Stefan Banach Tanja Rakovic Stefan Banach’S Life

Total Page:16

File Type:pdf, Size:1020Kb

Stefan Banach Tanja Rakovic Stefan Banach’S Life Stefan Banach Tanja Rakovic Stefan Banach's life Stefan Banach was a Polish mathematician who was born in Krak´ow,Poland (formerly part of Austria- Hungary) on March 30, 1892. His father was a tax official named Stefan Greczek who was not married to Stefan's mother. There is no information as to why Stefan does not have the same surname as his father, but he did have the same first name. Stefan Banach's mother disappeared from his life after he was baptized at four days old; therefore nothing more is known about her. Even her name remains a mystery; on Banach's birth certificate his mother is named Katarzyna Banach, but there is speculation as to whether that is her actual name. The mystery continued into Stefan Banach's life when he asked his father about the identity of his mother, but he would not reveal anything. Figure 1: Stefan Banach at age 44 in Lvov, 1936 Stefan Banach was later taken to his father's birthplace in Ostrowsko, which was 50 kilometers south of Krak´ow.Stefan Greczek arranged for Banach to live with his grandmother, but she became ill and so Banach was placed with a woman named Franciszka Plowa. Banach was later introduced to a French man named Juliusz Mien. He had lived in Poland since 1870 while being a photographer and a translator of Polish literary works. Mien was the only intelligent person in Stefan Banach's life. Therefore, it can be concluded that he was the person who encouraged him to learn more about the topics he was interested in. He recognized Banach's talents, and allowed his to appreciate education by teaching him French. Banach demonstrated his knowledge by doing well at the international mathematics conference he attended. Banach lived in decent conditions, especially because Franciszka P lowa's husband was the director of Hotel Krakowski at the time Banach lived with them, and they were economically stable. Banach took this example of success, as well as his knowledge from Mien, to make himself into intellectual man he became. Even though he did not have the best childhood because his mother was not in his life, he did have a normal relationship with his father and learned much from other people. Banach started his schooling by attending primary school, which he completed in 1902. At age 10, he enrolled in the Henryk Sienkiewicz Gymnasium No 4 in Krak´ow.He exceeded in his studies, with mathematics and the natural sciences being his best subjects. A fellow classmate named Witold Wilkosz left the school to attend a better one, but still remained in contact with Banach. The school focused more on the humanities, and was not considered as exclusive, but it had good connections to higher institutions such as the Jagiellonian University and the Polish Academy of Arts and Sciences, so Banach stayed. Nevertheless, Wilkosz and Banach were very similar in nature; both thought quickly and could solve mathematical problems quickly. Marian Albi´nskiwas also one of Banach's classmates. He transferred to the Sobieski Grammar school because of a conflict about a failing grade between him and a teacher who taught Greek. In the school system at this time during the Austro-Hungarian annexation, a situation like this was punishable by a fine of 20 crowns (this equaled to about $9.35 at the time and $227.29 currently). Albi´nskihas described Banach as \mild mannered with a gentle sense of humor". Banach would often tutor others for money, but he would never charge his own schoolmates. Many times, Banach and his other friend Wilkosz would discuss a challenging question. This shows Banach's deep interest in mathematics ever since he was young. Even though the schools at the time taught Latin, Greek and other modern languages, Banach was diligent and attended school regularly. However, he was not very interested in these classes and even his math teachers were not fully knowledgable on the subject. The staff at the school taught rigorously overall in other subjects which allowed Banach to set himself up to higher standards. Despite Banach's excellent grades and mathematical skills, his final examination led to poorer grades, but he still wanted to study mathematics. He felt that nothing new could be discovered in the field, so he chose to study engineering. He was an outstanding mathematician that just may have not had enough information to make the choice to stay in the field of mathematics. Later, Banach stated that his interest in mathematics was inspired by Dr. Kamil Kraft, who taught mathematics and physics. He also admitted to Professor Andrzej Turowicz that he was wrong about saying that nothing new could be discovered in mathematics because it was already so advanced. There is always something new that could be discovered or expanded upon. After he left school, Banach's father informed him that he was on his own, which came to no surprise because he never supported Banach much. Therefore, he left Krak´owand went to Lvov. There he enrolled in the Faculty of Engineering at Lvov Technical University. During this time, Lvov was the epicenter of Polish culture and learning. It was a diverse city, with Polish, Jewish, Ukranian, Armenian and Austrian inhabitants. Therefore, trade and knowledge of the humanities flourished. Eventually knowledge about science increased, and this was in large part due to Stefan Banach. Not much is known about his early life in Lvov, but it is likely that he continued to tutor to make a living. He continued to contribute to mathematics even throughout WWI and WWII. He died on August 31, 1945 from lung cancer in Lvov, Ukranian S.S.R, which is now called Lviv, Ukraine. He died in the Riedl family household; they were some of his closest friends. Banach died before his time at age 53, with many ideas and plans that went unfulfilled. Stefan Banach's mathematical works Stefan Banach founded modern functional analysis and made significant contributions to the theory of topo- logical vector spaces. In 1920, he wrote a dissertation that defined the \Banach space", which is a complete 2 normed vector space. Others introduced ideas related to this field such as Norbert Wiener, but Banach was the first to develop the theory. Maurice Fr´echet coined the term \Banach Space", and\Banach algebras" were also named after him. A more detailed definition of Banach space is \a real or complex normed vector space that is complete as a metric space under the metric d(x,y)= jjx − yjj induced by the norm." This is important because the Cauchy sequences as well as the Banach spaces converge. The Banach space allows the computation of vector length and the distance between vectors, which related to a Cauchy sequence of vectors because these vectors always meet at a limit within the space. A Banach algebra is defined to be \a Banach space where the norm satisfies jjxyjj ≤ jjxjj ∗ jjyjj". This means that the norm of the product is less than or equal to the product of the norms; it only works for real and complex numbers. If the Banach space becomes a normed space, then that structure is called a normed algebra. Moreover, a Banach algebra is \unital" if it has an identity element for the multiplication whose norm is 1 and \commutative" if the identity element's multiplication is commutative. Banach's contribution is important because of his systematic theory of functional analysis. Before, there had only been some results that were later discovered to fit in the theory. The theory also generalized and expanded on ideas provided by Volterra, Hilbert, and Fredholm regarding integral equations. The Hahn-Banach theorem is essential to functional analysis. It shows that the study of dual space is considered \interesting" if there are enough continuous linear functionals defined on every normed vector space. Another version of this theorem is called the Hahn-Banach separation theorem, which is commonly used in convex geometry. The Hans-Banach theorem is named after Hans Hahn and Stefan Banach who proved it in the late 1920s. However, a man named Eduard Helly proved that a special case exists for the space C [a,b] of continuous functions. The Banach-Steinhaus theorem \relates the size of a certain subset of points defined relative to a family of linear mappings between topological vector spaces". Other corollaries have stemmed from this theorem as well. For example, the uniform boundedness principle which states that any family of continuous linear operators between Banach spaces is uniformly bounded provided that it is bounded pointwise, resulted in an immediate corollary relating to the Banach-Steinhaus theorem. The Banach Tarski paradox (which is a theorem that is so strange) first appeared in a 1926 paper by Alfred Tarski and Stefan Banach publised in \Fundamenta Mathematicae." The paper itself was called \Sur la d´ecomposition des ensembles de points en parties respectivement congruent." This translates to \On the decomposition of sets of points in respectively congruent parts." The paradox states that a ball can be divided up into smaller parts that can be put back together to create two balls that are identical to the first one. The axiom of choice, which states that given a non-empty set, one can create a new set by choosing an element from the first set, is needed to define the breakdown. However, other mathematicians question the use of this axiom because it is able to give a \non-intuitive" result. Nevertheless, this paradox contributed to the work being done on axiomatic set theory during this time. Figure 2: An illustration of the Banach Tarski paradox.
Recommended publications
  • Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
    Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire.
    [Show full text]
  • Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe
    Vita Mathematica 18 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Vita Mathematica Volume 18 Edited by Martin MattmullerR More information about this series at http://www.springer.com/series/4834 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Author Hugo Steinhaus (1887–1972) Translator Abe Shenitzer Brookline, MA, USA Editors Robert G. Burns York University Dept. Mathematics & Statistics Toronto, ON, Canada Irena Szymaniec Wrocław, Poland Aleksander Weron The Hugo Steinhaus Center Wrocław University of Technology Wrocław, Poland Vita Mathematica ISBN 978-3-319-21983-7 ISBN 978-3-319-21984-4 (eBook) DOI 10.1007/978-3-319-21984-4 Library of Congress Control Number: 2015954183 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
    Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems.
    [Show full text]
  • New Publications Offered by The
    New Publications Offered by the AMS To subscribe to email notification of new AMS publications, please go to http://www.ams.org/bookstore-email. Algebra and Algebraic Contemporary Mathematics, Volume 544 June 2011, 159 pages, Softcover, ISBN: 978-0-8218-5259-0, LC Geometry 2011007612, 2010 Mathematics Subject Classification: 17A70, 16T05, 05C12, 43A90, 43A35, 43A75, 22E27, AMS members US$47.20, List US$59, Order code CONM/544 New Developments in Lie Theory and Its On Systems of Applications Equations over Free Carina Boyallian, Esther Galina, Partially Commutative and Linda Saal, Universidad Groups Nacional de Córdoba, Argentina, Montserrat Casals-Ruiz and Ilya Editors Kazachkov, McGill University, This volume contains the proceedings of Montreal, QC, Canada the Seventh Workshop in Lie Theory and Its Applications, which was held November 27–December 1, 2009 at Contents: Introduction; Preliminaries; the Universidad Nacional de Córdoba, in Córdoba, Argentina. The Reducing systems of equations over workshop was preceded by a special event, “Encuentro de teoria de G to constrained generalised equations over F; The process: Lie”, held November 23–26, 2009, in honor of the sixtieth birthday Construction of the tree T ; Minimal solutions; Periodic structures; of Jorge A. Vargas, who greatly contributed to the development of The finite tree T0(Ω) and minimal solutions; From the coordinate ∗ T Lie theory in Córdoba. group GR(Ω ) to proper quotients: The decomposition tree dec and the extension tree Text; The solution tree Tsol(Ω) and the main This volume focuses on representation theory, harmonic analysis in theorem; Bibliography; Index; Glossary of notation. Lie groups, and mathematical physics related to Lie theory.
    [Show full text]
  • L. Maligranda REVIEW of the BOOK by ROMAN
    Математичнi Студiї. Т.46, №2 Matematychni Studii. V.46, No.2 УДК 51 L. Maligranda REVIEW OF THE BOOK BY ROMAN DUDA, “PEARLS FROM A LOST CITY. THE LVOV SCHOOL OF MATHEMATICS” L. Maligranda. Review of the book by Roman Duda, “Pearls from a lost city. The Lvov school of mathematics”, Mat. Stud. 46 (2016), 203–216. This review is an extended version of my two short reviews of Duda's book that were published in MathSciNet and Mathematical Intelligencer. Here it is written about the Lvov School of Mathematics in greater detail, which I could not do in the short reviews. There are facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach's book and also books by Mazur, Schauder and Tarski. My two short reviews of Duda’s book were published in MathSciNet [16] and Mathematical Intelligencer [17]. Here I write about the Lvov School of Mathematics in greater detail, which was not possible in the short reviews. I will present the facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach’s book and also books by Mazur, Schauder and Tarski. So let us start with a discussion about Duda’s book. In 1795 Poland was partioned among Austria, Russia and Prussia (Germany was not yet unified) and at the end of 1918 Poland became an independent country.
    [Show full text]
  • L. Maligranda REVIEW of the BOOK BY
    Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems.
    [Show full text]
  • Leaders of Polish Mathematics Between the Two World Wars
    COMMENTATIONES MATHEMATICAE Vol. 53, No. 2 (2013), 5-12 Roman Duda Leaders of Polish mathematics between the two world wars To Julian Musielak, one of the leaders of post-war Poznań mathematics Abstract. In the period 1918-1939 mathematics in Poland was led by a few people aiming at clearly defined but somewhat different goals. They were: S. Zaremba in Cracow, W. Sierpiński and S. Mazurkiewicz in Warsaw, and H. Steinhaus and S. Banach in Lvov. All were chairmen and editors of mathematical journals, and each promoted several students to continue their efforts. They were highly successful both locally and internationally. When Poland regained its independence in 1918, Polish mathematics exploded like a supernova: against a dark background there flared up, in the next two deca- des, the Polish Mathematical School. Although the School has not embraced all mathematics in the country, it soon attracted common attention for the whole. Ho- wever, after two decades of a vivid development the School ended suddenly also like a supernova and together with it there silenced, for the time being, the rest of Polish mathematics. The end came in 1939 when the state collapsed under German and Soviet blows from the West and from the East, and the two occupants cooperated to cut short Polish independent life. After 1945 the state and mathematics came to life again but it was a different state and a different mathematics. The aim of this paper is to recall great leaders of the short-lived interwar Polish mathematics. By a leader we mean here a man enjoying an international reputation (author of influential papers or monographs) and possessing a high position in the country (chairman of a department of mathematics in one of the universities), a man who had a number of students and promoted several of them to Ph.D.
    [Show full text]
  • Polish Mathematicians and Mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire)
    Science in Poland Stanisław Domoradzki ORCID 0000-0002-6511-0812 Faculty of Mathematics and Natural Sciences, University of Rzeszów (Rzeszów, Poland) [email protected] Małgorzata Stawiska ORCID 0000-0001-5704-7270 Mathematical Reviews (Ann Arbor, USA) [email protected] Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire) Abstract In this article we present diverse experiences of Polish math- ematicians (in a broad sense) who during World War I fought for freedom of their homeland or conducted their research and teaching in difficult wartime circumstances. We discuss not only individual fates, but also organizational efforts of many kinds (teaching at the academic level outside traditional institutions, Polish scientific societies, publishing activities) in order to illus- trate the formation of modern Polish mathematical community. PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Domoradzki, Stanisław; Stawiska, Małgorzata 2018: Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire. Studia Historiae Scientiarum 17, pp. 23–49. Available online: https://doi.org/10.4467/2543702XSHS.18.003.9323. ARCHIVE RECEIVED: 2.02.2018 LICENSE POLICY ACCEPTED: 22.10.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Stanisław Domoradzki, Małgorzata Stawiska Polish mathematicians and mathematics in World War I ... In Part I we focus on mathematicians affiliated with the ex- isting Polish institutions of higher education: Universities in Lwów in Kraków and the Polytechnical School in Lwów, within the Austro-Hungarian empire.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Mathematics in the Austrian-Hungarian Empire
    Mathematics in the Austrian-Hungarian Empire Stanisław Domoradzki Mathematics in Lwów before the Lwów Matematical School In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST. (English). Praha: Matfyzpress, 2010. pp. 55–73. Persistent URL: http://dml.cz/dmlcz/400818 Terms of use: © Bečvářová, Martina © Binder, Christa Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz MATHEMATICS IN LWÓW BEFORE THE LWÓW MATEMATICAL SCHOOL STANISŁAW DOMORADZKI Abstract: The article reveals a less known Polish environment of Lwów in the period of Galician autonomy, its aspirations and achievements. This environment had a significant impact on the success of the wider understood Polish Mathematical School in the two interwar decades. The article uses archival material and rare books. 1 Introduction The history of mathematics in Lwów before the Lwów Mathematical School is little known. For instance, professor Vishik from Moscow University writes: In general, S. Banach was a genius-mathematician. And it is absolutely unknown how such a powerful school of functional analysis could appear in such a city like Lwów. The “Banach School” even published its own journal, “Studia Mathematica”. 10 issues of this journal appeared. In this article we try to answer the questions posed by Vishik.
    [Show full text]
  • European Revivals from Dreams of a Nation to Places of Transnational Exchange
    European Revivals From Dreams of a Nation to Places of Transnational Exchange EUROPEAN REVIVALS From Dreams of a Nation to Places of Transnational Exchange FNG Research 1/2020 Akseli Gallen-Kallela, Illustration for the novel, Seven Brothers, by Aleksis Kivi, 1907, watercolour and pencil, 23.5cm x 31.5cm. Ahlström Collection, Finnish National Gallery / Ateneum Art Museum Photo: Finnish National Gallery / Hannu Aaltonen European Revivals From Dreams of a Nation to Places of Transnational Exchange European Revivals From Dreams of a Nation to Places of Transnational Exchange European Revivals. From Dreams of a Nation to Places of Transnational Exchange FNG Research 1/2020 Publisher Finnish National Gallery, Helsinki Editors-in-Chief Anna-Maria von Bonsdorff and Riitta Ojanperä Editor Hanna-Leena Paloposki Language Revision Gill Crabbe Graphic Design Lagarto / Jaana Jäntti and Arto Tenkanen Printing Nord Print Oy, Helsinki, 2020 Copyright Authors and the Finnish National Gallery Web magazine and web publication https://research.fng.fi/ ISBN 978-952-7371-08-4 (paperback) ISBN 978-952-7371-09-1 (pdf) ISSN 2343-0850 (FNG Research) Table of Contents Foreword .................................................................................................. vii ANNA-MARIA VON BONSDORFF AND RIITTA OJANPERÄ VISIONS OF IDENTITY, DREAMS OF A NATION Ossian, Kalevala and Visual Art: a Scottish Perspective ........................... 3 MURDO MACDONALD Nationality and Community in Norwegian Art Criticism around 1900 .................................................. 23 TORE KIRKHOLT Celticism, Internationalism and Scottish Identity: Three Key Images in Focus ...................................................................... 49 FRANCES FOWLE Listening to the Voices: Joan of Arc as a Spirit-Medium in the Celtic Revival .............................. 65 MICHELLE FOOT ARTISTS’ PLACES, LOCATION AND MEANING Inventing Folk Art: Artists’ Colonies in Eastern Europe and their Legacy .............................
    [Show full text]
  • Stefan Banach
    Stefan Banach Jeremy Noe March 17, 2005 1 Introduction 1 The years just before and after World War I were perhaps the most exciting and influential years in the history of science. In 1901, Henri Lebesgue formu- lated the theory of measure and in his famous paper Sur une g´en´eralisation de l’int´egrale definie, defining a generalization of the Riemann integral that had important ramifications in modern mathematics. Until that time, mathemat- ical analysis had been limited to continuous functions based on the Riemann integration method. Alfred Whitehead and Bertrand Russell published the Principia Mathematica in an attempt to place all of mathematics on a logical footing, and to attempt to illustrate to some degree how the various branches of mathematics are intertwined. New developments in physics during this time were beyond notable. Al- bert Einstein formulated his theory of Special Relativity in 1905, and in 1915 published the theory of General Relativity. Between the relativity the- ories, Einstein had laid the groundwork for the wave-particle duality of light, for which he was later awarded the Nobel Prize. Quantum mechanics was formulated. Advances in the physical sciences and mathematics seemed to be coming at lightning speed. The whole western world was buzzing with the achievements being made. Along with the rest of Europe, the Polish intellectual community flourished during this time. Prior to World War I, not many Polish scolastics pursued research related careers, focusing instead 1Some of this paragraph is paraphrased from Saint Andrews [11]. 1 on education if they went on to the university at all.
    [Show full text]