The Team Adarsh Rajguru
Total Page:16
File Type:pdf, Size:1020Kb
Asteroid Mapper / Hopper www.inl.gov Mapping and extraction of water from asteroids 1 in the main asteroid belt The team Adarsh Rajguru – University of Southern California (Systems Engineer) Juha Nieminen – University of Southern California (Astronautical Engineer) Nalini Nadupalli – University of Michigan (Electrical & Telecommunications Engineer) Justin Weatherford – George Fox University (Mechanical & Thermal Engineer) Joseph Santora – University of Utah (Chemical & Nuclear Engineer) 2 Mission Objectives Primary Objective – Map and tag the asteroids in the main asteroid belt for water. Secondary Objective – Potentially land on these water-containing asteroids, extract the water and use it as a propellant. Tertiary Objective – Map the asteroids for other important materials that can be valuable for resource utilization. 3 Introduction: Asteroid Commodities and Markets Water – Propellant and life support for future manned deep-space missions (Mapping market) Platinum group metals – Valuable on Earth and hence for future unmanned or manned deep-space mining missions (Mapping market) Regolith – Radiation shielding, 3D printing of structures (fuel tanks, trusses, etc.) for deep-space unmanned or manned spacecrafts, (Determining Regolith composition and material properties market) Aluminum, Iron, Nickel, Silicon and Titanium – Valuable structural materials for deep-space unmanned and manned colonies (Mapping market) 4 Asteroid Hopping: Main Asteroid Belt Class and Types (most interested) Resource Water Platinum Group Metals Metals Asteroid Class Type Hydrated C-Class M-Class M-Class Population (%) 10 5 5 Density (kg/m3) 1300 5300 5300 Resource Mass Fraction 8 % 35 ppm 88 % Asteroid Diameter (10 m) 44 tons 2 x 103 tons 97 kg Asteroid Diameter (100 m) 4350 tons 2 x 106 tons 97 tons Asteroid Diameter (500 m) 11000 tons 3 x 108 tons 12 x 103 tons [1] Badescu V., Asteroids: Prospective Energy and Material Resources, First edition, 2013. 5 Asteroid Hopping: Confirmed Water containing Massive Hydrated C-Class Asteroids I 1 Ceres [2] – 2 Pallas [2] – 10 Hygiea [3] – 13 Egeria [4] – 952.4. km 545 km 407.12 km 207.64 km Rotation Period: 9.1 hours Rotation Period: 7.8 hours Rotation Period: 27.623 hours Rotation Period: 7.045 hours 24 Themis [5] – 36 Atalante [6] – 74 Galatea [7] – 139 Juewa [8] – 198 km 105.61 km 118.71 km 156.6 km Rotation Period: 8.374 hours Rotation Period: 9.93 hours Rotation Period: 17.268 hours Rotation Period: 21 hours 6 Asteroid Hopping: Confirmed Water containing Massive Hydrated C-Class Asteroids II 247 Eukrate [9] – 324 Bamberga [10] – 344 Desiderata [11] – 386 Siegena [12] – 134.4 km 229.44 km 132.27 km 165.01 km Rotation Period: 12 hours Rotation Period: 29.43 hours Rotation Period: 10.747 hours Rotation Period: 9.763 hours 410 Chloris [13] – 451 Patientia [14] – 511 Davida [15] – 776 Berbericia [16] – 123.57 km 224.96 km 326.06 km 151.17 km Rotation Period: 32.50 hours Rotation Period: 9.727 hours Rotation Period: 5.131 hours Rotation Period: 7.668 hours 7 Water Detection www.inl.gov 8 Asteroid Compositions Molecules bonded to water - Saponite - Ferrihydrite - Hexahydrite - Epsomite - Sodium Thiosulfate - Borax Element / Molecule Min % Max % Element / Molecule Min % Max % Fe-Ni granular 5 35 Co 0.1 0.5 Iron-oxide (Magnetite, Silicates) 15 30 Na2O 0.3 0.9 Magnetite Traces 9.7 K2O 0.04 0.1 Silica (SiO2) 28 40 P2O5 0.23 0.28 Magnesia (MgO) 20 25 Clay matrix - - Aluminum (Al2O3) 2 3 Olivine 7.2 - Calcia (CaO) 2 - Mg - Olivine with FeO - - Iron Sulfides (FeS) 6 - Pyroxene - - Water (Clay matrix) 10 - Troilite 2.1 - Water (Epsomite) 5 15 Pyrrhotite 4.5 - Carbon 1 5 Saponite - Serpentine - 71.5 Sulphur 1 5 Ferrihydrite 5 - Sodium & Magnesium Salts 10 - 9 Data on Curium-244 Fuel source Cm-244 Spontaneous Fission Data Values Units Neutrons Production 2.66 n/fission Weight of Curium 4.1 kg Neutron Production Total 5.1 × 1010 n/s 10 Nozzle, Asteroid Surface, & Detector in MCNP 37 cm 35 cm 30 cm 30 cm 10 cm Neutron detector 100 cm Beryllium cladding 100 cm Asteroid Surface 100 cm 11 Curium Core Configurations in MCNP 12 Core Configuration 4 in MCNP 13 Neutron Gun in MCNP 20 25 cm cm 60 cm 80 cm 10 cm Asteroid Surface 14 Neutron Gun in MCNP 15 Neutron Gun in MCNP 16 Neutron Gun in MCNP 17 Neutron Detectors n + He3 H3 + H1 + γ 6 4 3 n + Li He + H + γ 10 7+ 4 7 4 18 n + B Li + He Li + He + γ Ground Penetrating Radar www.inl.gov 19 Ground Penetrating Radar 20 Ground Penetrating Radar: Relative Permittivities Composition (%) Relative Asteroid Soil Material Chemical Formula Permittivity Epsomite MgSO4·7H2O 5 – 15 0.23 [J2] Sodium Thiosulphate Na S O + 2 2 3 10 6.55 [J3] + Borax (Na2B4O7.10H2O) 3+ Ferrihydrite (Fe )2O3.0.5H2O 5 30 Water / Ice H2O 10 80.4 / 3.15 Andesite (Na,Ca)Al1-2Si3-2O8 TBD 5.83 21 Ground Penetrating Radar: Performance 22 Ground Penetrating Radar: System Architecture T/R Switch Signal from main MPM or Communication subsystem Transmitter Parabolic To SDST Analog to General Band RF Low Antenna Low Pass for Digital Purpose Pass noise Filter Modulation Converter Amplifier Filter amplifier 23 Neutron Detector v/s Ground Penetrating Radar Radar Neutron Detection • Pros • Pros - Longer Range - Simplicity in Instrumentation - High TRL & Data Processing • Cons - Hydrogen interaction only - Complexity in Data • Cons Processing - Shorter Range - Calibration Issues - Not very directional 24 Water Extraction www.inl.gov 25 Water Collection – Process Selection Water Vapor Collection • Pros - Light - Simple equipment - Quick - No landing • Cons - Complex application - Vapor collection in vacuum 26 Water Extraction – Equipment Selection Auger Drill Bit Internally Collecting Drill Bit Weight (6 Augers + Housing) Total Weight (6 Drill Bits) = 10.7 kg = 3.6 kg 27 Water Extraction – Equipment Selection Internally Collecting Drill Bit Total Weight (6 Drill Bits) 28 = 3.6 kg Water Extraction – Temperature Required Ferrihydrite 3+ 598 K (Fe )2O3 0.5 H2O Fe2O3 + 0.5 H2O Hexahydrite 363 K Mg(SO4) 6 H2O Mg(SO4) H2O + 5 H2O Epsomite 400 K MgSO4 7 H2O MgSO4 + 7 H2O Sodium Thiosulfate 373 K 413 K Na2S2O3 5 H2O Na2S2O3 3 H2O + 2 H2O Na2S2O3 + 5 H2O Borax 333 K 393 K Na2B4O7 10 H2O Na2B4O7 5 H2O + 5 H2O Na2B4O7 2 H2O + 8 H2O 29 Water Extraction – Energy Required Soil Data Value Units Temperature of asteroid surface 200 K Volume of soil extracted 1,000 cm3 C M T Dissociation ΔT Q/m Density Q Molecules p water % in soil (J/mol*K) (g/mol) (K) (K) (J/g) (g/cm3) (kJ) Ferrihydrite 105 169 598 398 247 5% 3.8 46.9 Hexahydrite 268 228 363 163 191 10% 1.57 30.0 Epsomite 255 246 400 200 207 10% 1.68 34.7 Sodium 361 158 413 213 486 10% 1.67 81.1 Thiosulfate Borax 381 381 393 193 193 10% 1.73 33.4 Total 1,325 226.2 30 Water Extraction – Energy Required Energy Required to Remove Water 500 90 450 80 400 70 350 60 300 50 250 Q (kJ) Q/m (J/g) 40 Q/m (J/g) 200 Q (kJ) 30 150 20 100 50 10 0 0 Ferrihydrite Hexahydrite Epsomite Sodium Thiosulfate Borax Molecular Compounds 31 Weight of Extraction & Separation Equipment Neutron gun weight excluded • Investigate an ideal fuel and housing volume • Approximately 50 – 100 kg expected 32 Future Work: Proposed Mother / Daughter Spacecraft Architecture 33 Acknowledgements • Dr. Steve Howe, Ph.D., Director, Center for Space Nuclear Research (CSNR) – NIAC Phase I Progress Report (Micro Asteroid Prospector Powered by Energetic Radioisotopes: MAPPER) • Mr. Nathan Jerred, Research Scientist II, Center for Space Nuclear Research (CSNR) – NIAC Phase I Final Report (Dual Mode Propulsion System Enabling CubeSat Exploration of the Solar System). • Mr. Troy Howe, Research Scientist I, Center for Space Nuclear Research (CSNR) – NIAC Phase I Final Report (Dual Mode Propulsion System Enabling CubeSat Exploration of the Solar System) & COMSOL Support. • Mr. Russell Joyner, Aerojet Rocketdyne – Support on NTR with LOX Augmentation • Mr. Rolando Jordan, Jet Propulsion Laboratory – Support for the GPR • Mr. Lance Hone, Research Assistant, Center for Space Nuclear Research (CSNR) – Information on Strontium (Sr-90), Nickel (Ni-63), Technetium (Tc-99) & Cesium (Cs-137). • Mr. Peter Husemeyer, Research Assistant, Center for Space Nuclear Research (CSNR) –Information on LEU NTR Design and Thermal Analysis Support • Mr. Wes Deason, Research Assistant, Center for Space Nuclear Research (CSNR) – Information on LEU NTR and MCNP Support • Mr. Vishal Patel, Research Fellow, Center for Space Nuclear Research (CSNR) – MCNP Support • Ms. Delisa Rogers & Ms. Kristi Martin 34• All CSNR Summer 2014 Fellows Questions??? 35 Back Up Slides www.inl.gov 36 Neutron Gun in MCNP 37 Water Phase Diagram 38 Electrolysis – Volume Production + + - Oxidization reaction at the Anode: 2H2O O2 + 4H 4e - - Reduction reaction at the Cathode: 4H2O + 4e 2H2+ 4OH Overall Electrolysis Equation: 2H2O 2H2+ O2 39 Electrolysis – Mass Production + + - Oxidization reaction at the Anode: 2H2O O2 + 4H 4e - - Reduction reaction at the Cathode: 4H2O + 4e 2H2+ 4OH Overall Electrolysis Equation: 2H2O 2H2+ O2 40 Asteroid Hopping: Brute force Trajectory Optimization 41 Asteroid Hopping: ΔVavg as a function of transit time Asteroids ΔVavg per hop 540,000 1.5 km/s 107 1.1 km/s 108 0.7 km/s 42 Asteroid Hopping: Number of asteroids v/s Size 43 Core Configuration 1 in MCNP 44 Core Configuration 2 in MCNP 45 Core Configuration 3 in MCNP 46 Core Configuration 5 in MCNP 47 Core Configuration 6 in MCNP 48 Additional Slide – Transporting Water Collect heated water vapor in separate condensing container Water from internal drill bit Height of capillary action Height A = 9.3 cm Inner Radius = 15 cm Lower thin capillary tubes to transport to electrolysis container 49 References I • [1] Badescu V., Asteroids: Prospective Energy and Material Resources, First edition, 2013.