Superb Foliage Plants

Total Page:16

File Type:pdf, Size:1020Kb

Superb Foliage Plants DON’S superb foliage plants AUTUMN TV Don Burke says the latest generation of New Zealand cordylines SPECIAL will become some of our most popular plants because they bring fabulous year-round colour to gardens in almost all climate zones. new wave ‘Red Fountain’ ‘Kirkii’ ‘Electric Pink’ ‘Torbay Dazzler’ nz cordylines he recently released Low clumpers New Zealand CLUMPING TYPES T cordylines (Cordyline ‘Red Fountain’: long, thin, australis) are amongst the best arching burgundy-coloured leaves The clumping varieties from sprinklers. Since and most useful evergreen are the feature of this variety. It have multiple stems or this group stays low, garden plants ever released. grows 80cm to 1m tall, spreading growth points, creating they are in many ways They provide superb foliage a little over 1m wide. Multiple a shrub-like growth the most useful of all colours 365 days of the year, short stems emerge from the habit. Most are hybrids NZ cordylines. The best and they’ll do it in almost all base, producing a deep red, grassy with other species of of the group in our areas of Australia. They are look. Excellent in pots (38-45cm cordylines (usually C. opinion is ‘Red Fountain’. ‘Coffee and Cream’ ‘Red Sensation’ ‘Peko’ ‘Red Star’ one of the most popular plants diameter) or in the ground. banksii) and they may It has an excellent deep being sold in nurseries now. ‘Kirkii’: this one has broad, get crown rot if exposed red foliage colour, arch- In the past, these sorts of shorter leaves, multiple trunks to regular overhead ing leaves and is said strong leaf colours were mostly watering – especially to grow only 80cm tall. and grows to around 1m tall. confined to plants from the It has dense, dark green foliage tropics and subtropics, but which is not as weepy as other now you can create tropical types. It’s maybe best suited as effects even in cooler areas SINGLE-TRUNKED a pot plant, and is claimed to be such as Tasmania. Not only good on the coast, but most that, but cordylines (which are cordylines should be. pronounced ‘cord-ee-lines’) The single-trunked or plant labels tend to under- ‘Electric Pink’: this is the provide superb statements of taller-growing varieties state heights). We make most popular variety of all NZ geometry within a garden are outstanding foliage this point because if you cordylines. It has very narrow design. You cannot really fail plants. They grow into plant a taller-growing leaves (often 1cm wide or less) to notice them as you walk by. a single-trunked plant variety up against a and they are striped a gelato pink And there’s more: they make with a tuft of foliage at house, it’ll very likely and deeper silver-burgundy. excellent pot plants and suffer the top held above the grow up underneath Probably it’s the densest clumper ‘Purple Dazzler’ ‘Sundance’ ‘Burgundy Spire’ ‘Albertii’ bare trunk. Sometimes the eaves and look bent very few diseases or pest of the lot and it grows about the top is branched, and unsightly. Nonethe- problems, so they are perfect 1.5m tall. It’s best used in tropical- creating a fuller head. less, the taller-growing for low-maintenance gardens. themed gardens or in pots. The green parent spe- varieties can be pruned Broadly speaking, there are ‘Cabernett’: deep brownish cies grows 6-10m or back severely, which two groups of New Zealand red, shiny leaves are the feature more tall. These new will cause a number of cordylines: the low clumping of this variety. It produces mult- varieties have lower new shoots to emerge types that are mostly around iple stems and grows around 2m heights, but one could from the single trunk. 1m tall, and the taller-growing tall. The darker brownish tint reasonably expect the As a group, these varie- palm-tree-like ones that grow in the leaves allows this plant plants to grow to at least ties tend to be hardier from 3m to 10m tall. On to mix with many decorator 3-5m tall over time (but and less disease-prone. these pages we profile the colours. It’s suited to pot and best of both cordyline types. garden use in many situations. 50 Burke’s BACKYARD ‘Red Chocolate’ ‘Purple Sensation’ ‘Tauranga Bay’ ‘Cabernett’Burke’s BACKYARD 51 DON’S AUTUMN TV SPECIAL Taller types yellowish midrib – a good mini- ature version of its big mother. ‘Red Chocolate’: this cordy- ‘Sundance’: dark green leaves line develops a chocolate-red shade to pink at the base, creat- colour as it grows. It reaches ing an attractive red and green 3m or more tall and the foliage contrast. It grows 2m or more is quite glossy. It produces a but does not like over-watering. single trunk with several stout, ‘Peko’: this cordyline produces ascending branches over time. green leaves with carmine-red ‘Red Sensation’: its dark at the base on a plant growing red leaves age to a silvery-red to around 3m or more – another colour. The single trunk grows to very stylish bicolour. around 4m and it also branches ‘Torbay Dazzler’: 3-4m tall, at the top. Very useful foliage this has cream and green striped colour and quite a hardy plant. leaves with a pinkish midline on ‘Red Star’: with red to burg- the new leaves. The main cream undy coloured leaves, this is also areas are often on the edges and noted for its white to tan col- although very attractive from a oured flowers. It’s claimed to distance, they may get brownish only grow to 2m tall, but perhaps areas caused by sunburn. you could expect a bit more, ‘Albertii’: appears to be the as plant labels are conservative. same as Torbay Dazzler. ‘Burgundy Spire’: has deep burgundy coloured narrow leaves which may be retained growing tips USING CORDYLINES to near ground level. It grows around 4m tall and is noted for Once established, its cold-hardiness. In containers: these are situations – around Cordyline australis ‘Purple Dazzler’: despite the wonderful pot plants. modern houses and in a varieties and hybrids name, this is another chocolate- They tolerate full sun to jumble of tropical foliage. don’t need a lot of burgundy variety. It grows at part shade and will with- Used in moderation water. Nonetheless, least 2.5m tall and produces stand neglect. You’ll need around modern houses, regular watering of upright, pointed leaves. Like all to carefully consider pot they add class and style. the young plants is colours to complement In a Balinese or Thai New Zealand cordylines, it is essential. The best their strong foliage col- style of garden, they add non-spiny and thus quite safe. foliage colour occurs ours. Softer, more neutral spectacle to the mix of ‘Purple Sensation’: growing in full sun to part pot colours will allow the foliage types. Plant the around 2m tall, this is listed as a shade in the garden. foliage colour to domi- clumping varieties at the variety of C. banksii. The leaves As the leaves age, nate. Try colours like front of the garden and are burgundy with pinkish-red they may discolour parchment, beige, coffee, the taller-growing, single- stripes. Its hardiness has yet and are best remov- or soft browns. A flat trunked ones towards to be established in Australia. ed by a downward rather than glossy paint the middle or rear. The ‘Coffee and Cream’: this pulling action. Do finish seems to work single-trunked varieties one has a curious foliage colour; not over-fertilise well. Look for the second- would work well planted sort of a chocolate-green colour and do not over- ary foliage colour which in a group to form a with the older leaves a paler, water once estab- might be grey-purple, giant clump. When used almost creamy shade, but the lished. Renovation dull bronze, chocolate or in modern gardens, they bicolour effect is quite stylish. pruning of gangly, silvery-green. Use this look very good planted It should grow to around 4m. tall specimens is a as the colour to inspire in geometric rows in ‘Tauranga Bay’: supposedly good idea, and savage or match the pot colour. entranceways or in pairs a smallish-growing variety to pruning even to near In the garden: NZ cordy- to define a garden high- around 2m tall, ‘Tauranga Bay’ ground level is OK. lines work best in two light such as a gazebo. has green leaves with a paler Story by Don Burke, photos by Brent Wilson; our thanks to North Manly Garden Centre, NSW 52 Burke’s BACKYARD.
Recommended publications
  • Cabbage Tree (Cordyline Australis) Distribution and Management in California State Parks
    Cabbage Tree (Cordyline australis) Distribution and Management in California State Parks Ramona Robison1 and Chris Heintzelman2 California Department of Parks and Recreation 1. Natural Resources Division, Sacramento; [email protected], and 2. Russian River District, 25381 Steelhead Blvd., Duncans Mills, CA 95430; [email protected] Abstract Cabbage tree (Cordyline australis) has begun to invade the understory of the bishop pine forest and riparian zones within Salt Point State Park, Sonoma County, CA. It appears to be radiating out from historical plantings through bird-mediated seed dispersal. Since this plant has a limited distribution on our lands at the moment, Parks staff have prioritized its Cabbage Tree Habitat in Salt Point SP, June 2013 removal. Methods used for management include foliar herbicide Cabbage Tree Close-Up application, cut stump and herbicide application with EZ-Ject lance cartridges. Removal began in December 2013 and will continue to help Cabbage Tree in Salt Point SP determine the most effective long-term methods for removal of this Cabbage tree has begun to invade the species. understory of the bishop pine forest and Cabbage Tree Location riparian zones found within Salt Point SP. It Salt Point SP Boundary appears to be radiating out from historical plantings located near Highway 1 at the approximate site of an old Wells Fargo station. Much of the cabbage tree distribution appears to be in isolated drainages away from historic plantings. This distribution has led State Parks staff to conclude that birds are, at least in part, Cabbage Tree Growing in a Sacramento Landscape responsible for the spread.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • SEED of the MONTH: Ti Plant
    SEED OF THE MONTH: Ti plant Common Name: Ti or Ki in Hawaiian Scientific Name: Cordyline fruticosa Family: Asparagaceae Genus: Dracaena Height: Spacing: Sun Exposure: Up to 13ft 3-4 ft full sun to moderate shade Details: Ti is an upright evergreen shrub with slender single or branched stems. Ti can add exciting color to a landscape with a tropical theme. Its color variations range red leaves to green and variegated. It is used in landscaping as an accent hedge, foundation or background planting. In container or above ground planter, ti is suitable for growing outdoors and indoors. Soil Requirements: acidic, well drained. Water Requirements: Water one to two times per week in-ground. If it’s planted in a container water a little more frequently. (Plants in containers tend to dry out more quickly than their counter-parts in-ground). Propagation Methods: Propagate from stem sections in pieces at least one inch long. One inch cuttings can lay vertically or horizontally into a rooting medium (perlite, vermiculite, or peat moss-sand mixture) so that three-fourths of the length is buried or ¼ inch of the diameter of the horizontal section is covered. Horizontal cuttings may grow in to several plants. Keep cuttings moist and partially shaded, mist 2-3 times per day. Rooting time is 2-4 weeks. Cuttings in plain water should be at least six inches long and the end of the cutting should be immersed in about 1 inch of water. Water in the container should be changed out occasionally. After a strong root system has developed, transplant the cuttings before the roots get too long and may break off in the planting process.
    [Show full text]
  • Cordyline Petiolaris Broad Leaved Palm Lily Friends Description Cordyline Petiolaris (Syn: Cordyline Terminalis Var
    Plant in Focus, June 2018 Cordyline petiolaris Broad Leaved Palm Lily Friends Description Cordyline petiolaris (syn: Cordyline terminalis var. petiolaris) is a medium- sized palm-like, strappy, understory plant, growing to a maximum of 5 metres in height in its natural habitat. of It is an Australian native plant, endemic to the east coast rain forests of northern Geelong Botanic Gardens NSW and southern Queensland. The mid-green leaves are long - up to a metre - and around 15 cm wide. It can be multi-trunked. It has white or lilac small flowers in late winter to early spring. These are followed by spectacular panicles of red berries which can persist for many months. The berries attract attention at this time of year under the large Araucaria bidwillii that is a focus of our Twenty First Century Garden. Cordyline petiolaris is one of several Australian native Cordylines. Name and classification 'Cordyline' is from the Greek 'Kordyle', which means 'club'. Some sources say this refers to the large underground rhizomes of the genus; others say this refers to swellings on the trunks of some Cordyline petiolaris. C21 Garden, GBG. species. Above: June 2018. Photo: CC. Below and over page: Jan 2018. Photo: DJ. 'Petiolaris' means 'stalked', and refers to the long stalks on the flowers (and berry panicles). Cordylines were once commonly classified in the Lilyaceae family, while other botanists placed them in the Agavaceae family. They are now formally placed in the Asparagaceae family. Further information of interest Cordylines are of special interest to Australians because they link us to the South Pacific.
    [Show full text]
  • TAXON:Cordyline Fruticosa (L.) A. Chev. SCORE:4.0 RATING:Evaluate
    TAXON: Cordyline fruticosa (L.) A. SCORE: 4.0 RATING: Evaluate Chev. Taxon: Cordyline fruticosa (L.) A. Chev. Family: Asparagaceae Common Name(s): red ti Synonym(s): Asparagus terminalis L. Cordyline terminalis Kunth Dracaena terminalis Lam. Terminalis fruticosa (L.) Kuntze Assessor: No Assessor Status: Assessor Approved End Date: 25 Apr 2018 WRA Score: 4.0 Designation: EVALUATE Rating: Evaluate Keywords: Tropical Shrub, Ornamental, Seed-Producing, Bird-Dispersed, Spreads Vegetatively Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 y 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n Creation Date: 25 Apr 2018 (Cordyline fruticosa (L.) A.
    [Show full text]
  • US EPA, Pesticide Product Label, BEAUVERIA BASSIANA STRAIN
    U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Biopesticides and Pollution Prevention Division (7511P) 82074-17 3/18/2021 1200 Pennsylvania Ave., N.W. Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Reregistration Unconditional (under FIFRA, as amended) Name of Pesticide Product: Beauveria bassiana strain GHA 2% ES Name and Address of Registrant (include ZIP Code): LAM International Corporation 117 South Parkmont Street Butte, MT 59701 Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Biopesticides and Pollution Prevention Division prior to use of the label in commerce. In any correspondence on this product, always refer to the above EPA Registration Number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA or the Act). Registration is in no way to be construed as an endorsement or recommendation of this product by the U.S. Environmental Protection Agency (EPA). In order to protect health and the environment, the Administrator, on his or her motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under the Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is unconditionally registered in accordance with FIFRA section 3(c)(5) provided that you: 1.
    [Show full text]
  • Opogona Sacchari
    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 7/71 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Diagnostics1 Diagnostic Opogona sacchari Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Opogona Approved in 2005-09. sacchari. Introduction Detection Opogona sacchari originates in the humid tropical and O. sacchari larvae are highly versatile pests, exploiting a wide subtropical regions of Africa, where it is not a significant pest. range of live and dead plant material. The symptoms displayed It first attracted attention as a serious pest on bananas in Spain largely depend on the type of host the larvae are infesting. In (Islas Canarias) in the 1920s. In the 1970s, it was introduced European glasshouses, they can infest various tropical or into Brazil and Central America, and also started to appear in subtropical ornamentals, including mainly Cactaceae, Dracaena, the EPPO region. O. sacchari has a wide host range, and is Strelizia and Yucca (Billen, 1987), but also occasionally Alpinia, found mainly in the tropics on banana, pineapple, bamboos, Begonia, Bougainvillea, Bromeliaceae, Chamaedorea and other maize and sugarcane in the field, and on various stored Arecaceae, Cordyline, Dieffenbachia, Euphorbia pulcherrima, tubers. More recently, O. sacchari has been introduced into the Ficus, Heliconia, Hippeastrum, Maranta, Philodendron, USA (Florida) (Heppner et al., 1987) and China (Kun & Fang, Saintpaulia, Sansevieria and Sinningia speciosa. Vegetable 1997). crops are also attacked: capsicum and aubergine (Billen, 1987). In import inspections, it is mainly Dracaena and Yucca which have been found to be infested (EPPO, 1997). In banana, Identity normally the fruiting head is infested, but in ornamental plants Name: Opogona sacchari (Bojer).
    [Show full text]
  • Cordyline Australis Cordyline Australis, Commonly Known As the Cabbage Tree, Cabbage-Palm Or Tī Kōuka Is a Widely Branched Monocot Tree Endemic to New Zealand
    Cordyline australis Cordyline australis, commonly known as the cabbage tree, cabbage-palm or tī kōuka is a widely branched monocot tree endemic to New Zealand. It grows up to 20 metres (66 feet) tall with a stout trunk and sword-like leaves, which are clustered at the tips of the branches and can be up to 1 metre (3.3 feet) long. With its tall, straight trunk and dense, rounded heads, C. australis is a characteristic feature of the New Zealand landscape. Its fruit is a favourite food source for the New Zealand pigeonand other native birds. It is common over a wide latitudinal range from the far north of the North Island at 34° 25'S to the south of the South Island at 46° 30'S. Absent from much of Fiordland, it was probably introduced by Māori to the Chatham Islands at 44° 00'S and to Stewart Island at 46° 50'S. It grows in a broad range of habitats, including forest margins, river banks and open places, and is abundant near swamps. The largest known tree with a single trunk is growing at Pakawau, Golden Bay. It is estimated to be 400 or 500 years old, and stands 17 metres (56 feet) tall with a circumference of 9 metres (30 feet) at the base. Known to Māori as tī kōuka, the tree was used as a source of food, particularly in the South Island, where it was cultivated in areas where other crops would not grow. It provided durable fibre for textiles, anchor ropes, fishing lines, baskets, waterproof rain capes and cloaks, and sandals.
    [Show full text]
  • Cordyline Fruticosa) in Polynesia: a Case of Human Selection?
    THE DISTRIBUTION OF A MALE STERILE FORM OF TI (CORDYLINE FRUTICOSA) IN POLYNESIA: A CASE OF HUMAN SELECTION? ANYA E. HINKLE University of California, Berkeley Cordyline fruticosa (L.) Chev. is a woody monocot in the family Laxmanniaceae (Chase et al. 1996, Fosberg 1985). The approximately 20 species in this genus have a Southern Hemisphere distribution, with the greatest diversity concentrated in Australia and New Zealand (Conran 1998). The exact area of origin of C. fruticosa is unknown. It is thought to have originated in Southeast Asia and then to have been domesticated in New Guinea (Yen 1987). However, preliminary molecular phylogenetic investigations have shown C. fruticosa to be most closely related to Cordyline species from tropical North Queensland, Australia (Simpson 2000). It has been suggested that C. fruticosa does not have a natural distribution and that it arose by human domestication from another species (Yen, pers. comm.). From a botanical perspective, questions as to the geographic origin and phylogenetic placement of C. fruticosa have yet to be addressed adequately. Within Polynesia, Cordyline fruticosa, the ti plant, is ubiquitous in its distribution and ethnobotanical use (Whistler 1991). Cordyline pollen appears in the palynological record around the same time as taros, bananas, sugar cane, breadfruit and other common Polynesian-introduced plants, and the cordyline is considered to be an aboriginal introduction to the islands (M. Prebble, pers. comm.). Ti was presumably carried by early Polynesians for its importance in costume making, for wrapping food and religious uses, and as a food source (Merlin 1989, Whistler 1992). Various colour varieties were present before Western contact, but this study focuses on a large non-variegated green form that is common throughout Polynesia.
    [Show full text]
  • Cordyline Fruticosa: the Distribution and Continuity of a Sacred Plant
    CORDYLINE FRUTICOSA: THE DISTRIBUTION AND CONTINUITY OF A SACRED PLANT TRISHA BORLAND Anthropology Department, University of California, Berkeley, California 94720 USA Abstract. Humans have continually interacted with and transformed their surroundings. Cordyline fruticosa Chevalier 1919, was among the many plants Polynesians brought with them as they voyaged from western Polynesia to eastern Polynesia. Polynesian culture is historically associated with C. fruticosa , which was centered around the ancient marae, or temples. The distribution of the large, sterile, green leaf variety was studied at marae and contemporary areas such as homes and businesses on Mo’orea, French Polynesia. I expected to find the sacred green variety around marae and the ornamental red varieties in contemporary locations. No C. fruticosa plants were found around marae sites. Contrary to predictions, the green variety of C. fruticosa was more prevalent at the contemporary sites than the red varieties. Local Tahitians were consulted on current attitudes towards and uses of C. fruticosa . These elders indicated that the sacred green variety continues to be utilized in religious, medicinal, and cultural ways, perhaps explaining its prevalence over red varieties. Key words: Cordyline fruticosa, ti, distribution, marae, culture, sacred, islands, Mo’orea INTRODUCTION The isolation of oceanic islands makes them a good model system for studying biology and geomorphology (Vitousek, 2002). Human interactions with the environment continue to contribute highly to the modification and transformation of islands (Lepofsky et al, 1996). Oceanic islands are susceptible to disturbance (Fosberg, 1963). The dynamics among the physical environment, biological environment, and anthropogenic factors on islands can help to understand the relationships between organisms, which can contribute and influence decisions about cultural and historical preservation and land use and conservation issues.
    [Show full text]
  • Woody Plant Species Used in Urban Forestry in West Africa: Case Study in Lomé, Capital Town of Togo
    International Scholars Journals African Journal of Wood Science and Forestry ISSN 2375-0979 Vol. 7 (8), pp. 001-011, August, 2019. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper Woody plant species used in urban forestry in West Africa: Case study in Lomé, capital town of Togo Radji Raoufou*, Kokou Kouami and Akpagana Koffi Laboratory of Plant Biology and Ecology, BP 1515 Lomé - Togo. Accepted 13 July, 2019 Many studies have been conducted on the flora of Togo. However, none of them is devoted to the ornamental flora horticulture. This survey aims to establish an inventory of the woody plant species in urban forests of Lomé, the capital town of Togo. It covers the trees planted along the avenues, in the gardens, courtyards, shady trees and trees used as fences for houses or trees at the seaside. In total, 297 plant species belong to 141 genera and 48 families were recorded. They are dominated by 79% of dicotyledonous, 13% of monocotyledonous and 8% of gymnosperms. Families that are best represented in terms of species are those of the Euphorbiaceae, Arecaceae and Acanthaceae. Alien species represent 69% and African species represent 31% out of which 6% are from Togo. According to the current threatening of the natural habitat by human activities, African native plant species could be more useful for ornamental purposes than exotic plants. Key words: Ornamental horticulture, plant flora, green areas, valorisation, native flora. INTRODUCTION Urban forestry refers to trees and forests located in cities, landscape covered with trees for the physical and mental including ornamental and grown trees, street and parkland health has been documented (Ulrich, 1984).
    [Show full text]