Identification of Novel Regulators of Transcription in Ipsc-Derived Cardiovascular Progenitors

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Novel Regulators of Transcription in Ipsc-Derived Cardiovascular Progenitors Facultad de Ciencias IDENTIFICATION OF NOVEL REGULATORS OF TRANSCRIPTION IN IPSC-DERIVED CARDIOVASCULAR PROGENITORS Javier Linares Acosta PhD Thesis Pamplona, June 2019 Facultad de Ciencias IDENTIFICATION OF NOVEL REGULATORS OF TRANSCRIPTION IN IPSC-DERIVED CARDIOVASCULAR PROGENITORS Javier Linares Acosta Facultad de Ciencias Identification of novel regulators of transcription in iPSC-derived cardiovascular progenitors Memoria presentada por D. Javier Linares Acosta para aspirar al grado de Doctor por la Universidad de Navarra. El presente trabajo ha sido realizado bajo nuestra dirección en el Departamento de Terapia Celular y Medicina Regenerativa y autorizamos su presentación ante el Tribunal que lo ha de juzgar. Pamplona, 8 de mayo de 2019 Dr. Felipe Prósper Cardoso Dra. Xonia Carvajal-Vergara (Director de la Tesis Doctoral) (Co-Directora de la Tesis Doctoral) This work has been supported by the Spanish Government, ‘Promoción del Talento y su Empleabilidad’ State Program, under a MINECO BES-2014-069226 grant co-financed by European Social Fund (ESF), associated to ‘Retos de la Sociedad’ State Program, FEDER/MICIU/AIE/SAF2013-46142-R. Agradecimientos Quiero expresar mi agradecimiento al CIMA, a la CUN y a la Universidad de Navarra por haberme brindado unas condiciones únicas para desarrollarme tanto profesional como personalmente. Gracias al MINECO, por la ayuda concedida que ha permitido que este trabajo se haya podido llevar a cabo. Es complicado encontrar las palabras más justas, las más adecuadas, para describir el profundo agradecimiento que debo a todas las personas que me habéis acompañado a lo largo de esta historia, así que me serviré de la sensación de inmensa alegría y satisfacción por el desarrollo de esta idea, de este proyecto, que se ha llevado a cabo gracias a la colaboración e implicación que de una manera u otra habéis tenido todos los que me habéis acompañado. Quiero dar las gracias de manera especial a mis directores de tesis. Felipe, gracias por tu confianza y por permitirme comenzar esta historia en este laboratorio. Xonia, muchísimas gracias por tu apoyo y tus consejos incondicionales, por ser un ejemplo de lucha constante y por alentarme a cada momento; gracias por ser una gran maestra en este viaje. Quiero expresar mi más profundo agradecimiento al grupo Cardiac Reprogramming por ser un aporte activo para el desarrollo de esta tesis. Gracias Esti, por ser mi mejor apoyo tanto en la poyata como fuera de ella, por todo lo compartido contigo y por permitirme trabajar de una manera tan cómoda. Gracias Leyre por tu trabajo y tu ayuda constantes, por tu ilusión y tu perseverancia. Gracias Félix, porque pese a tu breve paso por el grupo, lo impregnaste de frescura. Si hay algo que he aprendido en este grupo es que el trabajo en equipo siempre multiplica esfuerzos. Infinitas gracias a todos. Muchas gracias a la enorme familia de Terapia Celular y Oncohematología. Es un placer trabajar en un grupo con tanta gente que día a día crea un ambiente tan dinámico, distendido y enriquecedor. Gracias a todos y cada uno de vosotros por hacer del esfuerzo y del trabajo diario algo tan cómodo y motivador. Gracias a Silvia y a Isa por vuestros consejos y generosidad, por vuestro apoyo constante. Gracias a Saray, Rebeca, Miriam, por estar siempre disponibles a ayudar y hacerlo siempre con una buena carga de humor. Gracias a Arantxa C. y Arantxa B., tan diferentes en carácter a pesar del nombre, pero tan parecidas en cuanto a la calidez y las ganas de ayudar. Gracias a Eva, Edu, Teresa, Óscar, Elena Iglesias y Giulia por vuestra cercanía y generosidad. Gracias a Miranda, Leire y Edurnen por estar siempre disponibles, por vuestros consejos y apoyo. Gracias a Jose, Juan Antonio, Paula R., Pilar, María, Ángel, Laura A., Íñigo, Marta, Ana Cris, Laura V., Ane y Naroa por vuestra ayuda, motivación y entusiasmo. Gracias a Manu, Juanro, Aranguren, Adri, Froi, Bea, Ana Pérez, Elena, Xabi, Borja, Ana Pardo, de los que se puede aprender tanto. Gracias por vuestro apoyo y energía. Gracias a todos los que habéis pasado por el laboratorio: Zapata, Andoni, Aguado, Emma, Mentxu, Marién, es un lujo y un placer haber compartido experiencias con vosotros. Quiero dar las gracias de manera especial a mis dos mellizas, Raquel y Paula, por haber recorrido juntos este camino. Gracias por todas las experiencias que hemos vivido juntos tanto dentro como fuera del laboratorio. Por la cercanía y por el apoyo, por la conexión. Sois un gran ejemplo de superación y de esfuerzo. Gracias por ser parte fundamental en el desarrollo de esta tesis. Gracias a todos los que forman parte de los laboratorios de Biología Celular y Molecular de la CUN y de Ortopedia. Gracias a Tania y a Adriana, por los buenos momentos, las charlas y las inyecciones de energía constantes. Gracias a Quique, Gloria, Ascen, Susana, Goretti, Leti, María, Rebeca, Marga y Pury, por todos los momentos compartidos. Gracias a todos aquellos de los programas de Oncohematología, Terapia Celular, Genómica Avanzada e Inmunología que en algún momento me han bridado ayuda, me han regalado momentos únicos o me han alentado con hechos, con palabras o con abrazos. Gracias Amaia, Sarai Sarvide, Marta Lasa, Irene, Patricia Maiso, Erika, Aintzane, por estar siempre pendientes y hacer más fácil el camino. Gracias al servicio de Citometría. En especial, quiero agradecer a Diego su ayuda y su paciencia infinitas, a Idoia por alegrarme las visitas al citómetro, y a Sonia por su ayuda. Gracias a los servicios de Genómica, Imagen, Morfología y Bioinformática. Gracias infinitas a Elizabeth Guruceaga por su paciencia, su apoyo y su constante disponibilidad. Gracias a María Eugenia Fernández, Andreu M. Climent y Dung-Fang Lee, por vuestro apoyo y colaboraciones. Gracias a los servicios de Genética de la Policlínica Gipuzkoa, y de Citogenética del CNIO. Gracias a Sylvie, a Leyre Arbeloa y a Ander, por tantos momentos de risas y distensión. Gracias a Marisol Ripa y Carolina Matute por vuestra ayuda constante y vuestra cercanía. Gracias a Mari y Ana del CIMA, y a Asun, Vanesa, María y Ana, de la CUN, por regalarme tantas sonrisas. Gracias al departamento de Bioquímica y Genética de la UNAV. Gracias a Silvia Cenoz y a Íñigo por estar pendientes siempre del más mínimo detalle y por estar siempre dispuestos a ayudar. Quiero expresar mi agradecimiento a Guillermo Zalba y a Ujué por la comodidad que generan y todo lo aprendido con ellos. Gracias a Marisol Aymerich y a Ana Rouzaut por su atención y generosidad. Gracias a Lola Odero, por estar siempre pendiente y transmitirme tanto ánimo. No puedo olvidarme de expresar mi agradecimiento a Teresa Portolés y a María José Feito por brindarme la oportunidad de iniciarme en el mundo de la investigación e instigarme a seguir siempre adelante. Muchas gracias a las personas con las que compartí trabajo y experiencias en el grupo de Interacciones Célula-Biomaterial: Conchita, Ceci, Carmen, Isa, Ana. Gracias al departamento de Bioquímica y Biología Molecular I de la UCM. Gracias a mis amigos que, a pesar de la distancia y el tiempo que muchas veces nos ha separado, siempre estáis conmigo. Es un placer contar con gente como vosotros. Gracias a Vicky. Gracias a Elena y Aingeru, y a Unai. Gracias a Jonathan, Alicia y a Lucía, que tanta ilusión ha puesto en ellos. Gracias a Desy, Mariola y Nerea porque a pesar de la distancia física que nos ha marcado el camino, es un lujo seguir conectando a la perfección cuando nos vemos como si no pasara el tiempo. Gracias a Jorge, Eva, Carra, Leti, Helena y Alban, por los buenos momentos compartidos. Gracias a Lizz y Manu por su alegría. Gracias a Dany, por ser mi pilar fundamental. Por hacerme y dejarme hacerte tan feliz sin censura, y por descubrírmelo con una simple sonrisa. Y como diría Salinas, gracias por brindarme la alegría tan alta de vivir en los pronombres: gracias por ser tú, porque sin apenas proponértelo me permites ser mi mejor yo, y por aunar todo eso en un nosotros. Gracias a Andrea, Juan, Gemma, David, Juanjo, Elena, Nobelita, Juanan, Lucía, Noa, Álvaro y Mario. Sois geniales y es un placer poder contar siempre con vosotros. Muchísimas gracias a mi familia, mi principal motor y apoyo. Mamá, gracias por tu confianza y tu aliento constantes; eres el mejor ejemplo que se puede seguir. Gracias por colmarte con los sueños compartidos de tu gente, por regalarnos la capacidad para asombrarnos y por ser una constante fuente de inspiración y valores. Papá, ojalá estuvieras aquí sentado para poder disfrutar juntos de estas sensaciones que seguro te habrían encantado. David, gracias por tu bondad y tu atención constantes. Erika, eres un ejemplo de superación; gracias por ser tan especial. Beto, gracias por estar lleno de sensibilidad y locura a partes iguales. Gracias a Raquel, por tu apoyo. Infinitas gracias a Miguel y David, por aportar tanto en nuestras vidas, por vuestra ilusión y vuestros sueños, que no dejan de ser los míos. Gracias por recordarme el verdadero valor de las cosas. La tesis es un camino largo, y recorrerlo sería mucho más complicado, si no imposible, sin todos aquellos que habéis estado, que estáis y que estaréis. Muchas gracias a todos. “Ten siempre a Ítaca en tu mente. Llegar allí es tu destino. Mas no apresures nunca el viaje. Mejor que dure muchos años y atracar, viejo ya, en la isla, enriquecido de cuanto ganaste en el camino sin aguantar a que Ítaca te enriquezca”. (Kavafis) Abbreviations AHF (aSHF): anterior heart field (anterior second heart field). AHF-CVP: cardiovascular progenitor derived from AHFiPSCs. AHFiPSCs: induced pluripotent stem cells derived from Ai6-Mef2c-AHF-Cre mice. AHFiPS-D0: undifferentiated AHFiPSCs.
Recommended publications
  • 3398 Orphan Nuclear Receptor Function in the Ovary Huajun Zhao1, Zili
    [Frontiers in Bioscience 12, 3398-3405, May 1, 2007] Orphan nuclear receptor function in the ovary Huajun Zhao1, Zili Li1, Austin J. Cooney2, Zi-Jian Lan1 1Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Health Sciences Center, Louisville, KY 40202 2Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Germ Cell Nuclear Factor 4. Steroidogenic Factor-1 5. Liver Receptor Homolog-1 6. Perspective 7. Acknowledgement 8. References 1. ABSTRACT 2. INTRODUCTION Orphan nuclear receptors such as germ cell In the mammalian ovary, follicles are the nuclear factor (GCNF), steroidogenic factor 1 (SF-1) and principal functional units which provide the support system liver receptor homolog-1 (LRH-1), are emerging as necessary for production of female germ cells (mature important ovarian factors in regulating female oocytes) during postnatal life (1). The process of follicular reproduction. Within the ovary, GCNF (NR6A1) development after birth is termed folliculogenesis and the expression is restricted to the oocyte, while SF-1 (NR5A1) production of fertilizable eggs is referred to as oogenesis. is expressed only in the somatic cells, such as granulosa, During reproductive life, folliculogenesis and oogenesis are thecal and luteal cells, and interstitial cells. LRH-1 highly coordinated to ensure the production of fertilizable (NR5A2), an orphan receptor closely related to SF-1, is eggs. These processes require intercellular communication expressed only in the granulosa cells of the follicles and between many cell types such as oocytes, granulosa and luteal cells within the ovary. Recent studies using thecal cells within the ovary (2, 3).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • Independent Regulation of Vertebral Number and Vertebral Identity by Microrna-196 Paralogs
    Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs Siew Fen Lisa Wonga,1, Vikram Agarwalb,c,d,e,1, Jennifer H. Mansfieldf,g, Nicolas Denansh, Matthew G. Schwartzf, Haydn M. Prosseri, Olivier Pourquiéf,j, David P. Bartelb,c,d, Clifford J. Tabinf,2, and Edwina McGlinna,f,2 aEMBL Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; bHoward Hughes Medical Institute, Cambridge, MA 02142; cWhitehead Institute for Biomedical Research, Cambridge, MA 02142; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; eComputational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139; fDepartment of Genetics, Harvard Medical School, Boston, MA 02115; gDepartment of Biological Sciences, Barnard College, New York, NY 10027; hDepartment of Developmental Biology and Genetics, Stanford School of Medicine, Stanford, CA 94305; iThe Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom; and jDepartment of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 Contributed by Clifford J. Tabin, July 16, 2015 (sent for review March 24, 2015; reviewed by Jacqueline Deschamps and Joshua T. Mendell) The Hox genes play a central role in patterning the embryonic anterior- of which is a critical factor in establishing species-specific vertebral to-posterior axis. An important function of Hox activity in verte- number (8). brates is the specification of different vertebral morphologies, with Within vertebral precursors, specific combinations of Hox an additional role in axis elongation emerging. The miR-196 family transcription factors impart positional information that governs of microRNAs (miRNAs) are predicted to extensively target Hox 3′ vertebral identity (9).
    [Show full text]
  • Strategies to Study Sex-Determining Genes in the Mouse
    Strategies to study sex-determining genes in the mouse Amy E. Johnson A thesis submitted to the University of London in fulfilment of the requirements for the degree of Doctor of Philosophy. May 2002 Division of Developmental Genetics, National Institute For Medical Research, The Ridgeway, Mill Hill, London, NW7 lAY. ProQuest Number: U643301 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643301 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 This thesis is dedicated to my immediate family, Janice, Clive, Molly, Matthew, Ben, Emma and my fiancé Geoff Table Of Contents ACKNOWLEDGEMENTS ............................................ / ABSTRACT ....................................................................................................................IV 1 CHAPTER 1- GENERAL INTRODUCTION....................................................... 1 lA SEX DETERMINATION......................................................................................1 1.1.1 Drosophila and C-ele^ans .................................................................................1
    [Show full text]
  • Testing a Mesendoderm Protocol in Smad5 and Smad1/5 Depleted Embryonic Stem Cells for Primordial Germ Cell Induction
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Testing a mesendoderm protocol in Smad5 and Smad1/5 depleted embryonic stem cells for primordial germ cell induction Mestrado em Biologia Evolutiva e do Desenvolvimento Sara Mariana Eugénio Ferraz Mendes Dissertação orientada por: Professora Dra. Susana Marina Chuva de Sousa Lopes e Professora Dra. Maria Gabriela Rodrigues 2015 Contents i. Acknowledgements ................................................................................................................................ I ii. Abbreviations .................................................................................................................................... II iii. Abstract ............................................................................................................................................ III iv. Resumo ............................................................................................................................................ IV I. Introduction .............................................................................................................................. 1 1. Embryonic Stem Cells in mouse ............................................................................................ 2 2. BMP signalling: BMP4 and Smads 1/5 .................................................................................. 3 3. Primordial germ cells (PGCS)................................................................................................
    [Show full text]
  • Les Hormones Thyroïdiennes, Leurs Récepteurs Et L'évolution De La
    Les hormones thyroïdiennes, leurs récepteurs et l’évolution de la métamorphose chez les Chordés. Mathilde Paris To cite this version: Mathilde Paris. Les hormones thyroïdiennes, leurs récepteurs et l’évolution de la métamorphose chez les Chordés.. Biochimie [q-bio.BM]. Ecole normale supérieure de lyon - ENS LYON, 2008. Français. tel-00366311 HAL Id: tel-00366311 https://tel.archives-ouvertes.fr/tel-00366311 Submitted on 6 Mar 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Présentée devant L’ECOLE NORMALE SUPÉRIEURE DE LYON pour l’obtention du DIPLÔME DE DOCTORAT soutenue le 18 décembre 2008 par MATHILDE PARIS THYROIDHORMONES,THEIRRECEPTORS AND THE EVOLUTION OF METAMORPHOSIS IN CHORDATES Jury: Vincent LAUDET Directeur de thèse Béatrice DESVERGNE Rapportrice Detlev ARENDT Rapporteur Philippe JANVIER Examinateur Nicholas HOLLAND Examinateur Frédéric FLAMANT Examinateur Hector ESCRIVA Membre invité THYROIDHORMONES,THEIRRECEPTORS ANDTHEEVOLUTIONOFMETAMORPHOSIS INCHORDATES mathilde paris Doctorate of Life Science 18 December 2008 ABSTRACT In an attempt to understand how the regulation of development evolves, particular attention has been put on transcription factors, which regulate gene expression during development. Among transcription factors, nuclear hormone receptors (NRs) have a peculiar status linked to their ligand-dependent activity.
    [Show full text]
  • <Abstract Centered> an ABSTRACT of the THESIS OF
    AN ABSTRACT OF THE DISSERTATION OF Michael Austin Garland for the degree of Doctor of Philosophy in Toxicology presented on June 14, 2019. Title: Transcriptomic Approaches for Discovering Regenerative and Developmental Regulatory Networks in Zebrafish Abstract approved: _____________________________________________________________________ Robert L. Tanguay Zebrafish are capable of fully regenerating organs and tissue such as their caudal fin, which is similar to a human regrowing an arm or a leg. In contrast, most mammals including humans have a greatly reduced capacity for wound healing. The ability of zebrafish to undergo this regenerative process, called epimorphic regeneration, hinges on the capacity to form a blastema at the wound site. The blastema quickly recapitulates the developmental processes involved in complex tissue formation to restore lost or damaged tissue. One key mechanism for inducing blastema formation is global repression of genes involved in tissue differentiation and maintenance. Induction of repressive factors, such as microRNAs (miRNAs), are involved in reprogramming cells during epimorphic regeneration. The upstream mechanism by which zebrafish undergo epimorphic regeneration remains elusive. Furthermore, while focus is shifting toward regulatory RNAs such as miRNAs, the full complement of their repressive activities is unknown. We took a transcriptomics approach to investigating epimorphic regeneration and fin development. Parallel sequencing of total RNA and small RNA samples was performed on regenerating fin tissue at 1 day post-amputation (dpa). Most miRNAs had increased expression, consistent with global repression of genes involved in cell specialization during de-differentiation. We identified predicted interactions between miRNAs and genes involved in transcriptional regulation, chromatin modification, and developmental signaling. miR-146a and miR-146b are anti- inflammatory miRNAs that were predicted to target eya4, which is involved in chromatin remodeling and innate immunity.
    [Show full text]
  • Oct-4: More Than a Pluripotent Marker? Ketkar Alhad Ashok, M.Sc., KVR Reddy, Ph.D.*
    Review Article Oct-4: More than a Pluripotent Marker? Ketkar Alhad Ashok, M.Sc., KVR Reddy, Ph.D.* Molecular Immunology Division Department, National Institute for Research in Reproductive Health, Parel, Mumbai, India * Corresponding Address: Molecular Immunology Division Departmetn, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai-400012, India Email: [email protected] Abstract Received: 23/Sep/2008, Accepted: 23/Nov/2008 Oct-4/ Pou5f1/ Oct-3, a POU domain family protein acts as a crucial transcription factor dur- ing embryonic development. It helps in maintenance of self renewal as well as pluripotential state of embryonic stem (ES) cells. Its expression starts right from 2 cell stage especially prior to 8 cell stage till the blastocyst stage where it is strongly expressed in inner cell mass (ICM). Thereafter, it is located predominantly in primordial germ cells (PGCs) till the birth. It targets particularly those genes which bear an octameric motif ATGCAAAT in promoter or enhancer region. Most of the target genes of Oct-4 are expressed in undifferentiated ES cells and knockdown of Oct-4 results in ES cell differentiation as a result of down regulation of targets of Oct-4 which are expressed in ES cells. Since, Oct-4 is crucial for embryo survival its expression needs tight regulation. Oct-4 is carefully regulated epigenetically as well as by several other factors. DNA methylation and histone modification play an important role in expression of Oct-4 while proximal promoter, enhancer and distal enhancer are the crucial regulatory elements present on Oct-4 upstream region. There is increasing evidence that Oct-4 is expressed in adult stem cells and these stem cells can get converted to cancer stem cells.
    [Show full text]
  • Control of the Embryonic Stem Cell State
    Control of the Embryonic Stem Cell State The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Young, Richard A. “Control of the Embryonic Stem Cell State.” Cell 144, no. 6 (March 2011): 940–954.© 2011 Elsevier Inc. As Published http://dx.doi.org/10.1016/j.cell.2011.01.032 Publisher Elsevier B.V. Version Final published version Citable link http://hdl.handle.net/1721.1/85177 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Leading Edge Review Control of the Embryonic Stem Cell State Richard A. Young1,2,* 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA *Correspondence: [email protected] DOI 10.1016/j.cell.2011.01.032 Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medi- cine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease. Introduction regulators that have been implicated in control of ESC state Embryonic stem cells (ESCs) are pluripotent, self-renewing cells and discuss how they contribute to the gene expression program that are derived from the inner cell mass (ICM) of the developing of pluripotency and self-renewal.
    [Show full text]
  • The Concise Guide to Pharmacology 2019/20: Nuclear Hormone Receptors
    Alexander, S. P. H., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176(S1), S229-S246. https://doi.org/10.1111/bph.14750 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14750 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14750. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology (2019) 176, S229–S246 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors Stephen PH Alexander1 , John A Cidlowski2 , Eamonn Kelly3, Alistair Mathie4 ,JohnAPeters5 , Emma L Veale4 , Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher
    [Show full text]
  • Multiple Approaces to the Study of Steroidogenic Factor 1: Identification of a Novel Regulatory Element and Identification of Novel Target Genes
    MULTIPLE APPROACES TO THE STUDY OF STEROIDOGENIC FACTOR 1: IDENTIFICATION OF A NOVEL REGULATORY ELEMENT AND IDENTIFICATION OF NOVEL TARGET GENES APPROVED BY SUPERVISORY COMMITTEE Keith L. Parker, M.D., Ph.D. Robert Hammer, Ph.D. Carole Mendelson, Ph.D. Andrew Zinn, M.D., Ph.D. To Joe “To love and be loved is to feel the sun from both sides” David Viscott MULTIPLE APPROACHES TO THE STUDY OF STEROIDOGENIC FACTOR 1: IDENTIFICATION OF A NOVEL REGULATORY ELEMENT AND IDENTIFICATION OF NOVEL TARGET GENES by NANCY RUTH STALLINGS DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas April, 2005 Acknowledgments I would like to thank the many people that have been supportive of me. I have been very fortunate in meeting many great people throughout the years. My list of thanks starts even before enrolling in graduate school-it begins with the wonderful people that helped me adjust to my first “real job” after college. Judy, Diana, Diane, Karen, Carole and Mike---Thank you so much for all you were able to teach me. I was lucky to find a laboratory to do my dissertation research that also had many talented individuals and fantastic co-workers. Through the years I was able to learn a lot from them. Suria, Neil, Gregor, Liping, Marit, Nathan, Kimmie, Anne, Tomo, Tom, Gareth, and Yelena were great co-workers.
    [Show full text]
  • Inositol and Zinc Related Neural Tube Defects
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/19445 Please be advised that this information was generated on 2021-10-06 and may be subject to change. Inositol and zinc related neural tube defects Genetic, morphological and supplementation studies in mouse Human genetic studies Inositol and zinc related neural tube defects Genetic, morphological and supplementation studies in mouse Human genetic studies Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen PROEFSCHRIFT Ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, op gezag van de Rector Magnificus Prof. Dr. C.W.P.M. Blom, volgens besluit van het College van Decanen in het openbaar te verdedigen op dinsdag 25 Mei des namiddags om 3.30 uur precies door Enriko Daniël Klootwijk geboren op 31 Mei 1974 te Ede Promotor: Prof. Dr. E.C.M. Mariman (dept. Human Biology, University of Maastricht) Co-promotor: Dr. B. Franke Dr. R.P.M. Steegers-Theunissen Manuscript commissie: Prof. Dr. R.A. Wevers (voorzitter) Prof. Dr. E.J. van Zoelen Prof. Dr. B. Wieringa ISBN: 90-6464388-1 Druk: Ponsen & Looijen Wageningen Financial support: Dr. Ir. Van de Laar Stichting The research described in this thesis was carried out at the department of Human Genetics of the University Medical Center Nijmegen and supported by grants from ZonMw and the Dutch Prinses Beatrix Fonds. Cover: photo of a Bent
    [Show full text]