Undecidable Languages Turing-Decidable Monday, March 29 Thursday, April 1 Spring 2010 3:30Pm in MEC 205 2:00Pm in Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Undecidable Languages Turing-Decidable Monday, March 29 Thursday, April 1 Spring 2010 3:30Pm in MEC 205 2:00Pm in Chemistry Menu cs3102: Theory of Computation • Another SELF -REJECTING argument: diagonalization Class 17: • A language that is Turing-recognizable but not Undecidable Languages Turing-decidable Monday, March 29 Thursday, April 1 Spring 2010 3:30pm in MEC 205 2:00pm in Chemistry University of Virginia Ed Clarke, Barbara Liskov, David Evans 2007 Turing 2008 Turing Award Award Alternate Proof Input εεε 0 1 00 01 10 11 000 001 010 … M(εεε) … M(0) … Yes? M(1) M(00) Contradiction! M(01) M(10) Machine M(11) No? M(000) … Contradiction! M(w) … The assumption leads to a contradiction: thus, MSR must not exist! Which of the machines are in SELF -REJECTING ? Alternate Proof Input εεε 0 1 00 01 10 11 000 001 010 … M(εεε) … M(0) … M(1) Languages that can be M(00) any M(01) recognized by mechanical M(10) computing machine Machine M(11) M(000) … M(w) SELF -REJECTING … All Languages Where is wSR ? Recognizing vs. Deciding Turing-recognizable : A language L is “Turing- Turing-Recognizable recognizable” if there exists a TM M such that for all strings w: – ∈ Turing-Decidable If w L: eventually M enters qaccept . – ∉ If w L: either M enters qreject or M never terminates. Context-Free Turing-decidable : A language L is “Turing-decidable” if there exists a TM M such that for all strings w: – ∈ If w L: eventually M enters qaccept . – If w ∉ L: eventually M enters q . SELF -REJECTING reject All Languages Detour: Exam Revisions Proof that SF is not CFL Contradiction means one of the two assumptions must be false, but we don’t know which! Is SF Context-Free? Squarefree Sequences in {a, b, c}* • There are infinitely long squarefree sequences with at least 3 alphabet symbols • Some interesting applications and lots of interesting efficient ways to generate them Ron Rivest’s paper If you solved PS4 question 2 do you know an inefficient way? Proving Recognizability Accepted by TM How do we prove a language is Turing-recognizable ? Is this language Turing-recognizable? How do we prove a language is Turing-decidable ? How do we prove a language is not Turing-decidable ? Accepted by TM Universal Turing Machine Is this language Turing-recognizable? <M> Universal Output of running Can we really do Turing M starting this? w Machine on tape w Universal Turing Machine : a TM that can simulate every other TM. Universal Turing Machines Universal Turing Machines designed with: – 4 symbols, 7 states (Marvin Minsky) – 4 symbols, 5 states – 2 symbols, 22 states – 18 symbols, 2 states – 2 states, 5 symbols (Stephen Wolfram) Manchester Illuminated Universal Turing Machine, #9 from http://www.verostko.com/manchester/manchester.html 2-state, 3-symbol Universal TM Alex Smith, University of Birmingham Of course, simplicity is in the eye of the beholder. The 2,3 Turing machine described in the dense new 40-page proof “chews up a lot of tape” to perform even a simple job, Smith says. Programming it to calculate 2 + 2, he notes, would take Sequence Sequence configurations of up more memory than any known computer contains. And image processing? “It probably wouldn't finish before the end of the universe,” he says. Rough Sketch of Proof Accepted by TM System 0 (the claimed UTM) can simulate System 1 None of these which can simulate System 2 steps involve which can simulate System 3 Is this language Turing-decidable? universal which can simulate System 4 computation which can simulate System 5 themselves which can simulate any 2-color cyclic tag system which can simulate any TM. See http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf for the 40-page version with all the details… Proof that ATM is Undecidable Proof that ATM is Undecidable Proof that ATM is Undecidable Proof that ATM is Undecidable Both are contractions ! So, D must not exist. But, if H exists, we can make D. So, H must not exist! But, if ATM is decidable, H must exist. Thus, ATM must not be decidable. Halting Problem Turing-Recognizable Turing-Decidable Context-Free ATM SELF -REJECTING All Languages Halting Problem is Undecidable Halting Problem is Undecidable HALTSANY Crashes Any equivalent to a TM enters some bad state Model Checking in Theory Model Checking is Undecidable. Impossible to write a program that answers this correctly for all inputs. Edmund M. Clarke, The Birth of Model Checking Model Checking in Practice Monday’s Talk MEC 205, 3:30pm (cookies after talk) Model Checking: My 27 year Quest to Overcome the State Explosion Problem 2007 Turing Award Winner (with Allen Emerson, Joseph Sifakis) Edmund Clarke Return PS4 and Exam Revisions.
Recommended publications
  • The Power of Abstraction
    The Power of Abstraction Barbara Liskov March 2013 MIT CSAIL Software is Complex Systems are big and they do complicated things and they may be distributed and/or concurrent Addressing Complexity Algorithms, data structures, protocols Addressing Complexity Algorithms, data structures, protocols Programming methodology Programming languages This Talk Programming methodology as it developed Programming languages Programming languages today The Situation in 1970 The software crisis! Programming Methodology How should programs be designed? How should programs be structured? The Landscape E. W. Dijkstra. Go To Statement Considered Harmful. Cacm, Mar. 1968 The Landscape N. Wirth. Program Development by Stepwise Refinement. Cacm, April 1971 The Landscape D. L. Parnas. Information Distribution Aspects of Design Methodology. IFIP Congress, 1971 “The connections between modules are the assumptions which the modules make about each other.” Modularity A program is a collection of modules Modularity A program is a collection of modules Each module has an interface, described by a specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification E.g. a sort routine sort(a) Benefits of Modularity Local reasoning Modifiability Independent development The Situation in 1970 Procedures were the only type of module Not powerful enough, e.g., a file system Not used very much Complicated connections Partitions B.
    [Show full text]
  • Tarjan Transcript Final with Timestamps
    A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated.
    [Show full text]
  • MIT Turing Laureates Propose Creation of School of Computing an Open Letter to President Rafael Reif
    9/26/2017 The Tech OPINION LETTER TO THE EDITOR MIT Turing laureates propose creation of School of Computing An open letter to President Rafael Reif By MIT Turing Laureates | Sep. 20, 2017 Facebook Dear Rafael, Twitter There comes a time, in the course of scientic evolution, when a discipline is ready to emerge from the womb of its parent disciplines and take its own place in the world. For Reddit computer science, or more accurately, for the eld of computing, this moment is now. Print Born from a combination of mathematics and electrical engineering, with the original intent of speeding up calculations, computer science has grown to encompass all information processing and most communications and now to provide an alternative evolutionary path to intelligence. Computer science is rapidly becoming an essential part of most academic disciplines, and students are voting with their feet. One third of MIT undergraduates are majoring in computer science. This trend is unlikely to slow down anytime soon. We, the 7 active MIT Turing Award winners, therefore write this open letter to recommend that you consider the bold step of establishing a School of Computing at MIT. The new school, a brother to the Schools of Engineering and Science, will allow the eld of computing, with its many https://thetech.com/2017/09/20/turing-laureates-open-letter-to-reif 1/4 9/26/2017 The Tech facets and sub-elds, to grow and interact naturally with the Institute’s scientic and engineering environment. The Tech Submit Campus Life Stories Today the study of computation is housed primarily in the EECS department within the School of Engineering, but departments are limited in their ability to hire and grow.
    [Show full text]
  • 1. Course Information Are Handed Out
    6.826—Principles of Computer Systems 2006 6.826—Principles of Computer Systems 2006 course secretary's desk. They normally cover the material discussed in class during the week they 1. Course Information are handed out. Delayed submission of the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM. Students in the class will be asked to help grade the problem sets. Each week a team of students Staff will work with the TA to grade the week’s problems. This takes about 3-4 hours. Each student will probably only have to do it once during the term. Faculty We will try to return the graded problem sets, with solutions, within a week after their due date. Butler Lampson 32-G924 425-703-5925 [email protected] Policy on collaboration Daniel Jackson 32-G704 8-8471 [email protected] We encourage discussion of the issues in the lectures, readings, and problem sets. However, if Teaching Assistant you collaborate on problem sets, you must tell us who your collaborators are. And in any case, you must write up all solutions on your own. David Shin [email protected] Project Course Secretary During the last half of the course there is a project in which students will work in groups of three Maria Rebelo 32-G715 3-5895 [email protected] or so to apply the methods of the course to their own research projects. Each group will pick a Office Hours real system, preferably one that some member of the group is actually working on but possibly one from a published paper or from someone else’s research, and write: Messrs.
    [Show full text]
  • Arxiv:1909.05204V3 [Cs.DC] 6 Feb 2020
    Cogsworth: Byzantine View Synchronization Oded Naor, Technion and Calibra Mathieu Baudet, Calibra Dahlia Malkhi, Calibra Alexander Spiegelman, VMware Research Most methods for Byzantine fault tolerance (BFT) in the partial synchrony setting divide the local state of the nodes into views, and the transition from one view to the next dictates a leader change. In order to provide liveness, all honest nodes need to stay in the same view for a sufficiently long time. This requires view synchronization, a requisite of BFT that we extract and formally define here. Existing approaches for Byzantine view synchronization incur quadratic communication (in n, the number of parties). A cascade of O(n) view changes may thus result in O(n3) communication complexity. This paper presents a new Byzantine view synchronization algorithm named Cogsworth, that has optimistically linear communication complexity and constant latency. Faced with benign failures, Cogsworth has expected linear communication and constant latency. The result here serves as an important step towards reaching solutions that have overall quadratic communication, the known lower bound on Byzantine fault tolerant consensus. Cogsworth is particularly useful for a family of BFT protocols that already exhibit linear communication under various circumstances, but suffer quadratic overhead due to view synchro- nization. 1. INTRODUCTION Logical synchronization is a requisite for progress to be made in asynchronous state machine repli- cation (SMR). Previous Byzantine fault tolerant (BFT) synchronization mechanisms incur quadratic message complexities, frequently dominating over the linear cost of the consensus cores of BFT so- lutions. In this work, we define the view synchronization problem and provide the first solution in the Byzantine setting, whose latency is bounded and communication cost is linear, under a broad set of scenarios.
    [Show full text]
  • The Growth of Cryptography
    The growth of cryptography Ronald L. Rivest Viterbi Professor of EECS MIT, Cambridge, MA James R. Killian Jr. Faculty Achievement Award Lecture February 8, 2011 Outline Some pre-1976 context Invention of Public-Key Crypto and RSA Early steps The cryptography business Crypto policy Attacks More New Directions What Next? Conclusion and Acknowledgments Outline Some pre-1976 context Invention of Public-Key Crypto and RSA Early steps The cryptography business Crypto policy Attacks More New Directions What Next? Conclusion and Acknowledgments The greatest common divisor of two numbers is easily computed (using “Euclid’s Algorithm”): gcd(12; 30) = 6 Euclid – 300 B.C. There are infinitely many primes: 2, 3, 5, 7, 11, 13, . Euclid – 300 B.C. There are infinitely many primes: 2, 3, 5, 7, 11, 13, . The greatest common divisor of two numbers is easily computed (using “Euclid’s Algorithm”): gcd(12; 30) = 6 Greek Cryptography – The Scytale An unknown period (the circumference of the scytale) is the secret key, shared by sender and receiver. Euler’s Theorem (1736): If gcd(a; n) = 1, then aφ(n) = 1 (mod n) ; where φ(n) = # of x < n such that gcd(x; n) = 1. Pierre de Fermat (1601-1665) Leonhard Euler (1707–1783) Fermat’s Little Theorem (1640): For any prime p and any a, 1 ≤ a < p: ap−1 = 1 (mod p) Pierre de Fermat (1601-1665) Leonhard Euler (1707–1783) Fermat’s Little Theorem (1640): For any prime p and any a, 1 ≤ a < p: ap−1 = 1 (mod p) Euler’s Theorem (1736): If gcd(a; n) = 1, then aφ(n) = 1 (mod n) ; where φ(n) = # of x < n such that gcd(x; n) = 1.
    [Show full text]
  • The RSA Algorithm
    The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau of Standards (NBS) algorithm. Most impor- tantly, RSA implements a public-key cryptosystem, as well as digital signatures. RSA is motivated by the published works of Diffie and Hellman from several years before, who described the idea of such an algorithm, but never truly developed it. Introduced at the time when the era of electronic email was expected to soon arise, RSA implemented two important ideas: 1. Public-key encryption. This idea omits the need for a \courier" to deliver keys to recipients over another secure channel before transmitting the originally-intended message. In RSA, encryption keys are public, while the decryption keys are not, so only the person with the correct decryption key can decipher an encrypted message. Everyone has their own encryption and decryption keys. The keys must be made in such a way that the decryption key may not be easily deduced from the public encryption key. 2. Digital signatures. The receiver may need to verify that a transmitted message actually origi- nated from the sender (signature), and didn't just come from there (authentication). This is done using the sender's decryption key, and the signature can later be verified by anyone, using the corresponding public encryption key. Signatures therefore cannot be forged. Also, no signer can later deny having signed the message. This is not only useful for electronic mail, but for other electronic transactions and transmissions, such as fund transfers.
    [Show full text]
  • A Library of Graph Algorithms and Supporting Data Structures
    Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2015-001 2015-01-19 Grafalgo - A Library of Graph Algorithms and Supporting Data Structures Jonathan Turner This report provides an overview of Grafalgo, an open-source library of graph algorithms and the data structures used to implement them. The programs in this library were originally written to support a graduate class in advanced data structures and algorithms at Washington University. Because the code's primary purpose was pedagogical, it was written to be as straightforward as possible, while still being highly efficient. afalgoGr is implemented in C++ and incorporates some features of C++11. The library is available on an open-source basis and may be downloaded from https://code.google.com/p/grafalgo/. Source code documentation is at www.arl.wustl.edu/~jst/doc/grafalgo. While not designed as... Read complete abstract on page 2. Follow this and additional works at: https://openscholarship.wustl.edu/cse_research Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Turner, Jonathan, "Grafalgo - A Library of Graph Algorithms and Supporting Data Structures" Report Number: WUCSE-2015-001 (2015). All Computer Science and Engineering Research. https://openscholarship.wustl.edu/cse_research/242 Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/ cse_research/242 Grafalgo - A Library of Graph Algorithms and Supporting Data Structures Jonathan Turner Complete Abstract: This report provides an overview of Grafalgo, an open-source library of graph algorithms and the data structures used to implement them.
    [Show full text]
  • Leonard (Len) Max Adleman 2002 Recipient of the ACM Turing Award Interviewed by Hugh Williams August 18, 2016
    Leonard (Len) Max Adleman 2002 Recipient of the ACM Turing Award Interviewed by Hugh Williams August 18, 2016 HW: = Hugh Williams (Interviewer) LA = Len Adelman (ACM Turing Award Recipient) ?? = inaudible (with timestamp) or [ ] for phonetic HW: My name is Hugh Williams. It is the 18th day of August in 2016 and I’m here in the Lincoln Room of the Law Library at the University of Southern California. I’m here to interview Len Adleman for the Turing Award winners’ project. Hello, Len. LA: Hugh. HW: I’m going to ask you a series of questions about your life. They’ll be divided up roughly into about three parts – your early life, your accomplishments, and some reminiscing that you might like to do with regard to that. Let me begin with your early life and ask you to tell me a bit about your ancestors, where they came from, what they did, say up to the time you were born. LA: Up to the time I was born? HW: Yes, right. LA: Okay. What I know about my ancestors is that my father’s father was born somewhere in modern-day Belarus, the Minsk area, and was Jewish, came to the United States probably in the 1890s. My father was born in 1919 in New Jersey. He grew up in the Depression, hopped freight trains across the country, and came to California. And my mother is sort of an unknown. The only thing we know about my mother’s ancestry is a birth certificate, because my mother was born in 1919 and she was an orphan, and it’s not clear that she ever met her parents.
    [Show full text]
  • RON RIVEST Viterbi Professor of Computer Science, MIT's Department of Electrical Engineering and Computer Science
    Feb 1st 10:30 am - noon, Newcomb Hall, South Meeting Room RON RIVEST Viterbi Professor of Computer Science, MIT's Department of Electrical Engineering and Computer Science Security of Voting Systems While running an election sounds simple, it is in fact extremely challenging. Not only are there millions of voters to be authenticated and millions of votes to be carefully collected, count- ed, and stored, there are now millions of "voting machines" containing millions of lines of code to be evaluated for security vulnerabilities. Moreover, voting systems have a unique requirement: the voter must not be given a "receipt" that would allow them to prove how they voted to some- one else---otherwise the voter could be coerced or bribed into voting a certain way. The lack of receipts makes the security of voting system much more challenging than, say, the security of banking systems (where receipts are the norm). We discuss some of the recent trends and innovations in voting systems, as well as some of the new requirements being placed upon voting systems in the U.S., and describe some promising directions for resolving the conflicts inherent in voting system requirements, including some approaches based on cryptography. Professor Rivest is the Viterbi Professor of Computer Science in MIT's Department of Electrical Engineering and Computer Science. He is a member of MIT's Computer Science and Artificial Intelligence Laboratory, and Head of its Center for Information Security and Privacy. Professor Rivest has research interests in cryptography, computer and network security, and algo- rithms. Professor Rivest is an inventor, with Adi Shamir and Len Adleman of the RSA public-key cryp- tosystem, and a co-founder of RSA Data Security.
    [Show full text]
  • Safe and Efficient Sharing of Persistent Objects in Thor
    This paper appears in Proceedings of the 1996 ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada, June 1996. Note: the pages are numbered 318±329, as in the proceedings. Safe and Ef®cient Sharing of Persistent Objects in Thor B.Liskov, A.Adya, M.Castro, M.Day , S.Ghemawat , R.Gruber , U.Maheshwari, A.C.Myers, L.Shrira Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139 liskov,adya,castro, , , ,umesh,andru,liuba @lcs.mit.edu Abstract Thor is an object-oriented database system designed for use in a are likely to be accessible despite failures. Thor supports heterogeneous distributed environment. It provides highly-reliable heterogeneity at the levels of the machine, network, operating and highly-available persistent storage for objects, and supports system, and especially the programming language. Programs safe sharing of these objects by applications written in different written in different programming languages can easily share programming languages. objects between different applications, or components of Safe heterogeneous sharing of long-lived objects requires the same application. Furthermore, even when client code encapsulation: the system must guarantee that applications interact is written in unsafe languages (such as C or C++), Thor with objects only by invoking methods. Although safety concerns are important, most object-oriented databases forgo safety to avoid guarantees the integrity of the persistent store. paying the associated performance costs. This paper describes the interface and implementation of This paper gives an overview of Thor's design and implementa- Thor and focuses on a novel aspect of Thor in each area.
    [Show full text]
  • Arxiv:2106.11534V1 [Cs.DL] 22 Jun 2021 2 Nanjing University of Science and Technology, Nanjing, China 3 University of Southampton, Southampton, U.K
    Noname manuscript No. (will be inserted by the editor) Turing Award elites revisited: patterns of productivity, collaboration, authorship and impact Yinyu Jin1 · Sha Yuan1∗ · Zhou Shao2, 4 · Wendy Hall3 · Jie Tang4 Received: date / Accepted: date Abstract The Turing Award is recognized as the most influential and presti- gious award in the field of computer science(CS). With the rise of the science of science (SciSci), a large amount of bibliographic data has been analyzed in an attempt to understand the hidden mechanism of scientific evolution. These include the analysis of the Nobel Prize, including physics, chemistry, medicine, etc. In this article, we extract and analyze the data of 72 Turing Award lau- reates from the complete bibliographic data, fill the gap in the lack of Turing Award analysis, and discover the development characteristics of computer sci- ence as an independent discipline. First, we show most Turing Award laureates have long-term and high-quality educational backgrounds, and more than 61% of them have a degree in mathematics, which indicates that mathematics has played a significant role in the development of computer science. Secondly, the data shows that not all scholars have high productivity and high h-index; that is, the number of publications and h-index is not the leading indicator for evaluating the Turing Award. Third, the average age of awardees has increased from 40 to around 70 in recent years. This may be because new breakthroughs take longer, and some new technologies need time to prove their influence. Besides, we have also found that in the past ten years, international collabo- ration has experienced explosive growth, showing a new paradigm in the form of collaboration.
    [Show full text]