 2013 Conference and Exposition, AIAA 2013- 5304. • [P3] Baer J. and Chesley S. R., "Astrometric of 21 Asteroids, and an integrated asteroid ephemeris", American Astronomical Society, DDA meeting #38, #9.03, Table3. • [P4] Carry B., "Density of Asteroids", Planetary and Space Science, 12/2012, Volume 73, Issue 1, Table 1. 51 References III • [P5] Conrad A. R., Dumas C., Merline W. J., et. al., 2007, Icarus, 191, 616.

Reports, Theses, and Individual Papers

• [R1] Howe S., Gerald P. J. and Hbar Technologies, LLC, “Micro Asteroid Prospector Powered by Energetic Radioisotopes”, NIAC Phase 1 Final Progress Report. • [R2] Taylor J., Sakamoto L. and Wong Chao-Jen, “Cassini Orbiter / Huygens Probe Telecommunications”, DESCANSO Design and Performance Summary Series, Article 3, January 2002, Tables 5.1, 5.2, 5.4 and 5.5

Electronic Publications

• [E1] MIT Open Courseware, “Modeling of rocket nozzles; effects of nozzle area ratio”, 16.50 Lecture 7, URL: http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-systems-spring-2012/lecture- notes/MIT16_50S12_lec7.pdf [cited 17 July 2014].

Private Communications and Web Sites

• [W1] NASA Solar System Exploration, “The Asteroid Belt”, URL: https://solarsystem.na- sa.gov/multimedia/display.cfm?IM_ID=850 [cited 26 July 2014] • [W2] Implats Distinctly Platinum – 2005 Annual report, “Platinum group metals and their applications”, URL: http://www.implats.co.za/im/files/ar/2005/introduction/pgm_applications.h-tm [cited 27 July 2014] • [W3] Mission 2016: The future of Strategic Natural Resources, “Asteroid Mining”, URL: http://web.mit.edu/12.000/www/m2016/finalwebsite/solutions/asteroids.html[cited 27 July 2014] • [W4] suckerPUNCH, “ISRU Based Robotic Construction Technologies”, • URL: http://www.suckerpunchdaily.com/tag/madhu-thangavelu [cited 30 July 2014] 52• [W5] GomSpace, “NanoCam Payloads – NanoCam C1U”, URL: http://gomspace.com/index.ph-p?p=products-c1u [cited 02 August 2014] References IV • [W6] Space.com, “Curiosity rover makes big water discovery in Mars dirt, a ‘wow moment’”, URL: http://www.space.com/22949-mars-water-discovery-curiosity-rover.html [cited 08/02/14] • [W7] Permanent, “Meteorite classifications and compositions”, URL: http://www.perman-ent.com/meteorite-compositions.html [cited 02 August 2014]. • [W8] University of Waterloo – Safety Office, “Neutron Interactions”, URL: • http://www.safetyoffice.uwaterloo.ca/hse/radiation/rad_laboratory/interaction/neutron_interactions.htm [cited 02 August 2014]. • [W9] Table of Nuclides – Cross Section Plotter, Korea Atomic Energy Research Institute, URL: • http://atom.kaeri.re.kr/cgi-bin/endfform.pl [cited 02 August 2014]. • [W10] Baer J., "Recent Asteroid Mass Determinations", last updated 12 Dec. 2010, URL: http://home.earthlink.net/~jimbaer1/astmass.txt [cited 18 July 2014] • [W11] IOTA Asteroid Results, “13 Egeria”, last updated on 22 Jan 2008, Occult, URL: http://www.asteroidoccultation.com/observations/Results/index2008.html [cited 18 July 2014] • [W12] The DSN Commitments Office, “The Interplanetary Network Directorate”, URL: http://deepspace.jpl.nasa.gov/advmiss/index.html [cited 21 July 2014] • [W13] GomSpace, “NanoMind Computers – NanoMind A712D”, URL: http://gomspace.com/in-dex.php?p=products-a712c [cited 03 August 2014]

• Unpublished Papers, Books and Presentations

• [U1] Zacny K, “Water extraction system for the Moon, Mars and Asteroids”, Australian Center for Space Engineering Research (ACSER) – Off Earth Mining Forum, 19 – 21 February 2013.

53