SEDIMENT BASED TURBIDITY ANALYSES for REPRESENTATIVE SOUTH CAROLINA SOILS Katherine Resler Clemson University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

SEDIMENT BASED TURBIDITY ANALYSES for REPRESENTATIVE SOUTH CAROLINA SOILS Katherine Resler Clemson University, Kresler@Clemson.Edu Clemson University TigerPrints All Theses Theses 8-2011 SEDIMENT BASED TURBIDITY ANALYSES FOR REPRESENTATIVE SOUTH CAROLINA SOILS Katherine Resler Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Engineering Commons Recommended Citation Resler, Katherine, "SEDIMENT BASED TURBIDITY ANALYSES FOR REPRESENTATIVE SOUTH CAROLINA SOILS" (2011). All Theses. 1203. https://tigerprints.clemson.edu/all_theses/1203 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SEDIMENT BASED TURBIDITY ANALYSES FOR REPRESENTATIVE SOUTH CAROLINA SOILS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Biosystems Engineering by Katherine E. Resler August 2011 Accepted by: Dr. Calvin B. Sawyer, Committee Chair Dr. John C. Hayes Dr. Charles V. Privette, III ABSTRACT Construction activities have been recognized to have significant impacts on the environment. Excess sediment from construction sites is frequently deposited into nearby surface waters, negatively altering the chemical, physical and biological properties of the water body. This environmental concern has led to strict laws concerning erosion and sediment control, such as imposing permit conditions that limit the concentration of suspended solids that can be present in effluent water from construction sites. However, sediment concentration measurements are not routinely used to detect and correct short- term problems or permit violations because laboratory analysis of sediment concentrations is time-consuming and costly. Nevertheless, timely, accurate field estimation of sediment loading could be facilitated through the development of empirical relationships between suspended solids and turbidity. Previous research indicates that turbidity measurements may be a more practical method of estimating sediment loads by indirectly relating sediment concentration to turbidity. In addition, recognition of turbidity as an indicator of pollution in surface runoff from disturbed areas has resulted in efforts by the U.S Environmental Protection Agency (EPA) to implement turbidity effluent limitation guidelines to control the discharge of pollutants from construction sites. Therefore, given the importance of a proposed turbidity limit, focus of this research is to determine relationships between representative soils and corresponding turbidity as a function of suspended sediment concentration and sediment settling. Turbidity is not only a function of suspended ii sediment concentration, but also of particle size, shape, and composition; so this research was needed to analyze turbidity responses based on sediment characteristics of representative South Carolina soils. First, accuracy and precision of commercially available nephelometers needed to be quantified for use in subsequent sediment/ surface water analysis and potential regulatory compliance. Analysis of accuracy and precision for instruments showed that even though meters may be very precise, they could also be inaccurate. However, three of the four meters that performed well provided statistically accurate and precise results. It was also found that formazin calibration standards may be a better standard than AMCO EPA standards for surface water analysis. Utilizing representative South Carolina soils, both relationships of turbidity to sediment concentration and turbidity to settling time were used to form mathematical correlations. Turbidity versus suspended sediment concentration and turbidity versus settling time correlated well when top soil and subsoils were classified based on their predominant South Carolina region and their measured clay content. Derived trends for suspended sediment concentration to turbidity correlated well with either a linear or log relationship (R 2 values ranging from 0.7945 to 0.9846) as opposed to previous research utilizing a power function or the assumption of a one-to-one relationship. For the correlation of turbidity and sediment settling time, trends were well correlated with a power function (R 2 values ranging from 0.7674 to 0.9347). This relationship suggests Stoke’s Law was followed; where smaller particles remain in suspension longer and contribute more to turbidity compared to soils with less clay content. iii Altogether, results of this research provide a step in determining potential site- specific equations relating sediment concentration to turbidity and sediment settling time to turbidity. With this knowledge, results could ultimately aid in the design of future sediment basins of South Carolina and provide information for potential regulatory compliance. iv DEDICATION This thesis is dedicated, first and foremost, to my parents, Dave and Susan Resler, who passed on to me an insatiable thirst for knowledge and a desire to explore and discover. Due to their unshakable faith and support, I have learned the courage and tenacity to reach my goals and to always give my all. My work is also dedicated to my siblings, Chris, Jay, Nick, and Steph. Despite their insistence of having no involvement in my endeavor, countless phone calls providing support attest otherwise. Always ready to pick up my spirits and to offer me much needed encouragement, to my siblings I owe a debt of gratitude. And finally, I dedicate this work to my grandparents. Grandma Jane and Pop-Pop provided an irreplaceable support network close to Clemson for five years, not to mention endless hospitality, and I cannot thank them enough for the multitude of ways they have seen me through this journey. v ACKNOWLEDGEMENTS I first want to acknowledge the South Carolina Certified Erosion Prevention and Sediment Control Inspection Program for funding this research. Secondly, I want to express my sincere appreciation for my thesis advisor, Dr. Calvin Sawyer for the opportunity of a research assistantship. I am forever grateful for the rewarding and challenging experience. I also want to thank Dr. Sawyer as well as my committee members, Dr. John Hayes and Dr. Charles Privette for sharing their wisdom, enthusiasm and time throughout this project. Finally, I would like to recognize several individuals that helped with the completion of this research by either assisting with soil collection or laboratory procedures. This includes Lance Beecher, Chris Bellamy, Stephen Pohlman Jr., Laurens County NRCS, SCDNR, and my fellow graduate students Clark Chewning, Zach Smoot and Elizabeth Tempel. vi TABLE OF CONTENTS Page TITLE PAGE ....................................................................................................................... i ABSTRACT ........................................................................................................................ ii DEDICATION .....................................................................................................................v ACKNOWLEDGEMENTS ............................................................................................... vi LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES .............................................................................................................x LIST OF ACRONYMNS ................................................................................................. xii CHAPTER ...........................................................................................................................1 1. INTRODUCTION .............................................................................................1 2. LITERATURE REVIEW ..................................................................................5 A. Suspended Solids ...................................................................................5 B. Construction Sites ..................................................................................9 C. Sediment Control Structures ................................................................10 D. TSS Measurements ..............................................................................15 E. Turbidity ..............................................................................................17 F. Turbidity Measurements ......................................................................17 G. Future Turbidity-Based Regulations ....................................................23 H. Relationships to Total Suspended Solids…………………………….24 I. Particle Size Distributions & Particle Settling Velocities....................26 3. ACCURACY AND PRECISION OF PORTABLE TURBIDITY METERS..............................................................28 A. Abstract ................................................................................................29 B. Introduction ..........................................................................................31 C. Procedures ............................................................................................35 D. Results and Discussion ........................................................................44 E. Conclusions ..........................................................................................51 vii 4. TURBIDITY ANALYSES BASED ON SEDIMENT CHARACTERISTICS OF REPRESENTATIVE SOUTH CAROLINA
Recommended publications
  • Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
    Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin.
    [Show full text]
  • Settling Velocities of Particulate Systems†
    Settling Velocities of Particulate Systems† F. Concha Department of Metallurgical Engineering University of Concepción.1 Abstract This paper presents a review of the process of sedimentation of individual particles and suspensions of particles. Using the solutions of the Navier-Stokes equation with boundary layer approximation, explicit functions for the drag coefficient and settling velocities of spheres, isometric particles and arbitrary particles are developed. Keywords: sedimentation, particulate systems, fluid dynamics Discrete sedimentation has been successful to 1. Introduction establish constitutive equations in processes using Sedimentation is the settling of a particle, or sus- sedimentation. It establishes the sedimentation prop- pension of particles, in a fluid due to the effect of an erties of a certain particulate material in a given fluid. external force such as gravity, centrifugal force or Nevertheless, to analyze a sedimentation process and any other body force. For many years, workers in to obtain behavioral pattern permitting the prediction the field of Particle Technology have been looking of capacities and equipment design procedures, an- for a simple equation relating the settling velocity of other approach is required, the so-called continuum particles to their size, shape and concentration. Such approach. a simple objective has required a formidable effort The physics underlying sedimentation, that is, the and it has been solved only in part through the work settling of a particle in a fluid is known since a long of Newton (1687) and Stokes (1844) of flow around time. Stokes presented the equation describing the a particle, and the more recent research of Lapple sedimentation of a sphere in 1851 and that can be (1940), Heywood (1962), Brenner (1964), Batchelor considered as the starting point of all discussions of (1967), Zenz (1966), Barnea and Mitzrahi (1973) the sedimentation process.
    [Show full text]
  • REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water
    REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water March 2014 U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation EPA 542-R-14-001 Contents Contents .......................................................................................................................................... 2 Acronyms and Abbreviations ......................................................................................................... 5 Notice and Disclaimer..................................................................................................................... 7 Introduction ..................................................................................................................................... 8 Methodology ................................................................................................................................... 9 Passive Technologies Technology: Anoxic Limestone Drains ........................................................................................ 11 Technology: Successive Alkalinity Producing Systems (SAPS).................................................. 16 Technology: Aluminator© ............................................................................................................ 19 Technology: Constructed Wetlands .............................................................................................. 23 Technology: Biochemical Reactors .............................................................................................
    [Show full text]
  • Settling Is Used Remove Suspended Particles
    SOLIDS SEPARATION Sedimentation and clarification are used interchangeably for potable water; both refer to the separating of solid material from water. Since most solids have a specific gravity greater than 1, gravity settling is used remove suspended particles. When specific gravity is less than 1, floatation is normally used. 1. various types of sedimentation exist, based on characteristics of particles a. discrete or type 1 settling; particles whose size, shape, and specific gravity do not change over time b. flocculating particles or type 2 settling; particles that change size, shape and perhaps specific gravity over time c. type 3 (hindered settling) and type IV (compression); not used here because mostly in wastewater 2. above types have both dilute and concentrated suspensions a. dilute; number of particles is insufficient to cause displacement of water (most potable water sources) b. concentrated; number of particles is such that water is displaced (most wastewaters) 3. many applications in preparation of potable water as it can remove: a. suspended solids b. dissolved solids that are precipitated Examples: < plain settling of surface water prior to treatment by rapid sand filtration (type 1) < settling of coagulated and flocculated waters (type 2) < settling of coagulated and flocculated waters in lime-soda softening (type 2) < settling of waters treated for iron and manganese content (type 1) Settling_DW.wpd Page 1 of 13 Ideal Settling Basin (rectangular) < steady flow conditions (constant flow at a constant rate) < settling
    [Show full text]
  • Fundamentals of Clarifier Performance Monitoring and Control
    279.pdf A SunCam online continuing education course Fundamentals of Clarifier Performance Monitoring and Control by Nikolay Voutchkov, PE, BCEE 279.pdf Fundamentals of Clarifier Performance Monitoring and Control A SunCam online continuing education course 1. Introduction Primary and secondary clarifiers are a separate but integral part of every conventional wastewater treatment plant (WWTP). The primary clarifiers are located downstream of the plant bar screens and grit chambers to separate settleable solids from the raw wastewater influent, while the secondary clarifiers are constructed downstream of the biological treatment facility (activated sludge aeration basins or trickling filters) to separate the treated wastewater from the biological mass used for treatment. The two types of clarifiers have similar configurations and utilize gravity for separation of solids from the feed water entering the clarifiers. Solids that settle to the bottom of the clarifiers are usually scraped to one end (in rectangular clarifiers – see Figure 1) or to the middle (in circular clarifiers – see Figure 2) into a sludge collection hopper. From the hopper, the solids are pumped to the sludge handling or sludge disposal system. Sludge handling and sludge disposal systems vary from plant to plant and can include sludge digestion, vacuum filtration, incineration, land disposal, lagoons, and burial. Figure 1 – Rectangular Clarifier www.SunCam.com Copyright 2017 Nikolay Voutchkov Page 2 of 41 279.pdf Fundamentals of Clarifier Performance Monitoring and Control A SunCam online continuing education course Figure 2 – Circular Clarifier The most important function of the primary clarifier is to remove as much settleable and floatable material as possible. Removal of organic settleable solids is very important due to their high demand for oxygen (BOD) in receiving waters and subsequent biological treatment units in the treatment plant.
    [Show full text]
  • Performance Indicator Analysis As a Basis for Process Optimization and Energy Efficiency in Municipal Wastewater Treatment Plants
    UPTEC W 14 008 Examensarbete 30 hp Februari 2014 Performance Indicator Analysis as a Basis for Process Optimization and Energy Efficiency in Municipal Wastewater Treatment Plants Elin Wennerholm ABSTRACT Performance Indicator Analysis as a Basis for Process Optimization and Energy Efficiency in Municipal Wastewater Treatment Plants Elin Wennerholm The aim of this Master Thesis was to calculate and visualize performance indicators for the secondary treatment step in municipal wastewater treatment plants. Performance indicators are a valuable tool to communicate process conditions and energy efficiency to both management teams and operators of the plant. Performance indicators should be as few as possible, clearly defined, easily measurable, verifiable and easy to understand. Performance indicators have been calculated based on data from existing wastewater treatment plants and qualified estimates when insufficient data was available. These performance indicators were then evaluated and narrowed down to a few key indicators, related to process performance and energy usage. Performance indicators for the secondary treatment step were calculated for four municipal wastewater treatment plants operating three different process configurations of the activated-sludge technology; Sternö wastewater treatment plant (Sweden) using a conventional activated-sludge technology, Ronneby wastewater treatment plant (Sweden) using a ring-shaped activated-sludge technology called oxidation ditch, Headingley wastewater treatment plant (Canada) and Kimmswick wastewater treatment plant (USA), both of which use sequencing batch reactor (SBR) activated-sludge technology. Literature reviews, interviews and process data formed the basis of the Master Thesis. The secondary treatment was studied in all the wastewater treatment plants. Performance indicators were calculated, to the extent it was possible, for this step in the treatment process.
    [Show full text]
  • Settling & Sedimentation in Particle- Fluid Separation
    SETTLING & SEDIMENTATION IN PARTICLE- FLUID SEPARATION • Particles are separated from the fluid by gravitation forces • Particles - solid or liquid drops • fluid - liquid or gas • Applications: Removal of solids from liquid sewage wastes Settling of crystals from the mother liquor Settling of a slurry from a soybean leaching process Separation of liquid-liquid mixture from a solvent-extraction stage • Purpose: Remove particles from the fluid (free of particle contaminant) Recover particles as the product Suspend particles in fluids for separation into different sizes or density MOTION OF PARTICLES THROUGH FLUID Three forces acting on a rigid particle moving in a fluid : Drag force Buoyant force External force 1. external force, gravitational or centrifugal 2. buoyant force, which acts parallel with the external force but in the opposite direction 3. drag force, which appears whenever there is relative motion between the particle and the fluid (frictional resistance) Drag: the force in the direction of flow exerted by the fluid on the solid Terminal velocity, ut Drag force Buoyant force External force, gravity The terminal velocity of a falling object is the velocity of the object when the sum of the drag force (Fd) and buoyancy equals the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration. In fluid dynamics, an object is moving at its terminal velocity if its speed is constant due to the restraining force exerted by the fluid through which it is moving. Terminal velocity, ut The terminal velocity of a falling body occurs during free fall when a falling body experiences zero acceleration.
    [Show full text]
  • Development of Performance Indicators for the Operation and Maintenance of Wastewater Treatment Plants and Wastewater Reuse
    UNEP(DEPI)/MED WG.357/Inf.9 1 April 2011 ENGLISH MEDITERRANEAN ACTION PLAN Meeting of MED POL Focal Points Rhodes (Greece), 25-27 May 2011 DEVELOPMENT OF PERFORMANCE INDICATORS FOR THE OPERATION AND MAINTENANCE OF WASTEWATER TREATMENT PLANTS AND WASTEWATER REUSE In cooperation with WHO UNEP/MAP Athens, 2011 TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................... 1 1. CONTEXT AND OBJECTIVES................................................................................... 4 2. CHARACTERISATION AND SAMPLING OF WASTEWATER ................................. 6 2.1 Representative parameters of wastewater pollution.................................................... 6 2.2 Wastewater sampling.................................................................................................. 8 2.2.1 Grab samples .......................................................................................................... 9 2.2.2 Composite samples................................................................................................. 9 2.2.3 Representative samples.......................................................................................... 9 2.2.4 Control of sampling equipment and preservation .................................................... 9 3. PRIMARY SETTLING................................................................................................. 11 3.1 General considerations................................................................................................11
    [Show full text]
  • 4. Physical Removal Processes: Sedimentation and Filtration
    year or two), the need for a reliable source of electricity to power the lamps, the need for period cleaning of the lamp sleeve surface to remove deposits and maintain UV transmission, especially for the submerged lamps, and the uncertainty of the magnitude of UV dose delivered to the water, unless a UV sensor is used to monitor the process. In addition, UV provides no residual chemical disinfectant in the water to protect against post-treatment contamination, and therefore care must be taken to protect UV-disinfected water from post-treatment contamination, including bacterial regrowth or reactivation. 3.9 Costs of UV disinfection for household water Because the energy requirements are relatively low (several tens of watts per unit or about the same as an incandescent lamp), UV disinfection units for water treatment can be powered at relatively low cost using solar panels, wind power generators as well as conventional energy sources. The energy costs of UV disinfection are considerably less than the costs of disinfecting water by boiling it with fuels such as wood or charcoal. UV units to treat small batches (1 to several liters) or low flows (1 to several liters per minute) of water at the community level are estimated to have costs of 0.02 US$ per 1000 liters of water, including the cost of electricity and consumables and the annualized capital cost of the unit. On this basis, the annual costs of community UV treatment would be less than US$1.00 per household. However, if UV lamp disinfection units were used at the household level, and therefore by far fewer people per unit, annual costs would be considerably higher, probably in the range of $US10- 100 per year.
    [Show full text]
  • Sedimentation
    15 Sedimentation Update by Ken Ives 15 Sedimentation 15.1 Introduction Sedimentation is the settling and removal of sus-pended particles that takes place when water stands still in, or flows slowly through a basin. Due to the low velocity of flow, turbulence will generally be absent or negligible, and particles having a mass density (specific weight) higher than that of the water will be allowed to settle. These particles will ultimately be deposited on the bottom of the tank forming a sludge layer. The water reaching the tank outlet will be in a clarified condition. Sedimentation takes place in any basin. Storage basins, through which the water flows very slowly, are particularly effective but not always available. In water treatment plants, settling tanks specially designed for sedimentation are widely used. The most common design provides for the water flowing horizontally through the tank but there are also designs for vertical1 or radial flow. For small water treatment plants, horizontal-flow, rectangular tanks generally are both simple to construct and adequate. The efficiency of the settling process will be much reduced if there is turbulence or cross-circulation in the tank. To avoid this, the raw water should enter the settling tank through a separate inlet structure. Here the water must be divided evenly over the full width and depth of the tank. Similarly, at the end of the tank an outlet structure is required to collect the clarified water evenly. The settled-out material will form a sludge layer on the bottom of the tank. Settling tanks need to be cleaned out regularly.
    [Show full text]
  • Mixture Settling
    MIXTURE SETTLING Mixture settling ............................................................................................................................................. 1 Equilibrium of stratified systems .................................................................................................................. 2 Gas segregation in the atmosphere............................................................................................................ 3 Particle segregation in the atmosphere.................................................................................................. 5 Classification of disperse system .............................................................................................................. 7 Generation of dispersions........................................................................................................................ 11 Speed of sound in dispersions ................................................................................................................. 12 Sound speed in two-phase systems ..................................................................................................... 13 Non-equilibrium in disperse systems .......................................................................................................... 16 Diffusion ................................................................................................................................................. 16 Sedimentation.........................................................................................................................................
    [Show full text]
  • Liquid Stream Fundamentals: Sedimentation
    FACT SHEET Liquid Stream Fundamentals: Sedimentation Sedimentation is one of the processes most commonly used in wastewater treatment and in many cases the last barrier before the effluent leaves the water resource recovery facility (WRRF). Despite being vital components of the WRRF, sedimentation processes are sometimes overlooked. This fact sheet discusses the key design and operational considerations for the sedimentation processes and their role in achieving optimal plant performance. Introduction Sedimentation refers to the physical process where gravity forces account for the separation of solid particles that are heavier than water (specific gravity > 1.0). The common sedimentation unit processes in a wastewater liquid treatment train include grit removal, primary sedimentation, secondary sedimentation and tertiary sedimentation. This fact sheet primarily focusses on the primary and secondary sedimentation processes. Tanks dedicated to primary sedimentation are typically referred to as primary sedimentation tanks, primary settling tanks or primary clarifiers. The tanks dedicated to secondary sedimentation are typically referred to as secondary sedimentation tanks, secondary settling tanks or secondary clarifiers. Within this factsheet these terms are used interchangeably. Particles in sedimentation tanks/clarifiers settle in four distinct settling regimes basically dependent on the concentration of particles and their tendency to coalesce (Table 1). Discrete Settling In this regime, particles settle as independent units with little interaction with neighbor- (Type I) ing particles. Discrete settling typically occurs for total suspended solids (TSS) concen- trations less than 600 mg/L. Flocculent Set- Flocculent settling typically occurs in the TSS range of 600 mg/L to 1,200 mg/L where tling (Type II) particles start interacting with each other through collision and differential settling re- sulting in formation of larger particles through flocculation.
    [Show full text]