Cyclone Gonu - Strongest Storm Ever Recorded June 5, 2007 UNCLASSIFIED

Total Page:16

File Type:pdf, Size:1020Kb

Cyclone Gonu - Strongest Storm Ever Recorded June 5, 2007 UNCLASSIFIED Arabian Peninsula: Cyclone Gonu - Strongest Storm Ever Recorded June 5, 2007 UNCLASSIFIED Cylcone Gonu, expected to be the strongest storm ever recorded in the Arabian Peninsula, is headed for the oil-ric6h0 °E 65°E Gulf of Oman region and is expected to reach landfall in Iran on Thursday, June 7th. The storm is expected to lose strength throughout the week. Rough seas are expected in the Strait of Hormuz, the transport route for two-fifths of the world's oil, potentially affecting oil pricEesf.a hAacncording to U.S. and Omani weather monitoring services, this cyclone Afghanistan may be accompanied by heavy thunderstorms, strong winds, high waves, and ocean surges and could have a significant impact on the coastal regions of Oman beginning on theY eazvdening of June 5. U.S. Embassy Muscat has released an advisory to all American citizens in Oman to stay indoors and to expect overflowing wadis, flooded roads, and power outages. Kandahar Iraq Al Basrah 30°N Kuwait Zahedan Shiraz Iran Kuwait Persian Gulf June 8, 12:00 GMT Pakistan Bahrain of Hormuz June 7, 12:00 GMT Strait Qatar Hyderabad June 7, 0:00 GMT 25°N Doha 25°N Gulf of Karachi Abu Dhabi Oman June 6, 12:00 GMT Saudi Arabia Arabian Sea U.A.E. India Sources: Associated Press, NOAA, LandScan, Muscat TropicalStormRisk.com June 6, 0:00 GMT Estimated population per square kilometer IRAN PAKISTAN June 5, 12:00 GMT 0 - 10 Gulf of Oman 10 - 50 Arabian Sea INDIA Oman Past 50 - 100 100 - 500 Track OMAN 500 - 1,000 1,000 - 5,000 5,000 - 127,481 Tropical Tropical Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 HUMANITAIRIANU Cyclone Gonu Depr. Storm INFORMATION UNIT INDIAN OCEAN U.S Department of State 0 50 100 200 300 400 500 Km [email protected] http://hiu.state.gov 59°E 65°E June 4 at 0600 Z, 150 mph sustained winds UNCLASSIFIED.
Recommended publications
  • North America Other Continents
    Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area.
    [Show full text]
  • Effects of Europe's Commercial Expansion Into the Indian Ocean On
    Effects of Europe’s Commercial Expansion into the Indian Ocean on Asian and African Coastal Economies, 1600-1650 Johannes Lang 8GRG Neulandschule Grinzing Alfred Wegener-Gasse 10-12 1190 Wien 29.1.2016 Betreut von Mag. Ruth Schabauer Abstract This work examines the impact of Europeans’ commercial expansion into the Indian Ocean on the local Asian and African economies between 1600 and 1650. By studying this historically important period of time, we can also gain a deeper understanding of modern globalization and of Europe’s continuing political and economic influence today. The different consequences for the various regions bordering the Indian Ocean are compared, contrasted, and evaluated. For my research I use primarily books and articles but also rely on the analysis of economic data. Epic poems from Mughal writers as well as modern studies are included so that the reader may gain thorough insights into the topic. As I try to tell history from an Afro-Asian perspective, I let both 17th century and contemporary voices native to the Indian Ocean have their say. I conclude in my study that the consequences of trade with the Europeans differed greatly between the heterogeneous regions. The nature of these consequences depended on the socioeconomic structure as well as on the environmental particularities of the regions in question. Some economies profited from the new situation; others suffered from the altered trade system. Interestingly, many effects of 17th century globalization, such as increased competition with countries far away and a heightened reliance on foreign trade, are visible also in today’s process of globalization.
    [Show full text]
  • India in the Indian Ocean Donald L
    Naval War College Review Volume 59 Article 6 Number 2 Spring 2006 India in the Indian Ocean Donald L. Berlin Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Berlin, Donald L. (2006) "India in the Indian Ocean," Naval War College Review: Vol. 59 : No. 2 , Article 6. Available at: https://digital-commons.usnwc.edu/nwc-review/vol59/iss2/6 This Article is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Color profile: Generic CMYK printer profile Composite Default screen Berlin: India in the Indian Ocean INDIA IN THE INDIAN OCEAN Donald L. Berlin ne of the key milestones in world history has been the rise to prominence Oof new and influential states in world affairs. The recent trajectories of China and India suggest strongly that these states will play a more powerful role in the world in the coming decades.1 One recent analysis, for example, judges that “the likely emergence of China and India ...asnewglobal players—similar to the advent of a united Germany in the 19th century and a powerful United States in the early 20th century—will transform the geopolitical landscape, with impacts potentially as dramatic as those in the two previous centuries.”2 India’s rise, of course, has been heralded before—perhaps prematurely. How- ever, its ascent now seems assured in light of changes in India’s economic and political mind-set, especially the advent of better economic policies and a diplo- macy emphasizing realism.
    [Show full text]
  • Escap/77/Inf/1
    ESCAP/77/INF/1 Distr.: General 12 March 2021 English only Economic and Social Commission for Asia and the Pacific Seventy-seventh session Bangkok and online, 26-29 April 2021 Items 4 (f) and (i) of the provisional agenda* Review of the implementation of the 2030 Agenda for Sustainable Development in Asia and the Pacific and issues pertinent to the subsidiary structure of the Commission: Committee on Environment and Development Committee on Disaster Risk Reduction Annual reports of international and intergovernmental organizations provided to the Commission** Summary The present document contains overviews of the annual reports of the following international and intergovernmental organizations: the Coordinating Committee for Geoscience Programmes in East and Southeast Asia; the Mekong River Commission; the Typhoon Committee; and the Panel on Tropical Cyclones. These organizations were established under the auspices of the Economic and Social Commission for Asia and the Pacific to work on areas under their respective competence to support economic and social development in the region. The Commission may wish to comment on the work of these organizations and take note of the present document. I. Coordinating Committee for Geoscience Programmes in East and Southeast Asia 1. The Coordinating Committee for Geoscience Programmes in East and Southeast Asia has been established under the Economic and Social Commission for Asia and the Pacific (ESCAP) since 1966. In 1991, the Coordinating Committee for Geoscience Programmes in East and Southeast Asia has become an independent intergovernmental organization. With a vision to be “a premier intergovernmental Earth Science Organization in East and Southeast Asia”, the Coordinating Committee for Geoscience Programmes in East and Southeast Asia has worked towards its mission to contribute significantly to the economic development and sustainable management of the environment and of improving the quality of life of its member countries by the application of Earth Science knowledge.
    [Show full text]
  • ICRI Indian Ocean Factsheet
    Indian Ocean Factsheet Communicating the Economic and Social Importance of Coral Reefs for Indian Ocean countries This fact sheet will provide you with information extracted from economic studies Indian Ocean Factsheet BASICS Coral reefs are among the most productive ecosystems on the planet. They cover less than 1% of the ocean floor but support 25% of ocean life. Coral reefs provide beautiful seascapes which allow for a range of recreational activities and improve the attractiveness of the country for international tourism markets. Coral reefs absorb a huge amount of swell energy from waves, protecting lives, coastal properties and beaches from flooding events and hurricanes. Many fisheries exist only due to the presence of coral reefs, whether as nurseries or adult habitats. This sector provides food and incomes for fishers and associated industries. More than 65% of reefs in the region are at risk from local threats, with one-third rated at high or very high risk. Primary threats are man made - unsustainable fishing, land based sources of marine pollution (including sedimentation) and more recently Global Climate Change. Local solutions exist !! Developing networks of Marine Protected Areas, implementing sustainable fishing practices (especially protecting herbivores) and improving water quality are local actions that could increase the resilience of coral reefs to global threats. Reefs at Risk in the Indian Ocean Indian Ocean Factsheet REGIONAL DATA Estimates show the 28,000 km2 of reefs in the Indian Ocean provide tangible benefits of at least US$2b annually to the economies of the countries. Tourism benefits represent 70% of this value with Fisheries representing the remainer.
    [Show full text]
  • Coastal Sea Level Response to the Tropical Cyclonic Forcing in the North Indian Ocean’ by Mehta Et Al
    16 April 2014 To The Editor Ocean Science Sub: Reply to the comments of reviewer#2 on ’Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean’ by Mehta et al. (OSD). Sir, Kindly find the reply to the comments of reviewer#2 on the manuscript submitted by Mehra et al. (OSD) entitled "Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean". Thanks & regards Prakash Mehra NIO, Goa, India Interactive comment on “Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean” by P. Mehra et al. Anonymous Referee #2 Received and published: 22 March 2014 Reviewer's comment: This paper describes and analyses the coastal sea level response to two storm events at the end of 2011 in the north Indian Ocean. The authors use the sea level and atmospheric observations at 9 locations along the Indian coast and perform a classical but robust analysis (spectral analyses and multi-linear regression). Although there are no new findings, it gives a fair idea of the causes of the sea level variation in response to these strong atmospheric events. The Figures, Tables and References are clear and support well the present text. It is also interesting to have an analysis done at large scale and on both sides of the Indian Subcontinent (Arabian Sea and Bay of Bengal). The scientific quality of the paper is good but in my opinion the presentation of the results is poor and makes the paper hard to read and the purpose of the authors difficult to follow.
    [Show full text]
  • Analysis of Average Rainfall Super Cyclone by Using Double Integration Technique
    International Journal of Scientific Research in ___________________________ Research Paper . Mathematical and Statistical Sciences Volume-7, Issue-2, pp.82-85, April (2020) E-ISSN: 2348-4519 DOI: https://doi.org/10.26438/ijsrmss/v7i2.8285 Analysis of Average Rainfall Super Cyclone by using Double Integration Technique A. Tiwari1, Y. K. Rajoria2*, R. Boadh3, R. Singh4 1,2,3,4 Department of Mathematics, KR Mangalam University, Gurugram, Haryana, India *Corresponding Author: [email protected] Tel.: +91 9897108103 Available online at: www.isroset.org Received: 06/Mar/2020, Accepted: 10/Apr/2020, Online: 30/Apr/2020 Abstract— Cyclones are highly calamitous weather phenomena initiating harm to the life and physical organization in tropical seafaring countries. Cyclones form over whole-hearted tropical oceans and change to the land under the act of routing forces. India's eastern coastline is one of the most violent wind inclined regions on the planet. Despite the fact that the coastline of Orisha has been just about 17% of the Indian eastern coastline, yet Orisha has been influenced by about 35% of all cyclonic and serious cyclonic tempests that have crossed the eastern coastline and related tempest floods that have been regularly immersing huge areas along the coasts. A Cyclone is an enormous scale air mass that turns around a solid focal point of low climatic weight caused due to low atmospheric pressure over oceans resulting in rainfall in the coastal regions. The results of this study indicate that the double integration technique has good potential for calculating the average rainfall during the super cyclone. Keywords—Tempests, Tropical Cyclone, Super Cyclone, Rainfall, Double IntegrationTechinque I.
    [Show full text]
  • Study Report on Gaja Cyclone 2018 Study Report on Gaja Cyclone 2018
    Study Report on Gaja Cyclone 2018 Study Report on Gaja Cyclone 2018 A publication of: National Disaster Management Authority Ministry of Home Affairs Government of India NDMA Bhawan A-1, Safdarjung Enclave New Delhi - 110029 September 2019 Study Report on Gaja Cyclone 2018 National Disaster Management Authority Ministry of Home Affairs Government of India Table of Content Sl No. Subject Page Number Foreword vii Acknowledgement ix Executive Summary xi Chapter 1 Introduction 1 Chapter 2 Cyclone Gaja 13 Chapter 3 Preparedness 19 Chapter 4 Impact of the Cyclone Gaja 33 Chapter 5 Response 37 Chapter 6 Analysis of Cyclone Gaja 43 Chapter 7 Best Practices 51 Chapter 8 Lessons Learnt & Recommendations 55 References 59 jk"Vªh; vkink izca/u izkf/dj.k National Disaster Management Authority Hkkjr ljdkj Government of India FOREWORD In India, tropical cyclones are one of the common hydro-meteorological hazards. Owing to its long coastline, high density of population and large number of urban centers along the coast, tropical cyclones over the time are having a greater impact on the community and damage the infrastructure. Secondly, the climate change is warming up oceans to increase both the intensity and frequency of cyclones. Hence, it is important to garner all the information and critically assess the impact and manangement of the cyclones. Cyclone Gaja was one of the major cyclones to hit the Tamil Nadu coast in November 2018. It lfeft a devastating tale of destruction on the cyclone path damaging houses, critical infrastructure for essential services, uprooting trees, affecting livelihoods etc in its trail. However, the loss of life was limited.
    [Show full text]
  • The Complicating Sea: the Indian Ocean As Method
    The Complicating Sea: The Indian Ocean as Method Isabel Hofmeyr Comparative Studies of South Asia, Africa and the Middle East, Volume 32, Number 3, 2012, pp. 584-590 (Article) Published by Duke University Press For additional information about this article http://muse.jhu.edu/journals/cst/summary/v032/32.3.hofmeyr.html Access provided by University Of Pennsylvania (13 May 2014 11:12 GMT) The Complicating Sea: The Indian Ocean as Method Isabel Hofmeyr cross a number of domains, the Indian Ocean has moved to the fore. For interna- tional relations experts and foreign policy commentators, the Indian Ocean world represents a strategic arena where the forces shaping a post- American world intersect most visibly. These include the rise of India and China as major economic powers and Sino- Indian competition over oil sea- lanes and African markets and minerals. In a recent book Monsoon: The Indian Ocean and the Future of American Power, security analyst Robert Kaplan describes the Indian Ocean as a zone “where global power dynamics will be revealed.” 1 It is the “coming strategic arena of the twenty- first century.” 2 Within the academy, as transnational and oceanic forms of analysis become more prom- inent, the Indian Ocean attracts attention, especially as a domain that offers rich possibilities for working beyond the templates of the nation- state and area studies. Importantly, the Indian Ocean makes visible a range of lateral networks that fall within the Third World or Global South. It is hence of particular relevance to those pursuing post – ​area studies scholarship and has much to say to the themes of this special issue on comparative literature across Africa, the Middle East, and South Asia.
    [Show full text]
  • Press Release-5
    Government of India Earth System Science Organisation Ministry of Earth Sciences India Meteorological Department Earth System Science Organisation PRESS RELEASE-5 Time of issue: 1330 hours IST Dated: 28-10-2019 Sub: (a) Super Cyclonic Storm over eastcentral Arabian Sea to weaken gradually from 28th evening and (b) development of fresh low pressure area over Equatorial Indian Ocean to the south of Sri Lanka (a) Super Cyclonic Storm over eastcentral Arabian Sea to weaken gradually from 28th evening Yesterday’s Super Cyclonic Storm “KYARR” (pronounced as KYARR) over eastcentral Arabian Sea moved west-northwestwards and lay centered near latitude 18.2°N and longitude 65.0°E over eastcentral Arabian Sea, about 830 km west-southwest of Mumbai (Maharashtra), 1160 km east-northeast of Salalah (Oman) and 690 km east-southeast of Masirah (Oman). It is very likely to move west-northwestwards till 30th October re-curve west- southwestwards thereafter and move towards Gulf of Aden off south Oman-Yemen coasts during subsequent 3 days. It is very likely to maintain the intensity of a Super Cyclonic Storm till 28th October evening and weaken gradually thereafter. Forecast track and intensity are given in the following table: Date/Time(IST) Position Maximum sustained Category of cyclonic disturbance (Lat. 0N/ long. surface 0E) wind speed (Kmph) 28.10.19/0830 18.2/65.0 230-240 gusting to 265 Super Cyclonic Storm 28.10.19/1130 18.4/64.8 220-230 gusting to 255 Super Cyclonic Storm 28.10.19/1730 18.6/64.3 210-220 gusting to 240 Extremely Severe Cyclonic Storm
    [Show full text]
  • Coastal Sea Level Response to the Tropical Cyclonic Forcing in the North
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 575–611, 2014 Open Access www.ocean-sci-discuss.net/11/575/2014/ Ocean Science doi:10.5194/osd-11-575-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Ocean Science (OS). Please refer to the corresponding final paper in OS if available. Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean P. Mehra1, S. Mohan1, P. Vethamony1, K. Vijaykumar1, T. M. Balakrishnan Nair2, Y. Agarvadekar1, K. Jyoti1, K. Sudheesh1, R. Luis1, S. Lobo1, and B. Harmalkar1 1CSIR-National Institute of Oceanography (NIO), Goa, India 2Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, Goa, India Received: 13 December 2013 – Accepted: 27 January 2014 – Published: 20 February 2014 Correspondence to: P. Mehra ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 575 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The study examines the observed storm-generated sea-level variation due to deep depression (Event-E1) in the Arabian Sea from 26 November–1 December 2011 and a cyclonic storm “THANE” (Event-E2) over the Bay of Bengal during 25–31 Decem- 5 ber 2011. The sea-level and surface meteorological measurements collected during these extreme events exhibit strong synoptic disturbances leading to storm surge up to 43 cm on the west coast and 29 cm on the east coast of India due to E1 and E2. E1 generated sea level oscillations at the measuring stations on the west coast (Ratnagiri, Verem and Karwar) and east coast (Mandapam and Tuticorin) of India with significant 10 energy bands centered at periods of 92, 43 and 23 min.
    [Show full text]
  • The Great Rift Valley the Great Rift Valley Stretches from the Floor of the Valley Becomes the Bottom Southwest Asia Through Africa
    --------t---------------Date _____ Class _____ Africa South of the Sahara Environmental Case Study The Great Rift Valley The Great Rift Valley stretches from the floor of the valley becomes the bottom Southwest Asia through Africa. The valley of a new sea. is a long, narrow trench: 4,000 miles (6,400 The Great Rift Valley is the most km) long but only 30-40 miles (48-64 km) extensive rift on the Earth's surface. For wide. It begins in Southwest Asia, where 30 million years, enormous plates under­ it is occupied by the Jordan River and neath Africa have been pulling apart. the Dead Sea. It widens to form the basin Large earthquakes have rumbled across of the Red Sea. In Africa, it splits into an the land, causing huge chunks of the eastern and western branch. The Eastern Earth's crust to collapse. Rift extends all the way to the shores of Year after year, the crack that is the the Indian Ocean in Mozambique. Great Rift Valley widens a bit. The change is small and slow-just a few centimeters A Crack in the Ea rth Most valleys are carved by rivers, but the Great Rift Valley per year. Scientists believe that eventually is different. Violent forces in the Earth the continent will rip open at the Indian caused this valley. The rift is actually Ocean. Seawater will pour into the rift, an enormous crack in the Earth's crust. flooding it all the way north to the Red Along the crack, Africa is slowly but surely splitting in two.
    [Show full text]