Black Holes (Bhs) the First Discoveries - Discovery (1961-63) Quasi-Stellar Radio Sources As the Most EnergeC and Distant Members of a Class of Objects

Total Page:16

File Type:pdf, Size:1020Kb

Black Holes (Bhs) the First Discoveries - Discovery (1961-63) Quasi-Stellar Radio Sources As the Most Energe�C and Distant Members of a Class of Objects Observing Black Holes (BHs) The First Discoveries - Discovery (1961-63) Quasi-Stellar Radio Sources as the most energec and distant members of a class of objects. - Center of a giant Ellipcal Galaxy è Blazar: AGN with Relavisc jet 3C273 - Cosmological red-shi z = 0.158 cz ≈ dH(t0) from the Hubble-law we get the distance of 2.5 Gyr (750 Mpc) - Discovery (1972) binary BH system “In the case of Cyg X-1 black hole – is the most conservave hypothesis” Edwin Salpeter Cyg X-1 Orbits, 5.6 days, an unseen opcally (but bright X-ray) object. The companion has a mass of ~ 30 M¤ \]$%.'#$_*8$7$%B'($*75$*B-##*;1%*<=)*>?@*"=*b$D,$%c#*,-Z* V-##*;L(.C1(*;2V3*;1%*"'(-%=*#=#7$B#** 2V]_*>?%-=*.1BD-.7*#7-%R*V.1BD_*!DC.-,*.1BD-('1(*#7-%R*i*W*V.eV]3* !"$%&-C1(-,*D-%-B$7$%#_*d1%"*Y*SQJ*O-=#R**-*#'(&$&Y*X*N! O*Y*GQS*/D.** G @eG 2-_**#$B'?B-P1%*-]'#R*'_*1%"'7-,*'(.,'(-C1(*-(),$R*b*W*&%*#'($*2@?$ 3 _*,'($*1;* #')57*#D$$O3* ;2V3*W*UQGffge?UQUUJ*V!R*-##LB'()*V.1BD*W*GUV!R*-(O*9B1#7*,'/$,=E*'**Y* GHQ@ge?UQXh** * ***********V]*Y*@fQX*V!* <-&$-7_** 2#'(*$3*75$*'(.,'(-C1(*-(),$*"$7Z$$(*2Uh*?*IUh3*.-(*'(7%1OL.$*,-%)$*L(.$%7-'(7=*-(O*'#*B1#7,=*(17* Z$,,*O$7$%B'($OQ* \.,'D#$*\iL-C1(* G* @eG* M'(*'*m*2*2@?Nne-3 3 M'(*'*m*o@?UQGF@fp2ie2@gi33GeFq@eG* +0*fj@JFU?fH** VFF*>?Hl*+0*@SQJS*VR*d1%"*W*FQfS* \>!*UHfX?JHJ**\>!*UHfX?JHJ* '*W*HfQJ*k*@QU* BHs as astronomical sources • Primordial BHs They have been formed at the early stages of the universe Not discovered, yet. Only upper limits (mostly from gamma-ray observaons). • Stellar mass BHs (mainly this lecture) 7 8 A typical galaxy like the Milky Way should harbour 10 − 10 stellar black holes There are more than twenty good candidates in close binary systems. Accreon, jets. Observed at all wavelenghts. Isolated stellar mass BHs are not discovered up to now. But there are interesng candidates among microlensing events. • Intermediate mass BHs Their existence is uncertain, but there are good candidates among ULX. Observed in radio, x-rays, and opcs. • Supermassive BHs (Sgr A* this lecture) There are many good candidates with mass esmates. In the center of our Galaxy with extremely high certainty there is supermassive BH. Accreon, jets, dal discrupons of normal stars. Observed at all wavelenghts. • Micro BHs Forms at Planck scales. There are no observaonal evidences. CERN: Micro BH created by -27 HE 14 TeV p-p collisions by the LHC, they would disintegrate rapidly, in around 10 7 seconds. Hawking radiaon “BHs evaporate by radiang away their energy” Formaon of Stellar Black Holes Note: The fact that General Relavity does predict the existence of BHs and that General Relavity is a reliable theory of gravitaon does not necessarily prove the existence of BHs, because General Relavity does not describe the astrophysical processes by which a BH may form. E.g., White Holes, Wormholes, Parallel Universe, Travelling in me exist from GR, but they exist in real ? <1%$?.1,,-D#$*#LD$%(1&-*D%1)$('71%#* a$Z*B1O$,#*D%$O'.7*75-7*B1#7*1;*#7-%#* w@XV * D%1OL.$* +0#* 2#$$* 75$* %$&'$Z* `*#7-%*BL#7*5-&$*-7*,$-#7*X*CB$#R* ! MB-%x*-%>'&_*@SUfQUGJFS3* "L7*(1*B1%$*75-(*fU*71*SU*CB$#R* 75$* B-##* 1;* 75$* ML(* 2<3* 71* L(O$%)1* <1%$?.1,,-D#$* #LD$%(1&-* $]D,1#'1(Q* r!***0')5*B-##*2;$Z3* r!***n1Z?B-##*2B-P1%'7=3* r!***jn>*A*L,7%-,LB'(1L#*>?%-=*#1L%.$#* •! V1#7*1;*,1Z?B-##*-%$*7%-(#'$(7#Q* •! V'.%1iL-#-%#l*M-B$*B-'(* D%1D$%C$#*,'/$*KL-#-%#* y$7#* +0*5-&$*a!*0`:N* yQ*`Q*s5$$,$%* Some records M33 X-7 15.65+/-1.45 Msolar (Orosz et al. 2007). Paredes arXiv: 0907.3602 BH candidates Among 20 good galacc candidates 17 are X-ray novae. 3 belong to HMXBs (Cyg X-1, LMC X-3, GRS 1915+105). New candidates sll appear. For on of the latest see 1008.0597 (J. Orosz, from astro-ph/0606352) Candidates properes (astro-ph/0606352) Also there are about 20 “candidates to candidates”. Detector MAXI recently added several new BH candidates BH Spectrum !"#$%&'()$#(*+!"#$%&'()$#(*+ ,-*..$#&'()$#%&+%+-*/+&()&01(21&3)*&34&-1*&23/53)*)-+&,-*..$#&'()$#%&+%+-*/+&()&01(21&3)*&34&-1*&23/53)*)-+& (+&$&23/5$2-&3'6*2-&$22#*7)8&/$9*#(+&$&23/5$2-&3'6*2-&$22#*7)8&/$9*# :);*#&+3/*&23);(73)+&$)&:);*#&+3/*&23);(73)+&$)& $22#*73)&;(+<&2$)&43#/ $22#*73)&;(+<&2$)&43#/ =(+23+(-% =(+23+(-% !!!!!!!!"#$%&!'()**)+,!- !!!!!!!!"#$%&!'()**)+,!- >1*&!"#$%&,5*2-#?/&(+&=*#%&23/5.*@A& >1*&!"#$%&,5*2-#?/&(+&=*#%&23/5.*@A& • &>1*#/$.&*/(++(3)&4#3/&-1*&$22#*73)&;(+<&B/?.7"'.$2<'3;%C& •• &>1*#/$.&*/(++(3)&4#3/&-1*&$22#*73)&;(+<&B/?.7"'.$2<'3;%C&&D*5#32*++()8&'%&*)*#8*72&*.*2-#3)+&B0$#/&8$+E&F*-+EC& &G?21&/3#*HHH&B*/(++(3)&I&$'+3#573)&4*$-?#*+J&#*K*273)J&*-2HHHC •• &D*5#32*++()8&'%&*)*#8*72&*.*2-#3)+&B0$#/&8$+E&F*-+EC& • &G?21&/3#*HHH&B*/(++(3)&I&$'+3#573)&4*$-?#*+J&#*K*273)J&*-2HHHC X-ray binaries Black Hole X-ray spectra historically observed/classified in X-rays !"#$%&'()$#(*+ './ !+,- (%)&%'()* !"#$%&'' './ !+,- JETs X-ray binaries Corona T~107 K M-1/4 – last stable orbit temperature at Eddington luminosity Opcs/UV – QSO X-ray - μQSO X-ray Binary Jets exist on all scales X-ray binaries Low-Luminosity AGN Mirabel & Rodriguez (1994) VLBI: Falcke, Nagar, Wilson et al. (2000) Jets Oen the radio emission is more symmetric on the large scale and asymmetric on the small scale The core is defined based on the spectral index: flat (α ~ 0)‏ [to find which component is the radio core is not always easy: core free-free absorpon can complicate the story!] A prototypical radio galaxy Lobes Core Hot-spots Jets § Any size: from pc to Mpc § First order similar radio morphology (but differences depending on radio power, opcal luminosity & orientaon)‏ § Typical radio power 1023 to 1028 W/Hz Jet Formaon • All relavisc cosmic jet sources may be connected by a common basic mechanism – A promising model for that is magnetohydrodynamic acceleraon by rotang, twisted magnec fields • “Spin Paradigm” can explain qualitavely a number of stascal properes of AGN – Geometrically thick accreon flows are more efficient at launching jets • In Microquasars this principle may explain the correlaon between the producon of a jet and the presence of a hot, geometrically thick accreon flow • This also may be testable in some Seyfert AGN as well – Slow acceleraon and collimaon of these jets is probably the norm • There is some evidence for this in AGN jets – Highly relavisc jet flows may be produced by strong, straight magnec fields • All galacc cosmic jet sources, including supernovae and gamma-ray bursts, may be connected by a common origin as well: different outcomes of the last stage of evoluon in a massive star Basic Principles of Magnetohydrodynamic Jet Producon • Basic MHD mechanism: – Blandford (1976); Lovelace (1976) – Acceleraon by rotang black holes (Blandford & Znajek [1977]) – Acceleraon by rotang [thin] accreon disks (Blandford & Payne [1982]) • First numerical simulaons: Uchida & Shibata (1985) • Key ingredients in their “Sweeping Pinch” mechanism – Thick accreon disk or torus – Keplerian differenal rotaon (Ω ∝ R-3/2) – Inial strong vercal magnec field (strong enough to slow disk rotaon) – J × B force splits up into magnec pressure and tension: -∇ (B2 / 8π) + (B • ∇B) / 4π • Typical results (e.g., Kudoh et al [1998]; Uchida et al. [1999]) – Differenal rotaon twists up field into toroidal component, slowing rotaon – Disk accretes inward, further enhancing differenal rotaon and Bϕ – Greatest field enhancement is at torus inner edge 2 – Magnec pressure gradient (dBϕ / dZ) accelerates plasma out of system 2 – Magnec tension [hoop stress] (–Bϕ /R) pinches and collimates the oulow into a jet – Oulow jet speed is of order the escape velocity from the inner edge of the torus (Vjet ~ VAlfven ~ Vesc) – Jet direcon is along the rotaon axis Kudoh, Matsumoto, & Shibata (2002) Simulated jet evolution in the ISM !"#$%&'()$#(*+ radio IR opt X-ray Disc BH hard state Jet high energy companion tail! star (inner regions) !"#$%&'()$#(*+ radio IR opt X-ray Disc BH soft state Jet ? high energy companion tail! star (inner regions) ComplexComplex Physics vs.Physics simple vs. exercises simple exercises a word on radiative efficiency Complex Physics vs. simple exercises a word on radiative efficiency XBs LR ! LX 0.6 radiatively AGN inefficient Spin of a Black Hole 45$*;L,,*1"#$%&$O*.1(C(LLB*#D$.7%LB* 6$*$B'##'1(*,'($* <1BD71('^-^'1(* :%1(*$O)$* 45$%B-,*O'#/* N$}$.C1(*.1BD1($(7* •! N$}$.C1(*"LBD* •! 6,L1%$#.$(7*bÖ*,'($#* •! :%1(*,'($*O1B'(-7$#* •! JQf*/$u*e*JQH*/$u* •! a-%%1Z*,'($g"LBD* •! N$,-7$O*71*5-%O*}L]*-(O** .1&$%'()*;-.71%*ÜeGá* N$#7?;%-B$*>?%-=*<1BD71('^$O** %$}$.C1(*#D$.7%LB*;1%*'1('^-C1(** N$=(1,O#*Å*a1Z-/*2GUUG3* d-%-B$7$%#*à* N$,-C&'#C.*)%-&'7-C1(-,*",L%%'()*$Ä$.7* à*W*U* à*W*fR*N'(*WGN)*** d1Z$%?,-Z* *#D$.7%LB*â*W*G** n1)*à*W*F* à*W*U*R*N'(*W@UN)** !"#$%&$O*bÖ*6$*,'($* •! +%1-O*2Z'O75*1;*-*;$Z*/$u3* -(O*#1B$CB$#*%$O#5'{$O*6$* b?#5$,,*,'($*D%1|,$#*;%1B*-* &-%'$7=*1;*-..%$C()*.1,,-D#$O* 1"P$.7#Q** +%1-O$($O*$B'##'1(*:%1(*,'($*OL$*71*[N* 81DD,$%R*,')57*"$(O'()R*-(O*,$(#'()* $Ä$.7#*v* * d%1"'()*#7%1()*)%-&'7-C1(-,*|$,O#** Z'75*>?%-=*6$?,'($#*;%1B*-..%$C1(*O'#/#* Discs around black holes: a look from aside Disc temperature Discs observed from infinity.
Recommended publications
  • Particle Motion Exterior to a Spherical Star
    Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA∗ (Dated: January 18, 2012) I. OVERVIEW Our next objective is to consider the motion of test particles exterior to a spherical star (or around a black hole), i.e. in the Schwarzschild spacetime. We are interested in both massive particles (e.g. Mercury orbiting the Sun, or a neutron star orbiting a supermassive black hole), and in massless particles (light rays carrying information from an astrophysical object). The reading for this lecture is: MTW Ch. 25. • II. THE PROBLEM We begin with the metric: M dr2 ds2 = 1 2 dt2 + + r2(dθ2 + sin2 θ dφ2). (1) − − r 1 2M/r − Without loss of generality, it is permissible to assume the particle orbits in the equatorial plane, θ = π/2. In this case, we only need the 2+1 dimensional equatorial slice E of the metric: ⊂M M dr2 ds2 = 1 2 dt2 + + r2 dφ2. (2) − − r 1 2M/r − The particle’s momentum p has 3 nontrivial components, and fortunately has three conserved quantities: the time- translation and rotation (longitude invariance or J3 Killing field) imply that pt and pφ are conserved. Furthermore, the magnitude of the 4-momentum is conserved, p p = µ2. The existence of 3 conserved quantities implies that the motion of the test particle is integrable. · − III. MOTION OF MASSIVE PARTICLES Let us first consider the motion of a massive particle. We may then define the specific energy E˜ and specific angular momentum L˜ to be the conserved quantities per unit mass associated with the two symmetries: p p E˜ = u = t and L˜ = u = φ .
    [Show full text]
  • Static Spherically Symmetric Black Holes in Weak F(T)-Gravity
    universe Article Static Spherically Symmetric Black Holes in Weak f (T)-Gravity Christian Pfeifer 1,*,† and Sebastian Schuster 2,† 1 Center of Applied Space Technology and Microgravity—ZARM, University of Bremen, Am Fallturm 2, 28359 Bremen, Germany 2 Ústav Teoretické Fyziky, Matematicko-Fyzikální Fakulta, Univerzita Karlova, V Holešoviˇckách2, 180 00 Praha 8, Czech Republic; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: With the advent of gravitational wave astronomy and first pictures of the “shadow” of the central black hole of our milky way, theoretical analyses of black holes (and compact objects mimicking them sufficiently closely) have become more important than ever. The near future promises more and more detailed information about the observable black holes and black hole candidates. This information could lead to important advances on constraints on or evidence for modifications of general relativity. More precisely, we are studying the influence of weak teleparallel perturbations on general relativistic vacuum spacetime geometries in spherical symmetry. We find the most general family of spherically symmetric, static vacuum solutions of the theory, which are candidates for describing teleparallel black holes which emerge as perturbations to the Schwarzschild black hole. We compare our findings to results on black hole or static, spherically symmetric solutions in teleparallel gravity discussed in the literature, by comparing the predictions for classical observables such as the photon sphere, the perihelion shift, the light deflection, and the Shapiro delay. On the basis of these observables, we demonstrate that among the solutions we found, there exist spacetime geometries that lead to much weaker bounds on teleparallel gravity than those found earlier.
    [Show full text]
  • Gravitational Wave Detection by LIGO from Former Leader of LIGO, Prof
    Gravitational Wave Detection by LIGO from Former Leader of LIGO, Prof. Barry Barish of Cal Tech Short Introduction to Black Holes by Dennis Silverman Dept. of Physics and Astronomy UC Irvine Lecture to OLLI at UC Irvine What is a Black Hole? • Imagine walking a short distance down hill. Then recall that you had to expend energy to get back up. If you call your potential energy zero at the starting level, your potential energy goes more negative as you descend, and then you add the opposite amount of positive energy to get back. • If an object is falling into a gravitational source, its negative potential energy is: • -GMm/r . If falling from rest, far away, the object’s starting energy is its rest energy E = m c². • As it descends, its total energy is E = -GMm/r + m c². • If it gets to small enough r, its energy total energy E becomes zero. • It can no longer climb back out. That distance is called the Event Horizon, and with a relativistic correction is at R = 2 GM/c², also called the Schwarzschild Radius after its discoverer in 1916. • The event horizon and its inside is called the Black Hole. Capture Orbits and the Photon Sphere around a Black Hole • 50% further than the black hole radius R is the photon sphere, at • Rɣ = 3 GM/c² • Outside the photon sphere, objects or planets can orbit as around a star, without being “sucked in”, contrary to many Hollywood depictions. • Exactly at the photon sphere, tangential photons can orbit around the black hole indefinitely.
    [Show full text]
  • Schwarzschild Metric the Kerr Metric for Rotating Black Holes Black Holes Black Hole Candidates
    Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity – Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates 2 The equivalence principle Special relativity: reference frames moving at constant velocity. General relativity: accelerating reference frames and equivalence gravity. Equivalence Principle of general relativity: The effects of gravity are equivalent to the effects of acceleration. Lab accelerating in free space with upward acceleration g Lab on Earth In a local sense it is impossible to distinguish between the effects of a gravity with an acceleration g, and the effects of being far from any gravity in an upward-accelerated frame with g. 3 Consequence: gravitational deflection of light. Light beam moving in a straight line through a compartment that is undergoing uniform acceleration in free space. Position of light beam shown at equally spaced time intervals. a t 1 t2 t3 t4 t1 t2 t3 t4 In the reference frame of the compartment, light travels in a parabolic path. Δz Same thing must happen in a gravitational field. 4 t 1 t2 t3 t4 For Earth’s gravity, deflection is tiny: " gt2 << ct => curvature small.! Approximate parabola as a circle. Radius is! 5! Observed! In 1919 eclipse by Eddington! 6! Gravitational lensing of a single background quasar into 4 objects! 1413+117 the! “cloverleaf” quasar! A ‘quad’ lens! 7! Gravitational lensing. The gravity of a foreground cluster of galaxies distorts the images of background galaxies into arc shapes.! 8! Saturn-mass! black hole! 9! Another consequence: gravitational redshift. Consider an accelerating elevator in free space.
    [Show full text]
  • Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole
    galaxies Article Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole Mohsen Fathi 1,* , Marco Olivares 2 and José R. Villanueva 1 1 Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile; [email protected] 2 Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Avenida Ejército Libertador 441, Casilla 298-V, Santiago 8370109, Chile; [email protected] * Correspondence: [email protected] Abstract: In this paper, we explore the photon region and the shadow of the rotating counterpart of a static charged Weyl black hole, which has been previously discussed according to null and time-like geodesics. The rotating black hole shows strong sensitivity to the electric charge and the spin parameter, and its shadow changes from being oblate to being sharp by increasing in the spin parameter. Comparing the calculated vertical angular diameter of the shadow with that of M87*, we found that the latter may possess about 1036 protons as its source of electric charge, if it is a rotating charged Weyl black hole. A complete derivation of the ergosphere and the static limit is also presented. Keywords: Weyl gravity; black hole shadow; ergosphere PACS: 04.50.-h; 04.20.Jb; 04.70.Bw; 04.70.-s; 04.80.Cc Citation: Fathi, M.; Olivares, M.; Villanueva, J.R. Ergosphere, Photon Region Structure, and the Shadow of 1. Introduction a Rotating Charged Weyl Black Hole. The recent black hole imaging of the shadow of M87*, performed by the Event Horizon Galaxies 2021, 9, 43.
    [Show full text]
  • Spherical Accretion Flow Onto General Parameterized Spherically Symmetric Black Hole Spacetimes*
    Chinese Physics C Vol. 45, No. 1 (2021) 015102 Spherical accretion flow onto general parameterized spherically symmetric black hole spacetimes* 1,2† 2,3‡ 2,3§ 1♮ 2,3♯ Sen Yang(杨森) Cheng Liu(刘诚) Tao Zhu(朱涛) Li Zhao(赵力) Qiang Wu(武强) 4¶ 2,3,5♭ Ke Yang(杨科) Mubasher Jamil 1Institute of theoretical physics, Lanzhou University, Lanzhou 730000, China 2Institute for theoretical physics and Cosmology, Zhejiang University of Technology, Hangzhou 310032, China 3United center for gravitational wave physics (UCGWP), Zhejiang University of Technology, Hangzhou 310032, China 4School of Physical Science and Technology, Southwest University, Chongqing 400715, China 5School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan Abstract: The transonic phenomenon of black hole accretion and the existence of the photon sphere characterize strong gravitational fields near a black hole horizon. Here, we study the spherical accretion flow onto general para- metrized spherically symmetric black hole spacetimes. We analyze the accretion process for various perfect fluids, such as the isothermal fluids of ultra-stiff, ultra-relativistic, and sub-relativistic types, and the polytropic fluid. The influences of additional parameters, beyond the Schwarzschild black hole in the framework of general parameter- ized spherically symmetric black holes, on the flow behavior of the above-mentioned test fluids are studied in detail. In addition, by studying the accretion of the ideal photon gas, we further discuss the correspondence between the sonic radius of the accreting photon gas and the photon sphere for general parameterized spherically symmetric black holes. Possible extensions of our analysis are also discussed. Keywords: spherical accretion, black hole, RZ parametrization, photon sphere DOI: 10.1088/1674-1137/abc066 I.
    [Show full text]
  • Horizon Structures and Its Effects on the Quasinormal
    The information paradox - Horizon structures and its effects on the quasinormal mode gravitational radiation from binary merger ringdowns Gravitational echoes from reflective near horizon structures Anton Filip Vikaeus [email protected] Department of physics and astronomy - division of theoretical physics Uppsala University, Sweden Supervisor: Prof. Ulf Danielsson Subject reader: Prof. Joseph Minahan June 2017 Sammanfattning Klassisk teori kan inte erbjuda en tillfredst¨allandef¨orklaringtill svarta h˚als till synes icke unit¨aratermodynamiska utveckling. F¨oratt bevara informa- tion kr¨avskvantmekaniska effekter p˚askalor i ordningen av den traditionella horisontradien. Gemensamt f¨orflertalet av modellerna som f¨ors¨oker l¨osa paradoxen ¨ars˚akallade horisontstrukturer. Gravitationsv˚agsastronomins nyliga uppg˚angerbjuder ett m¨ojligt medel f¨oratt p˚avisadessa horisontstrukturers m¨ojligaexistens genom gravitationsv- ˚agsstr˚alningfr˚anden s˚akallade ringningsfasen vid kollisioner av bin¨arasvarta h˚al.Generationen av s˚adanstr˚alningbeskrivs av kvasinormal moder (QNMs) d¨arman finner att str˚alningenutg˚arfr˚anomr˚adetkring den s˚akallade fo- tonsf¨aren. Kr¨aver man reflektiva egenskaper hos horisontstrukturen leder detta till existensen av gravitationella ekon vilka kan detekteras vid anl¨aggningar likt LIGO. Denna uppsats studerar geodetisk r¨orelseav s˚adanaekon i det ekvato- riella planet av ett roterande svart h˚al. Beroende p˚ahorisontstrukturens utstr¨ackning, och den s¨arskildastr˚alningsmoden, kan man f¨orv¨anta sig olika tidsskalor f¨ordessa ekon. F¨oren horisontstruktur som str¨acker sig ∆r = −12 10 M utanf¨orden traditionella horisonten av ett M = 22:6M , a = 0:74M svart h˚alfinner man ekon med en tidsf¨ordr¨ojning∆teko ≈ 0:01465 s efter den prim¨arasignalen.
    [Show full text]
  • Uniqueness of Photon Spheres Via Positive Mass Rigidity
    UNIQUENESS OF PHOTON SPHERES VIA POSITIVE MASS RIGIDITY CARLA CEDERBAUM AND GREGORY J. GALLOWAY Abstract. In a recent paper the first author established the uniqueness of pho- ton spheres, suitably defined, in static vacuum asymptotically flat spacetimes by adapting Israel's proof of static black hole uniqueness. In this note we establish uniqueness of photon spheres by adapting the argument of Bunting and Masood- ul-Alam [4], which then allows certain assumptions to be relaxed. In particular, multiple photon spheres are allowed a priori. As a consequence of our result, we can rule out the existence of static configura- tions involving multiple \very compact" bodies and black holes. 1. Introduction The static spherically symmetric Schwarzschild black hole spacetime1 of mass m > 0 can be represented as 4 3 (1.1) (L := R × (R n B2m(0)); g); where the Lorentzian metric g is given by r 2 −2 2m (1.2) g = −N dt2 + N dr2 + r2Ω; N = 1 − ; r with Ω denoting the canonical metric on S2. The black hole event horizon occurs at 3 r = 2m, where the static coordinates degenerate. The timelike submanifold P := 2 4 R × S3m = fr = 3mg is called a photon sphere because any null geodesic of (L ; g) 3 that is initially tangent to P remains tangent to it. The Schwarzschild photon sphere thus models (an embedded submanifold ruled by) photons spiraling around the central black hole \at a fixed distance". The Schwarzschild photon sphere and the notion of trapped null geodesics in general are crucially relevant for questions of dynamical stability in the context of the Einstein equations.
    [Show full text]
  • Wave Optics in Spacetimes with Compact Gravitating Object
    Wave optics in spacetimes with compact gravitating object Yasusada Nambu∗ Department of Physics, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan Sousuke Noday Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China and Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho Sakyoku, Kyoto 606-8502, Japan Yuichiro Sakai Department of Physics, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Dated: September 17, 2019) Abstract We investigate the wave optics in spherically symmetric spacetimes: Schwarzschild black hole, spherical star with a perfect absorbing surface, and massless/massive Ellis wormholes. Assuming a point wave source, wave patterns and power spectrums for scattering waves are obtained by solving the scalar wave equation numerically. We found that the power spectrum at the observer in the forward direction shows oscillations with two characteristic periods determined by the interference effect associated with the photon sphere and the diffraction effect due to the absorbing boundary condition inside of the photon sphere. PACS numbers: 04.20.-q, 04.70.-s, 42.25.Fx arXiv:1905.01793v2 [gr-qc] 17 Sep 2019 Keywords: black hole; worm hole; wave optics; photon sphere; interference; diffraction ∗Electronic address: [email protected] yElectronic address: [email protected] Typeset by REVTEX 1 Contents I. Introduction 3 II. Wave optics in static spherically symmetric spacetimes 5 A. Wave equation with a point source 5 B. Our numerical methods 7 III. Results 7 A. Black hole case 8 B. Star case 12 C.
    [Show full text]
  • Schwarzschild Black Hole Lensing
    Schwarzschild black hole lensing K. S. Virbhadra∗ and George F. R. Ellis† Department of Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa We study strong gravitational lensing due to a Schwarzschild black hole. Apart from the primary and the secondary images we find a sequence of images on both sides of the optic axis; we call them relativistic images. These images are formed due to large bending of light near r =3M (the closest distance of approach ro is greater than 3M). The sources of the entire universe are mapped in the vicinity of the black hole by these images. For the case of the Galactic supermassive “black hole” they are formed at about 17 microarcseconds from the optic axis. The relativistic images are not resolved among themselves, but they are resolved from the primary and secondary images. However the relativistic images are very much demagnified unless the observer, lens and source are very highly aligned. Due to this and some other difficulties the observation of these images does not seem to be feasible in near future. However, it would be a great success of the general theory of relativity in a strong gravitational field if they ever were observed and it would also give an upper bound, ro =3:21M, to the compactness of the lens, which would support the black hole interpretation of the lensing object. I. INTRODUCTION The phenomena resulting from the deflection of electromagnetic radiation in a gravitational field are referred to as gravitational lensing (GL) and an object causing a detectable deflection is known as a gravitational lens.
    [Show full text]
  • Arxiv:Astro-Ph/9312003V1 2 Dec 1993
    VISUAL DISTORTIONS NEAR A NEUTRON STAR AND BLACK HOLE Robert J. Nemiroff NASA / Goddard Space Flight Center Code 668.1 Greenbelt, MD 20771 arXiv:astro-ph/9312003v1 2 Dec 1993 In Press: AMERICAN JOURNAL OF PHYSICS 1993, Vol. 61, pp. 619-631 1 ABSTRACT The visual distortion effects visible to an observer traveling around and descending to the surface of an extremely compact star are described. Specifically, trips to a “normal” neutron star, a black hole, and an ultracompact neutron star with extremely high surface gravity, are described. Concepts such as multiple imaging, red- and blue-shifting, con- servation of surface brightness, the photon sphere, and the existence of multiple Einstein rings are discussed in terms of what the viewer would see. Computer generated, gen- eral relativistically accurate illustrations highlighting the distortion effects are presented and discussed. A short movie (VHS) depicting many of these effects is available to those interested free of charge. 2 I. BACKGROUND It is impossible for a human to travel very near a high gravity star which has a mass like that of the Sun. If, somehow, a person could survive the extremely harmful radiation that would be emitted on or near these objects, the high gravity itself would likely pose insurmountable problems. The person could not stand casually on the surface of such a star because the high surface gravity would tend to flatten them. (Lying down wouldn’t help.) Were a person to orbit the star in a spaceship, however, the immense gravitational field might be overcome by a large outward centrifugal acceleration.1 The problem in this case, however, is the extreme change in gravity between the head and toe of the person, the extreme tidal pull, would surely prove much more than annoying for any human.2 Nevertheless it is informative and interesting to wonder what it would look like to visit such a high gravity environment.
    [Show full text]
  • Arxiv:1801.03223V2 [Gr-Qc] 12 Apr 2018
    Shadows, Signals, and Stability in Einsteinian Cubic Gravity Robie A. Hennigar∗ Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 Mohammad Bagher Jahani Poshtehy Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 and Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran Robert B. Mannz Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 and Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5, Canada We conduct a preliminary investigation into the phenomenological implications of Einsteinian cubic gravity (ECG), a 4-dimensional theory of gravity cubic in curvature of interest for its unique formulation and properties. We find an analytic approximation for a spherically symmetric black hole solution to this theory using a continued fraction ansatz. This approximate solution is valid everywhere outside of the horizon and we use it to study the orbit of massive test bodies near a black hole, specifically computing the innermost stable circular orbit. We compute constraints on the ECG coupling parameter imposed by Shapiro time delay. We then compute the shadow of an ECG black hole and find it to be larger than its Einsteinian counterpart in general relativity for the same value of the mass. Applying our results to Sgr A*, we find that departures from general relativity are small but in principle distinguishable. I. INTRODUCTION Recently, a new theory of gravity has been proposed in [20] which, in four dimensions, is the most general up- The study of higher curvature corrections to general to-cubic-order-in-curvature dimension-independent the- relativity has attracted significant attention in recent ory of gravity that shares its graviton spectrum with decades, as these corrections seem to be generic conse- Einstein theory on constant curvature backgrounds.
    [Show full text]