Dot Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Dot Brochure Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. References HE GENUS COREOPSIS IS FLORIDA'S Life cycle: Annual—plant complete its life cycle in STATE WILDFLOWER. The Coreopsis species one growing season; dies after fruit (seed) mature; Bell, C. R. and B. J. Taylor. 1982. Florida wild flow- are commonly referred to as tickseeds Perennial—plant grows year after year; does not ers and roadside plants. Laurel Hill Press, Chapel T Coreopsis because the flat small fruit (achene) is ovalish to die after fruit (seed) mature but the top growth Hill, NC. round and has two short spines that give it a bug- may die back; new shoots will emerge the next Clewell, A. F. 1985. Guide to the vascular plants of A Guide To like appearance. Tickseed flowers generally have growing season. the Florida panhandle. University Presses of eight showy ray flowers (“petals” ) that are usually Florida, Tallahassee, FL. Identifying and toothed at their ends. All tickseeds in Florida, Flowering: This refers to the main flowering sea- Rickett, W.R. Wild flowers of the United States: except Swamp Tickseed, have yellow ray flowers. son; however, keep in mind that plants found in Volume 2: The southeastern states. McGraw Hill Enjoying Florida’s the southern parts of its range will flower earlier Book Company,NY. There are 13 tickseed species that occur in than northern populations. And given Florida's Florida, two of which do not occur in any other part warm climate, it is not unusual for plants to Taylor, W.K. 1992. The guide to Florida wildflowers. State Wildflower of the world. Until 2001, seed of only two species occasionally flower in seasons other than noted. Taylor Publishing Company,Dallas, TX. have been sown by Florida Department Of Taylor, W.K. 1998. Florida wildflowers in their nat- Transportation - Golden Tickseed and Lanceleaf Height in flower: This is the typical height of a ural communities. University Press of Florida, Tickseed. However, starting in 2002, FDOT will species when it’s flowering. However, a plant Gainesville, FL. probably be planting seed of Goldenmane Tickseed could be taller or shorter than it’s characteristic USDA, NRCS. 2001. The PLANTS Database, and Leavenworth's Tickseed harvested from plants height under extremes of soil moisture, fertility, Version 3.1 (http://plants.usda.gov). National that are adapted to our climate and have been pro- or shade. Also, plants growing along roadsides Plant Data Center, Baton Rouge, LA 70874- duced by Florida growers. In the future, it is hoped may be shorter than usual if they are in the mow 4490 USA. that seed from other Florida-adapted tickseed zone. species will be produced by Florida growers. Wunderlin, R. P.1998. Guide to the vascular plants Habitat: Information is provided as to where this of Florida. University Press of Florida, In this pamphlet, general information is provid- species normally grows. The phrase 'disturbed Gainesville, FL. ed about flowering, life cycle, abundance, and the site' means roadsides, lawns, abandoned fields, Wunderlin, R. P.and B. F. Hansen. 2000. Atlas of types of habitat in which tickseeds grow in Florida. vacant lots, grazed fields, etc. Florida Vascular Plants This information refers to naturally occurring pop- (http://www.plantatlas.usf.edu/).[S. M. Landry ulations, except where noted. Range maps: The map of Florida next to the and K. N. Campbell (application development), flower of each species shows the documented Florida Center for Community Design and Common name: While there may be many com- occurrence of that species in Florida counties. Research.] Institute for Systematic Botany, mon names for a species, the most frequently The maps are courtesy of “Atlas of Florida University of South Florida, Tampa. used names are listed. Vascular Plants” (see References), and are used Written by: with permission of Dr. Richard Wunderlin. Jeff G. Norcini Roadside frequency: This rating is provided to help you determine the likelihood of seeing the Designed by: various tickseed species along roadsides. It is Melissa A. Thorpe based on information in the references listed at Photos by: the end of this pamphlet, and personal experi- Loran C. Anderson, James H. Aldrich, Fred ence. Nation, Jeffrey G. Norcini, Melissa A. Thorpe, Dan Tenaglia, and Betty Wargo ENH867 Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. Coreopsis basalis Coreopsis grandiflora Coreopsis leavenworthii* Coreopsis pubescens Common name: Common name: Common name: Common name: Goldenmane Largeflower Leavenworth's Star Tickseed Tickseed; Dye Flower Tickseed Tickseed Roadside frequency: Roadside frequency: Roadside frequency: Rare Roadside frequency: Rare Occasional; locally abun- Life Cycle: Perennial Common Life Cycle: Perennial dant Flowering: Spring, Summer Life Cycle: Annual to short- Flowering: Summer Life Cycle: Annual Height in flower: 1 - 2 feet lived perennial Height in flower: 1 - 4 feet Flowering: Spring Habitat: Grows in sunny,dis- Flowering: Summer in North Habitat: Grows in moist Height in flower: 1 - 1 1/2 feet turbed sites. Florida to year-round in South Florida. pinelands. Habitat: Grows in sunny,disturbed sites that have dry, Height in flower: 1 - 2 feet sandy soil. Habitat: Grows in moist pinelands and disturbed sites; Coreopsis integrifolia moist ditches and swales. Coreopsis tinctoria Common name: Common name: Coreopsis floridana* Fringeleaf Tickseed Coreopsis linifolia Golden Tickseed Common name: Roadside frequency: Rare Common name: Roadside frequency: Florida Tickseed Life Cycle: Perennial Texas Tickseed Rare, except where planted Roadside frequency: Flowering: Fall Roadside frequency: by city,county,or state Occasional Height in flower: 1 - 2 feet Occasional transportation departments Life Cycle: Perennial Habitat: Grows in floodplains, Life Cycle: Perennial Life Cycle: Annual to short- Flowering: Fall, winter and river and stream banks. Flowering: Fall lived perennial Height in flower: 2 - 3 feet Height in flower: 2 - 4 feet Flowering: Summer Habitat: Grows in moist Habitat: Grows in moist Height in flower: 1 - 3 feet pinelands, prairies, and edges of cypress swamps; moist Coreopsis lanceolata pinelands, prairies, and edges of cypress swamps; moist Habitat: Grows in sunny,moist, disturbed sites; moist ditches and swales. Common name: ditches and swales ditches and swales. Lanceleaf Tickseed Roadside frequency: Coreopsis major Coreopsis gladiata Occasional Common name: Coreopsis tripteris Common name: Life Cycle: Short-lived Greater Tickseed Common name: Coastalplain Perennial Roadside frequency: Tall Tickseed Tickseed Flowering: Spring, summer Infrequent Roadside frequency: Roadside frequency: Height in flower: 10-15inch- Life Cycle: Perennial Rare Occasional es (common garden varieties planted by city,county,or Flowering: Summer Life Cycle: Perennial Life Cycle: Perennial state transportation departments may be up to 2 feet Height in flower: 2 - 3 feet Flowering: Summer Flowering: Summer, fall tall) Habitat: Grows in sunny,sites Height in flower: 2 - 4 feet Height in flower: 2 - 3 feet Habitat: Grows in sunny sites that have dry,sandy soil. that have dry,sandy soil. Habitat: Grows in moist hard- Habitat: Grows in moist wood or hardwood/pine pinelands, prairies, and edges of cypress swamps; moist forests. NOTE: Leaves of this species vary from smooth to very Coreopsis nudata ditches and swales. hairy. Common name: Georgia Tickseed; Swamp Coreopsis Roadside frequency: Frequent Life Cycle: Perennial Flowering: Spring PRESENT Height in flower: 2 - 4 feet Habitat: Grows in moist pinelands and prairies, as well * Endemic (worldwide distribution is limited to NOT PRESENT Florida) as marshes and swamps; moist ditches and swales..
Recommended publications
  • Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province
    Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, and North Carolina, NAPPC South Carolina, Tennessee Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Central Appalachian Broadleaf Forest 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Far ms 13 Public Lands 14 Home Landscapes 15 Bloom Periods 16 Plants That Attract Pollinators 18 Habitat Hints 20 This is one of several guides for Check list 22 different regions in the United States. We welcome your feedback to assist us in making the future Resources and Feedback 23 guides useful. Please contact us at [email protected] Cover: silver spotted skipper courtesy www.dangphoto.net 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Ecological Region of the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, North Carolina, South Carolina, Tennessee a nappc and Pollinator Partnership™ Publication This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC–www.nappc.org). Central Appalachian Broadleaf Forest – Coniferous Forest – Meadow Province 3 Why support pollinators? In theIr 1996 book, the Forgotten PollInators, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “ Farming feeds of 90% of flowering plants and one third of human food crops.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Barcoding the Asteraceae of Tennessee, Tribe Coreopsideae
    Schilling, E.E., N. Mattson, and A. Floden. 2014. Barcoding the Asteraceae of Tennessee, tribe Coreopsideae. Phytoneuron 2014-101: 1–6. Published 20 October 2014. ISSN 2153 733X BARCODING THE ASTERACEAE OF TENNESSEE, TRIBE COREOPSIDEAE EDWARD E. SCHILLING, NICHOLAS MATTSON, AARON FLODEN Herbarium TENN Department of Ecology & Evolutionary Biology University of Tennessee Knoxville, Tennessee 37996 [email protected]; [email protected] ABSTRACT Results from barcoding studies of tribe Coreopsideae for the Tennessee flora using the nuclear ribosomal ITS marker are presented and include the first complete reports for 2 of the 20 species of the tribe that occur in the state, as well as updated reports for several others. Sequence data from the ITS region separate most of the species of Bidens in Tennessee from one another, but species of Coreopsis, especially those of sect. Coreopsis, have ITS sequences that are identical (or nearly so) to at least one congener. Comparisons of sequence data to GenBank records are complicated by apparent inaccuracies of older sequences as well as potentially misidentified samples. Broad survey of C. lanceolata from across its range showed little variability, but the ITS sequence of a morphologically distinct sample from a Florida limestone glade area was distinct in lacking a length polymorphism that was present in other samples. Tribe Coreopsideae is part of the Heliantheae alliance and earlier was often included in an expanded Heliantheae (Anderberg et al. 2007) in which it was usually treated as a subtribe (Crawford et al. 2009). The tribe shows a small burst of diversity in the southeastern USA involving Bidens and Coreopsis sect.
    [Show full text]
  • BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J
    TRI-OLOGY, Vol. 47, No. 1 Patti J. Anderson, Ph.D., Managing Editor JANUARY-FEBRUARY 2008 DACS-P-00124 Wayne N. Dixon, Ph. D., Editor Page 1 of 10 BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J. Anderson, Ph.D. For this period, 81 specimens were submitted to the Botany Section for identification, and 795 were received from other sections for identification/name verification, for a total of 876. In addition, 163 specimens were added to the herbarium. Some of the samples received for identification are discussed below: Ageratina jucunda (Greene) Clewell & Woot. (A genus of about 290 species mainly native to the eastern United States and warm regions of the Americas.) Compositae/Asteraceae. Hammock snakeroot. This fall-flowering perennial grows 40–80 cm tall with an erect, minutely pilose stem. The narrowly elliptic to deltoid, 2–6 cm long, opposite leaves are usually glabrous and have crenate to serrate margins. The flower heads contain clusters of white or pinkish-white disc flowers, but no ray flowers. Even without ray flowers, this species provides a stunning display with white clouds of color in the sandhills and hammocks of Georgia and peninsular Florida. Hammock snakeroot, the common name for this species, suggests both its habitat preference for hammocks and the use of members of the genus as a cure for snakebites by indigenous people. (Hillsborough County; B2008-8; Jason B. Sharp; 7 January 2008) (Austin 2004; Mabberley 1997; http://www.efloras.org) Calophyllum inophyllum L. (A genus of 187 tropical species.) Guttiferae/Clusiaceae. Alexandrian laurel, beauty-leaf.
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Winter 2014-2015 (22:3) (PDF)
    Contents NATIVE NOTES Page Fern workshop 1-2 Wavey-leaf basket Grass 3 Names Cacalia 4 Trip Report Sandstone Falls 5 Kate’s Mountain Clover* Trip Report Brush Creek Falls 6 Thank yous memorial 7 WEST VIRGINIA NATIVE PLANT SOCIETY NEWSLETTER News of WVNPS 8 VOLUME 22:3 WINTER 2014-15 Events, Dues Form 9 Judy Dumke-Editor: [email protected] Phone 740-894-6859 Magnoliales 10 e e e visit us at www.wvnps.org e e e . Fern Workshop University of Charleston Charleston WV January 17 2015, bad weather date January 24 2015 If you have thought about ferns, looked at them, puzzled over them or just want to know more about them join the WVNPS in Charleston for a workshop led by Mark Watson of the University of Charleston. The session will start at 10 A.M. with a scheduled end point by 12:30 P.M. A board meeting will follow. The sessions will be held in the Clay Tower Building (CTB) room 513, which is the botany lab. If you have any pressed specimens to share, or to ask about, be sure to bring them with as much information as you have on the location and habitat. Even photographs of ferns might be of interest for the session. If you have a hand lens that you favor bring it along as well. DIRECTIONS From the North: Travel I-77 South or 1-79 South into Charleston. Follow the signs to I-64 West. Take Oakwood Road Exit 58A and follow the signs to Route 61 South (MacCorkle Ave.).
    [Show full text]
  • Resolution of Deep Angiosperm Phylogeny Using Conserved Nuclear Genes and Estimates of Early Divergence Times
    ARTICLE Received 24 Mar 2014 | Accepted 11 Aug 2014 | Published 24 Sep 2014 DOI: 10.1038/ncomms5956 OPEN Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times Liping Zeng1, Qiang Zhang2, Renran Sun1, Hongzhi Kong3, Ning Zhang1,4 & Hong Ma1,5 Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (B99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation. 1 State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratoryof Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China. 2 Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China.
    [Show full text]
  • Coreopsis Lanceolata) in Roadside Right-Of-Ways1 Jeffrey G
    ENH1103 Establishment of Lanceleaf Tickseed (Coreopsis lanceolata) in Roadside Right-of-Ways1 Jeffrey G. Norcini, Anne L. Frances, and Carrie Reinhardt Adams2 Introduction The Florida Department of Transportation’s (FDOT) roadside right-of-way (ROW) wildflower program began in 1963 (3). In addition to the aesthetic attributes of wildflower plantings, FDOT noted that the plantings would increase driver alertness and would also lower maintenance costs. The economic benefit is even more relevant today because maintenance expenses are driven by higher fuel, labor, and equipment costs. The economic value of using native wildflowers in ROWs, especially native wildflowers adapted to Florida’s environ- ment (often referred to as Florida ecotypes) began to be Figure 1. A roadside right-of-way planting of lanceleaf tickseed. recognized in the 1980s (3). Today, the ecological value Lanceleaf Tickseed and sustainability of using native wildflowers adapted to Lanceleaf tickseed occurs throughout most of the United specific regions of the country is widely acknowledged States, the main exception being the Rocky Mountain states (5). And when plantings of these types of wildflowers are (12). In Florida, the documented range of this upland established and managed appropriately, maintenance costs species extends southward into Lake County (14). Lanceleaf are minimized, as is the need to replant. tickseed frequently occurs in sandhills and disturbed habitats, including roadside ROWs. The northern Florida lanceleaf tickseed ecotype is a low-growing (6–8 inches tall), short-lived perennial that 1. This document is ENH1103, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date July 2008. Revised March 2009.
    [Show full text]
  • The Nature of Naming – Flo Oxley
    The Nature of Naming Lady Bird Johnson Wildflower Center Flo Oxley What’s in a Name? • "A rose is a rose," it has been said • And most of us know a rose when we see one • As we know the African marigolds • Maples, elms, cedars, and pines that shade our backyards and line our streets What’s in a Name? • We usually call these plants by their common names • But if we wanted to know more about the cedar tree in our front yard, we would find that "cedar" may refer to: – Eastern red cedar What’s in a Name? • Incense cedar What’s in a Name? • Western red cedar What’s in a Name? • Atlantic white cedar What’s in a Name? • Spanish cedar What’s in a Name? • Biblical Lebanon cedar What’s in a Name? • In fact, we would find that cedars are found in three separate plant families What’s in a Name? • Later, after discovering that our "African" marigolds are in fact from Mexico and our "Spanish" cedar originated in the West Indies, we would realize how misleading the common names of plants can be. What’s in a Name? • The same plant can have many different common names – European white lily has at least 245 – Marsh marigold has at least 280 What’s in a Name? • Clearly, if we use only the common name of a plant, we cannot be sure of understanding very much about that plant Classification • It is for this reason that the scientific community prefers to use a more precise way of naming, or classification • Scientific classification, however, is more than just naming: it is a key to understanding • Botanists name a plant to give it a unique place in the biological world, as well as to clarify its relationships within that world How Are Plants Classified? • Science classifies living things in an orderly system through which they can be easily identified – Categories of increasing size, based upon relationships within those categories How Are Plants Classified? • For example, all plants can be put in order from the more primitive to the more advanced.
    [Show full text]
  • Rare Plants of Louisiana
    Rare Plants of Louisiana Agalinis filicaulis - purple false-foxglove Figwort Family (Scrophulariaceae) Rarity Rank: S2/G3G4 Range: AL, FL, LA, MS Recognition: Photo by John Hays • Short annual, 10 to 50 cm tall, with stems finely wiry, spindly • Stems simple to few-branched • Leaves opposite, scale-like, about 1mm long, barely perceptible to the unaided eye • Flowers few in number, mostly born singly or in pairs from the highest node of a branchlet • Pedicels filiform, 5 to 10 mm long, subtending bracts minute • Calyx 2 mm long, lobes short-deltoid, with broad shallow sinuses between lobes • Corolla lavender-pink, without lines or spots within, 10 to 13 mm long, exterior glabrous • Capsule globe-like, nearly half exerted from calyx Flowering Time: September to November Light Requirement: Full sun to partial shade Wetland Indicator Status: FAC – similar likelihood of occurring in both wetlands and non-wetlands Habitat: Wet longleaf pine flatwoods savannahs and hillside seepage bogs. Threats: • Conversion of habitat to pine plantations (bedding, dense tree spacing, etc.) • Residential and commercial development • Fire exclusion, allowing invasion of habitat by woody species • Hydrologic alteration directly (e.g. ditching) and indirectly (fire suppression allowing higher tree density and more large-diameter trees) Beneficial Management Practices: • Thinning (during very dry periods), targeting off-site species such as loblolly and slash pines for removal • Prescribed burning, establishing a regime consisting of mostly growing season (May-June) burns Rare Plants of Louisiana LA River Basins: Pearl, Pontchartrain, Mermentau, Calcasieu, Sabine Side view of flower. Photo by John Hays References: Godfrey, R. K. and J. W. Wooten.
    [Show full text]
  • Mississippi Natural Heritage Program Special Plants - Tracking List -2018
    MISSISSIPPI NATURAL HERITAGE PROGRAM SPECIAL PLANTS - TRACKING LIST -2018- Approximately 3300 species of vascular plants (fern, gymnosperms, and angiosperms), and numerous non-vascular plants may be found in Mississippi. Many of these are quite common. Some, however, are known or suspected to occur in low numbers; these are designated as species of special concern, and are listed below. There are 495 special concern plants, which include 4 non- vascular plants, 28 ferns and fern allies, 4 gymnosperms, and 459 angiosperms 244 dicots and 215 monocots. An additional 100 species are designated “watch” status (see “Special Plants - Watch List”) with the potential of becoming species of special concern and include 2 fern and fern allies, 54 dicots and 44 monocots. This list is designated for the primary purposes of : 1) in environmental assessments, “flagging” of sensitive species that may be negatively affected by proposed actions; 2) determination of protection priorities of natural areas that contain such species; and 3) determination of priorities of inventory and protection for these plants, including the proposed listing of species for federal protection. GLOBAL STATE FEDERAL SPECIES NAME COMMON NAME RANK RANK STATUS BRYOPSIDA Callicladium haldanianum Callicladium Moss G5 SNR Leptobryum pyriforme Leptobryum Moss G5 SNR Rhodobryum roseum Rose Moss G5 S1? Trachyxiphium heteroicum Trachyxiphium Moss G2? S1? EQUISETOPSIDA Equisetum arvense Field Horsetail G5 S1S2 FILICOPSIDA Adiantum capillus-veneris Southern Maidenhair-fern G5 S2 Asplenium
    [Show full text]