Systems Biological Analyses of Intracellular Signal Transduction

Total Page:16

File Type:pdf, Size:1020Kb

Systems Biological Analyses of Intracellular Signal Transduction Systems biological analyses of intracellular signal transduction D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m ( Dr. rer. nat.) im Fach Biophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Herrn Diplom-Biochemiker Stefan Legewie geboren am 31.10.1977 in Aachen Präsident/Präsidentin der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan/Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Christian Limberg Gutachter: Prof. Dr. Hanspeter Herzel Prof. Dr. Jens Timmer Prof. Dr. Olaf Wolkenhauer Tag der mündlichen Prüfung: 31. 10. 2008 ii für meine Eltern iii iv Summary Intracellular regulatory networks involved in the sensing of extracellular cues are crucial to all living organisms. Signal transduction networks allow unicellular organisms sensing nutrient availability, finding mating partners and responding to stress. Moreover, intercellular communication is the fundamental basis for the functioning and homeostasis of multicellular organisms. Accordingly, many diseases including cancer are caused by deregulation of signal transduction networks. Extracellular signals are typically transmitted rapidly from the cell membrane to the nucleus by activation of multi-level enzymatic cascades which ultimately elicit slow changes in gene expression, and thereby affect the cell fate. These signalling cascades are highly interconnected, thus giving rise to complex networks, that are hard to understand intuitively. In this thesis, a combination of kinetic modeling and analysis of quantitative experiments is applied to get insights into the principles of intracellular signalling. In the first part, the dynamics of enzymatic signalling cascades involved in transducing signals from the cell membrane to the nucleus are investigated. The Ras-MAPK cascade plays a central role in various physiological processes such as cell cycle progression, cell differentiation and cell death, and mutational cascade activation appears to be crucial for cancer development. Overexpression of wildtype Ras is also frequently observed in tumours, but its functional relevance remains unclear. By analysis of an experimentally validated kinetic model of Ras signalling, it is shown in Chapter 2 that the basal state MAPK signalling can be completely insensitive towards overexpression of the uppermost cascade member Ras. Thus, the simulations reveal a “kinetic tumour suppression effect” inherent to the Ras (de)activation cycle, and also explain experimental studies showing that overexpression events within the MAPK cascade, though phenotypically silent in isolation, frequently cooperate to bring about strong cellular deregulation (“oncogene cooperation”). In Chapter 3, it is analysed how an experimentally validated MAPK cascade model responds to more physiological, transient inputs and converts them into an all-or-none, irreversible cell fate decision. More specifically, it is shown that bistability arises in the core MAPK cascade by a previously unrecognised enzyme sequestration effect that establishes a hidden positive feedback loop. Chapter 4 is focussed on the proteolytic caspase cascades controlling apoptosis, a form of cell suicide activated in response to extracellular stress. The simulations suggest an unanticipated role for inhibitors of apoptosis proteins (IAPs): Simultaneous inhibition of multiple caspases by IAPs can result in strong positive feedback regulation, and may thus be essential to establish all-or-none and irreversible initiation of cell death. Cellular commitment to a new fate typically requires ongoing extracellular stimulation and/or intracellular signalling for several hours, so that the long-term dynamics of signalling cascades are important for cellular responses. In the second part of the thesis, it is investigated how slow signal-induced changes in gene expression feed back into the signalling network and modulate its dynamical activation pattern. In Chapter 5, the general design principles underlying transcriptional feedback regulation of mammalian signalling pathways are investigated by analysing the stimulus-induced gene expression profiles of 134 intracellular signalling proteins. It turns out that transcriptional feedback regulation occurs in each of the five signalling cascades considered, and that negative feedback strongly dominates over positive feedback. Moreover, negative feedback exclusively occurs by transcriptional induction of a subgroup of signal inhibitors, termed rapid feedback inhibitors (RFIs), while downregulation of signal transducers plays no role. Systematic analysis of mRNA and protein half-lives reveals a remarkable separation of the signalling network into flexible and static parts: transcriptionally regulated RFIs are unstable at the mRNA and protein level, while other signalling proteins are generally stable. Kinetic modelling, also presented in Chapter 5, is employed to get insights into the functional implications of RFI- mediated transcriptional feedback regulation. In Chapter 6, transcriptional feedback regulation of TGFβ signalling via Smad transcription factors is analysed in more detail in primary hepatocytes to confirm the physiological relevance of transcriptional feedback v regulation at the protein level. The TGFβ family of cytokines constitute major inhibitors of cell growth, and accordingly they play important roles in various physiological and pathological processes including development, tissue homeostasis, tissue regeneration, and cancer. Genome-wide microarray analyses and protein measurements in response to TGFβ stimulation (presented in Chapter 6) suggest that the SnoN oncoprotein is the central transcriptional feedback regulator in primary mouse hepatocytes. A mathematical model including TGFβ-induced Smad signalling and SnoN-mediated feedback is fitted to experimental data obtained under various stimulation conditions, and predictions derived from the model are then quantitatively confirmed in primary hepatocytes isolated from SnoN knock-out mice. The modelling results in Chapter 6 mechanistically explain how a small pool of SnoN proteins can efficiently regulate a much larger pool of Smad proteins, and further support the relevance of transcriptional negative feedback regulation in signal transduction. Cells face a specificity problem as different extracellular stimuli frequently engage the same set of intracellular signalling pathways even though they elicit completely different biological responses. Experimental evidence suggests that stimulus-specific biological information is frequently encoded in the quantitative aspects of stimulus-specific activation kinetics (e.g., signal amplitude and/or duration). If biological information is encoded in the quantitative characteristics of intracellular signals, proper cell fate decisions require that the downstream gene expression machinery is able to accurately decode signal amplitude and/or duration. Part III of this thesis deals with such decoding of upstream signals by the gene expression machinery, and thus represents a first step towards more integrated systems biological models that include both, upstream signal transduction and downstream phenotypic responses such as cell growth. The results presented in Section 7 identify competitive inhibition and regulated degradation as mechanisms that allow intracellular regulatory networks to efficiently discriminate transient vs. sustained signals. More specifically, a combination of mathematical modelling and quantitative experimental analyses reveals that a recently discovered small non-coding RNA, IsrR, establishes a pronounced delay and duration decoding in the cyanobacterial gene expression response towards iron stress. In other words, it is shown that the small non-coding RNA, IsrR, restricts the potentially harmful and costly expression of late-phase stress proteins to severe, prolonged and ongoing stress conditions. Many of the downstream target genes induced by signalling pathways are transcription factors, thus giving rise to a complex transcriptional regulatory network. Therefore, signal decoding at the level of gene expression cannot be fully understood by insights into the functioning of small transcriptional regulatory motifs, but additionally requires integrated analyses of multiple transcription factors. In Chapter 8, a recently proposed reverse engineering approach, called modular response analysis (MRA), is applied to derive the topology of an oncogenic transcription factor network from high-throughput and knock- down data. Statistical analyses of the MRA results are used to derive predictions that can be verified experimentally, and also identify a key transcription factor cascade whose existence is supported by the published literature. In conclusion, this thesis shows how systems biological analyses can enhance our understanding of intracellular signalling networks. The approaches presented here include quantitative analyses of small regulatory motifs (Chapters 2, 3, 4 and 7), systematic investigation of high-throughput data (Chapters 5 and 6), kinetic modelling and thus integration of multiple time course experiments (Chapter 6), as well as reverse engineering of regulatory network topologies (Chapter 8). vi Zusammenfassung Intrazelluläre Regulationsnetzwerke, die an der Übertragung extrazellulärer Signale beteiligt sind, haben eine zentrale Bedeutung für alle Organismen. In Einzellern wird Signalübertragung zum Beispiel
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Rasgrp3 (C33A3) Rabbit Mab A
    Revision 1 C 0 2 - t RasGRP3 (C33A3) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 4 3 Web: [email protected] 3 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB H M Endogenous 78 Rabbit IgG Q8IV61 25780 Product Usage Information Application Dilution Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity RasGRP3 (C33A3) Rabbit mAb detects endogenous levels of total RasGRP3 protein. Species Reactivity: Human, Mouse Species predicted to react based on 100% sequence homology: Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy teminus of human RasGRP3. Background Lymphocyte activation occurs in part through activation of the Ras signaling pathway following lymphocyte receptor stimulation. The RasGRP family of guanine nucleotide exchange factors (GEFs) catalyzes the exchange of GDP for GTP on Ras family small GTPases, promoting their active GTP-bound form. Diacylglycerol (DAG) or phorbol ester binding to RasGRP family members causes their translocation to the cell membrane and stimulates their activity (1,2). While T-Cells express RasGRP1, B-cells express both RasGRP1 and RasGRP3. RasGRP3 is important in linking B-cell receptor (BCR) activation to Ras signaling (3).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Hypertension and Prolonged Vasoconstrictor Signaling in RGS2- Deficient Mice
    Amendment history: Addendum (April 2003) Hypertension and prolonged vasoconstrictor signaling in RGS2- deficient mice Scott P. Heximer, … , Robert P. Mecham, Kendall J. Blumer J Clin Invest. 2003;111(4):445-452. https://doi.org/10.1172/JCI15598. Article Cardiology Signaling by hormones and neurotransmitters that activate G protein–coupled receptors (GPCRs) maintains blood pressure within the normal range despite large changes in cardiac output that can occur within seconds. This implies that blood pressure regulation requires precise kinetic control of GPCR signaling. To test this hypothesis, we analyzed mice deficient in RGS2, a GTPase-activating protein that greatly accelerates the deactivation rate of heterotrimeric G proteins in vitro. Both rgs2+/– and rgs2–/– mice exhibited a strong hypertensive phenotype, renovascular abnormalities, persistent constriction of the resistance vasculature, and prolonged response of the vasculature to vasoconstrictors in vivo. Analysis of P2Y receptor–mediated Ca2+ signaling in vascular smooth muscle cells in vitro indicated that loss of RGS2 increased agonist potency and efficacy and slowed the kinetics of signal termination. These results establish that abnormally prolonged signaling by G protein–coupled vasoconstrictor receptors can contribute to the onset of hypertension, and they suggest that genetic defects affecting the function or expression of RGS2 may be novel risk factors for development of hypertension in humans. Find the latest version: https://jci.me/15598/pdf Hypertension and prolonged See the related Commentary beginning on page 441. vasoconstrictor signaling in RGS2-deficient mice Scott P. Heximer,1 Russell H. Knutsen,1 Xiaoguang Sun,1 Kevin M. Kaltenbronn,1 Man-Hee Rhee,1 Ning Peng,2 Antonio Oliveira-dos-Santos,3 Josef M.
    [Show full text]
  • Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: a Role for Histone Deacetylase 4
    The Journal of Neuroscience, November 12, 2014 • 34(46):15327–15339 • 15327 Cellular/Molecular Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4 Yelin Chen,1 Yuanyuan Wang,1 Zora Modrusan,3 Morgan Sheng,1 and Joshua S. Kaminker1,2 Departments of 1Neuroscience, 2Bioinformatics and Computational Biology, and 3Molecular Biology, Genentech Inc., South San Francisco, California 94080 Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDARactivity.ThegenesalteredbyAP5treatmentofbasalcultureswereenrichedforpathwaysrelatedtoclassIIahistonedeacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under
    [Show full text]
  • Predicting Coupling Probabilities of G-Protein Coupled Receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J
    Published online 30 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W395–W401 doi: 10.1093/nar/gkz392 PRECOG: PREdicting COupling probabilities of G-protein coupled receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J. Silvio Gutkind4, Robert B. Russell1,2,* and Francesco Raimondi1,2,* 1CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany, 2Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany, 3Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan and 4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA Received February 10, 2019; Revised April 13, 2019; Editorial Decision April 24, 2019; Accepted May 01, 2019 ABSTRACT great use in tinkering with signalling pathways in living sys- tems (5). G-protein coupled receptors (GPCRs) control multi- Ligand binding to GPCRs induces conformational ple physiological states by transducing a multitude changes that lead to binding and activation of G-proteins of extracellular stimuli into the cell via coupling to situated on the inner cell membrane. Most of mammalian intra-cellular heterotrimeric G-proteins. Deciphering GPCRs couple with more than one G-protein giving each which G-proteins couple to each of the hundreds receptor a distinct coupling profile (6) and thus specific of GPCRs present in a typical eukaryotic organism downstream cellular responses. Determining these coupling is therefore critical to understand signalling. Here, profiles is critical to understand GPCR biology and phar- we present PRECOG (precog.russelllab.org): a web- macology. Despite decades of research and hundreds of ob- server for predicting GPCR coupling, which allows served interactions, coupling information is still missing for users to: (i) predict coupling probabilities for GPCRs many receptors and sequence determinants of coupling- specificity are still largely unknown.
    [Show full text]
  • Novel Driver Strength Index Highlights Important Cancer Genes in TCGA Pancanatlas Patients
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients Aleksey V. Belikov*, Danila V. Otnyukov, Alexey D. Vyatkin and Sergey V. Leonov Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia *Corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer.
    [Show full text]
  • G Protein Alpha Inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA335036 G protein alpha inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-GNAI1 antibody: synthetic peptide directed towards the middle region of human GNAI1. Synthetic peptide located within the following region: YQLNDSAAYYLNDLDRIAQPNYIPTQQDVLRTRVKTTGIVETHFTFKDLH Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 40 kDa Gene Name: G protein subunit alpha i1 Database Link: NP_002060 Entrez Gene 14677 MouseEntrez Gene 25686 RatEntrez Gene 2770 Human P63096 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 G protein alpha inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody – TA335036 Background: Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules.
    [Show full text]
  • ANALYSIS Doi:10.1038/Nature14663
    ANALYSIS doi:10.1038/nature14663 Universal allosteric mechanism for Ga activation by GPCRs Tilman Flock1, Charles N. J. Ravarani1*, Dawei Sun2,3*, A. J. Venkatakrishnan1{, Melis Kayikci1, Christopher G. Tate1, Dmitry B. Veprintsev2,3 & M. Madan Babu1 G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are 800 human GPCRs and 16 different Ga genes, this raises the question of whether a universal allosteric mechanism governs Ga activation. Here we show that different GPCRs interact with and activate Ga proteins through a highly conserved mechanism. Comparison of Ga with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR–Ga system diversified rapidly, while conserving the allosteric activation mechanism. proteins bind guanine nucleotides and act as molecular switches almost 30 A˚ away from the GDP binding region5 and allosterically trig- in a number of signalling pathways by interconverting between ger GDP release to activate them. 1,2 G a GDP-bound inactive and a GTP-bound active state . They The high-resolution structure of the Gas-bound b2-adrenergic recep- 3 5 consist of two major classes: monomeric small G proteins and hetero- tor (b2AR) provided crucial insights into the receptor–G protein inter- trimeric G proteins4. While small G proteins and the a-subunit (Ga)of face and conformational changes in Ga upon receptor binding6,7. Recent 6 8 heterotrimeric G proteins both contain a GTPase domain (G-domain), studies described dynamic regions in Gas and Gai , the importance of ˚ Ga contains an additional helical domain (H-domain) and also forms a displacement of helix 5 (H5) of Gas and Gat by up to 6 A into the complex with the Gb and Gc subunits.
    [Show full text]
  • Patients with Systemic Lupus Erythematosus Nucleotide-Releasing Protein 1 in a Subset of Defective Expression of Ras Guanyl
    Defective Expression of Ras Guanyl Nucleotide-Releasing Protein 1 in a Subset of Patients with Systemic Lupus Erythematosus This information is current as Shinsuke Yasuda, Richard L. Stevens, Tomoko Terada, of September 24, 2021. Masumi Takeda, Toko Hashimoto, Jun Fukae, Tetsuya Horita, Hiroshi Kataoka, Tatsuya Atsumi and Takao Koike J Immunol 2007; 179:4890-4900; ; doi: 10.4049/jimmunol.179.7.4890 http://www.jimmunol.org/content/179/7/4890 Downloaded from References This article cites 39 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/7/4890.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Defective Expression of Ras Guanyl Nucleotide-Releasing Protein 1 in a Subset of Patients with Systemic Lupus Erythematosus1 Shinsuke Yasuda,2* Richard L.
    [Show full text]
  • Stearic Acid Blunts Growth-Factor Signaling Via Oleoylation of GNAI Proteins
    ARTICLE https://doi.org/10.1038/s41467-021-24844-9 OPEN Stearic acid blunts growth-factor signaling via oleoylation of GNAI proteins Hana Nůsková 1,2, Marina V. Serebryakova 3,5, Anna Ferrer-Caelles 1,2,5, Timo Sachsenheimer4, Christian Lüchtenborg4, Aubry K. Miller 1, Britta Brügger 4, Larisa V. Kordyukova 3 & ✉ Aurelio A. Teleman 1,2 Covalent attachment of C16:0 to proteins (palmitoylation) regulates protein function. Pro- 1234567890():,; teins are also S-acylated by other fatty acids including C18:0. Whether protein acylation with different fatty acids has different functional outcomes is not well studied. We show here that C18:0 (stearate) and C18:1 (oleate) compete with C16:0 to S-acylate Cys3 of GNAI proteins. C18:0 becomes desaturated so that C18:0 and C18:1 both cause S-oleoylation of GNAI. Exposure of cells to C16:0 or C18:0 shifts GNAI acylation towards palmitoylation or oleoy- lation, respectively. Oleoylation causes GNAI proteins to shift out of cell membrane detergent-resistant fractions where they potentiate EGFR signaling. Consequently, exposure of cells to C18:0 reduces recruitment of Gab1 to EGFR and reduces AKT activation. This provides a molecular mechanism for the anti-tumor effects of C18:0, uncovers a mechanistic link how metabolites affect cell signaling, and provides evidence that the identity of the fatty acid acylating a protein can have functional consequences. 1 German Cancer Research Center (DKFZ), Heidelberg, Germany. 2 Heidelberg University, Heidelberg, Germany. 3 A.N. Belozersky Institute of Physico- Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia. 4 Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
    [Show full text]
  • Bioinformatics Analysis of Differentially Expressed Genes in Rotator Cuff Tear
    Ren et al. Journal of Orthopaedic Surgery and Research (2018) 13:284 https://doi.org/10.1186/s13018-018-0989-5 RESEARCHARTICLE Open Access Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data Yi-Ming Ren†, Yuan-Hui Duan†, Yun-Bo Sun†, Tao Yang and Meng-Qiang Tian* Abstract Background: Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways. Methods: The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made. Results: Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT. Conclusion: These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
    [Show full text]