Multidisciplinary Study of a New Clc-1 Mutation Causing Myotonia Congenita
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectrum of CLCN1 Mutations in Patients with Myotonia Congenita in Northern Scandinavia
European Journal of Human Genetics (2001) 9, 903 ± 909 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia Chen Sun*,1, Lisbeth Tranebjñrg*,1, Torberg Torbergsen2,GoÈsta Holmgren3 and Marijke Van Ghelue1,4 1Department of Medical Genetics, University Hospital of Tromsù, Tromsù, Norway; 2Department of Neurology, University Hospital of Tromsù, Tromsù, Norway; 3Department of Clinical Genetics, University Hospital of UmeaÊ, UmeaÊ,Sweden;4Department of Biochemistry, Section Molecular Biology, University of Tromsù, Tromsù, Norway Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. At least 50 different CLCN1 mutations have been described worldwide, but in many studies only about half of the patients showed mutations in CLCN1. Limitations in the mutation detection methods and genetic heterogeneity might be explanations. In the current study, we sequenced the entire CLCN1 gene in 15 Northern Norwegian and three Northern Swedish MC families. Our data show a high prevalence of myotonia congenita in Northern Norway similar to Northern Finland, but with a much higher degree of mutation heterogeneity. In total, eight different mutations and three polymorphisms (T87T, D718D, and P727L) were detected. Three mutations (F287S, A331T, and 2284+5C4T) were novel while the others (IVS1+3A4T, 979G4A, F413C, A531V, and R894X) have been reported previously. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Difference in Allelic Expression of the CLCN1 Gene and the Possible Influence on the Myotonia Congenita Phenotype
European Journal of Human Genetics (2004) 12, 738–743 & 2004 Nature Publishing Group All rights reserved 1018-4813/04 $30.00 www.nature.com/ejhg ARTICLE Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype Morten Dun1*, Eskild Colding-Jrgensen2, Morten Grunnet3,5, Thomas Jespersen3, John Vissing4 and Marianne Schwartz1 1Department of Clinical Genetics, 4062, University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; 2Department of Clinical Neurophysiology 3063,University Hospital, Rigshospitalet, Blegdamsvej 9, DK- 2100 Copenhagen, Denmark; 3Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; 4Department of Neurology and The Copenhagen Muscle Research Center, University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark Mutations in the CLCN1 gene, encoding a muscle-specific chloride channel, can cause either recessive or dominant myotonia congenita (MC). The recessive form, Becker’s myotonia, is believed to be caused by two loss-of-function mutations, whereas the dominant form, Thomsen’s myotonia, is assumed to be a consequence of a dominant-negative effect. However, a subset of CLCN1 mutations can cause both recessive and dominant MC. We have identified two recessive and two dominant MC families segregating the common R894X mutation. Real-time quantitative RT-PCR did not reveal any obvious association between the total CLCN1 mRNA level in muscle and the mode of inheritance, but the dominant family with the most severe phenotype expressed twice the expected amount of the R894X mRNA allele. Variation in allelic expression has not previously been described for CLCN1, and our finding suggests that allelic variation may be an important modifier of disease progression in myotonia congenita. -
Comprehensive Exonic Sequencing of Known Ataxia Genes in Episodic Ataxia
biomedicines Article Comprehensive Exonic Sequencing of Known Ataxia Genes in Episodic Ataxia Neven Maksemous, Heidi G. Sutherland, Robert A. Smith, Larisa M. Haupt and Lyn R. Griffiths * Genomics Research Centre, Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Q Block, 60 Musk Ave, Kelvin Grove Campus, Brisbane, Queensland 4059, Australia; [email protected] (N.M.); [email protected] (H.G.S.); [email protected] (R.A.S.); [email protected] (L.M.H.) * Correspondence: lyn.griffi[email protected]; Tel.: +61-7-3138-6100 Received: 4 May 2020; Accepted: 21 May 2020; Published: 25 May 2020 Abstract: Episodic Ataxias (EAs) are a small group (EA1–EA8) of complex neurological conditions that manifest as incidents of poor balance and coordination. Diagnostic testing cannot always find causative variants for the phenotype, however, and this along with the recently proposed EA type 9 (EA9), suggest that more EA genes are yet to be discovered. We previously identified disease-causing mutations in the CACNA1A gene in 48% (n = 15) of 31 patients with a suspected clinical diagnosis of EA2, and referred to our laboratory for CACNA1A gene testing, leaving 52% of these cases (n = 16) with no molecular diagnosis. In this study, whole exome sequencing (WES) was performed on 16 patients who tested negative for CACNA1A mutations. Tiered analysis of WES data was performed to first explore (Tier-1) the ataxia and ataxia-associated genes (n = 170) available in the literature and databases for comprehensive EA molecular genetic testing; we then investigated 353 ion channel genes (Tier-2). -
Chloride Channelopathies Rosa Planells-Cases, Thomas J
Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch To cite this version: Rosa Planells-Cases, Thomas J. Jentsch. Chloride channelopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (3), pp.173. 10.1016/j.bbadis.2009.02.002. hal- 00501604 HAL Id: hal-00501604 https://hal.archives-ouvertes.fr/hal-00501604 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch PII: S0925-4439(09)00036-2 DOI: doi:10.1016/j.bbadis.2009.02.002 Reference: BBADIS 62931 To appear in: BBA - Molecular Basis of Disease Received date: 23 December 2008 Revised date: 1 February 2009 Accepted date: 3 February 2009 Please cite this article as: Rosa Planells-Cases, Thomas J. Jentsch, Chloride chan- nelopathies, BBA - Molecular Basis of Disease (2009), doi:10.1016/j.bbadis.2009.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. -
Supplementary Figure S1
Supplementary Figure S1 Supplementary Figure S2 Supplementary Figure S3 Supplementary Figure S4 Supplementary Figure S5 Supplementary Figure S6 Supplementary Table 1: Baseline demographics from included patients Bulk transcriptomics Single cell transcriptomics Organoids IBD non-IBD controls IBD non-IBD controls IBD non-IBD controls (n = 351) (n = 51) (n = 6 ) (n= 5) (n = 8) (n =8) Disease - Crohn’s disease 193 (55.0) N.A. 6 (100.0) N.A. 0 (0.0) N.A. - Ulcerative colitis 158 (45.0) 0 (0.0) 8 (100.0) Women, n (%) 183 (52.1) 34 (66.7) 5 (83.3) 1 (20.0) 4 (50.0) 5 (62.5) Age, years, median [IQR] 41.8 (26.7 – 53.0) 57.0 (41.0 – 63.0) 42.7 (38.5 – 49.5) 71.0 (52.5 – 73.0) 41.3 (35.9 – 46.5) 45.0 (30.5 – 55.9) Disease duration, years, median [IQR] 7.9 (2.0 – 16.8) N.A. 13.4 (5.8 – 22.1) N.A 10.5 (7.8 – 12.7) N.A. Disease location, n (%) - Ileal (L1) 41 (21.3) 3 (50.0) - Colonic (L2) 23 (11.9) N.A. 0 (0.0) N.A. N.A. N.A. - Ileocolonic (L3) 129 (66.8) 3 (50.0) - Upper GI modifier (+L4) 57 (29.5) 0 (0.0) - Proctitis (E1) 13 (8.2) 1 (12.5) - Left-sided colitis (E2) 85 (53.8) N.A. N.A. N.A. 1 (12.5) N.A. - Extensive colitis (E3) 60 (38.0) 6 (75.0) Disease behaviour, n (%) - Inflammatory (B1) 95 (49.2) 0 (0.0) - Fibrostenotic (B2) 55 (28.5) N.A. -
Clc-K Chloride Channels
ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3 Olga Andrini, Mathilde Keck, Rodolfo Briones, Stéphane Lourdel, Rosa Vargas-Poussou, Jacques Teulon To cite this version: Olga Andrini, Mathilde Keck, Rodolfo Briones, Stéphane Lourdel, Rosa Vargas-Poussou, et al.. ClC- K chloride channels: emerging pathophysiology of Bartter syndrome type 3. AJP Renal Physiology, American Physiological Society, 2015, 308 (12), pp.F1324-F1334. 10.1152/ajprenal.00004.2015. hal- 02453172 HAL Id: hal-02453172 https://hal.sorbonne-universite.fr/hal-02453172 Submitted on 24 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 ClC-K chloride channels: Emerging pathophysiology of Bartter syndrome type 3 2 3 4 Olga Andrini1,2, Mathilde Keck1,2, Rodolfo Briones3, Stéphane Lourdel1,2, Rosa Vargas-Poussou4,5 and 5 Jacques Teulon1,2. 6 7 1UPMC Université Paris 06, UMR_S 1138, Team 3, F-75006, Paris, France; 2INSERM, UMR_S 872, 8 Paris, France; 3Department of Theoretical and Computational Biophysics, Max-Planck Institute 9 for Biophysical Chemistry, 37077 Göttingen, Germany; 4Assistance Publique-Hôpitaux de Paris, 10 Hôpital Européen Georges Pompidou, Département de Génétique F-75908, Paris, France; 5Université 11 Paris-Descartes, Faculté de Médecine, F-75006, Paris, France. -
Aquaporin 2 Mutations in Nephrogenic Diabetes Insipidus
Aquaporin 2 Mutations in Nephrogenic Diabetes Insipidus Anne J. M. Loonen, MSc,* Nine V. A. M. Knoers,† Carel MD,H. vanPhD, Os, PhD,* and Peter M. T. Deen, PhD* Summary: Water reabsorption in the renal collecting duct is regulated by the antidiuretic hormone vasopressin (AVP). When the vasopressin V2 receptor, present on the basolateral site of the renal principal cell, becomes activated by AVP, aquaporin-2 (AQP2) water channels will be inserted in the apical membrane, and in this fashion, water can be reabsorbed from the pro-urine into the interstitium. The essential role of the vasopressin V2 receptor and AQP2 in the maintenance of body water homeostasis became clear when it was shown that mutations in their genes cause nephrogenic diabetes insipidus, a disorder in which the kidney is unable to concentrate urine in response to AVP. This review describes the current knowledge on AQP2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252-265 © 2008 Elsevier Inc. All rights reserved. Keywords: Autosomal nephrogenic diabetes insipidus, vasopressin, aquaporin-2 water channel, disease, routing he mammalian kidney has the abilitytransport to and mammalian osmoregulation. excrete or reabsorb free water indepen-Water balance is regulated by the combined T dent of changes in solute excretion.action of osmoreceptors, volume receptors, Physiologic studies have provided evidence thirstfor sensation, vasopressin, and water ex- the constitutive absorption of approximatelycretion or reabsorption by the kidney. To 90% of the glomerular filtration -
Characterization of Renal Chloride Channel (CLCN5) Mutations in Dent’S Disease
J Am Soc Nephrol 11: 1460–1468, 2000 Characterization of Renal Chloride Channel (CLCN5) Mutations in Dent’s Disease KATSUSUKE YAMAMOTO,* JEREMY P. D. T. COX,* THOMAS FRIEDRICH,† PAUL T. CHRISTIE,*‡‡ MARTIN BALD,‡ PETER N. HOUTMAN,§ MARTA J. LAPSLEY,ʈ LUDWIG PATZER,¶ MICHEL TSIMARATOS,# WILLIAM G VAN’T HOFF,** KANJI YAMAOKA,†† THOMAS J. JENTSCH,† and RAJESH V. THAKKER*‡‡ *MRC Molecular Endocrinology Group, Hammersmith Hospital, London, United Kingdom; †ZMNH Centre for Molecular Neurobiology, University of Hamburg, Germany; ‡Department of Paediatric Nephrology, University of Essen, Germany; §Department of Paediatrics, Leicester Royal Infirmary, United Kingdom; ʈDepartment of Chemical Pathology and Metabolism, St Helier Hospital, Surrey, United Kingdom; ¶Children’s Hospital “Jussuf Ibrahim,” Friedrich-Schiller University, Jena, Germany; #Department of Paediatric Nephrology, Children’s Hospital of the Timone, Marseille, France; **Department of Paediatric Nephrology, Great Ormond Street Hospital, London, United Kingdom; ††Department of Paediatrics, Osaka Prefectural Hospital, Osaka, Japan; and ‡‡Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom. Abstract. Dent’s disease is an X-linked renal tubular disorder endonuclease or sequence-specific oligonucleotide hybridiza- characterized by low molecular weight proteinuria, hypercal- tion analysis and were not common polymorphisms. The ciuria, nephrocalcinosis, nephrolithiasis, and renal failure. The frameshift deletions and nonsense mutation predict truncated disease is caused by mutations in a renal chloride channel gene, and inactivated CLC-5. The effects of the putative missense CLCN5, which encodes a 746 amino acid protein (CLC-5), Asp601Val mutant CLC-5 were assessed by heterologous ex- with 12 to 13 transmembrane domains. In this study, an addi- pression in Xenopus oocytes, and this revealed a chloride tional six unrelated patients with Dent’s disease were identified conductance that was similar to that observed for wild-type and investigated for CLCN5 mutations by DNA sequence CLC-5. -
Mutations of CLCN5 in Japanese Children with Idiopathic Low Molecular Weight Proteinuria, Hypercalciuria and Nephrocalcinosis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 52 (1997), pp. 911—916 Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis NAOKO AKUTA, SARAH E.LLOYD,Tsrn IGARASHI, HIR0sHI SHIRAGA, TAKESHI MATSUYAMA, SEITAR0u Y0K0R0, JEREMY P. D. Cox, and RAJESH V. THAKKER MRC Molecular Endocrinology Group, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London, England, United Kingdom; and Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Pediatric Nephrology, Tokyo Women's Medical School, Department of Pediatrics, Fussa Hospital and Department of Pediatrics, Tokyo Metropolitan Fuchu Hospital Tokyo, Japan Mutations of CLCN5 in Japanese children with idiopathic low molec- encodes a 746 amino acid protein [6, 7]. CLCN5 belongs to a ular weight proteinuria, hypercalciuria and nephrocalcinosis. The annual family of voltage-gated chloride channel genes (CLCNO, CLCN1 urinary screening of Japanese children above three years of age has identified a progressive renal tubular disorder characterized by lowto CLCN7, and CLCNKa and CLCNKb) that encode proteins molecular weight proteinuria, hypercalciuria and nephrocalcinosis. The (CLC-0, CLC-1 to CLC-7, and CLC-Ka and CLC-Kb, respec- disorder has been observed in over 60 patients and has a familialtively) that have about 12 transmembrane domains (Fig. 1) [6, 8, predisposition. Mutations of a renal chloride channel gene, CLCN5, have 9]. These chloride channels have an important role in the control been reported in four such families, and we have undertaken studies in additional patients from 10 unrelated, non-consanguineous Japanese of membrane excitability, transepithelial transport and possibly families to further characterize such CLCN5 mutations and to ascertain cell volume [8]. -
Hypokalaemic Periodic Paralysis and Myotonia in a Patient With
www.nature.com/scientificreports OPEN Hypokalaemic periodic paralysis and myotonia in a patient with homozygous mutation p.R1451L in Received: 5 April 2018 Accepted: 31 May 2018 NaV1.4 Published: xx xx xxxx Sushan Luo1,2, Marisol Sampedro Castañeda3, Emma Matthews3, Richa Sud3, Michael G. Hanna3, Jian Sun1, Jie Song1, Jiahong Lu1, Kai Qiao4, Chongbo Zhao1,5 & Roope Männikkö 3 Dominantly inherited channelopathies of the skeletal muscle voltage-gated sodium channel NaV1.4 include hypokalaemic and hyperkalaemic periodic paralysis (hypoPP and hyperPP) and myotonia. HyperPP and myotonia are caused by NaV1.4 channel overactivity and overlap clinically. Instead, hypoPP is caused by gating pore currents through the voltage sensing domains (VSDs) of NaV1.4 and seldom co-exists clinically with myotonia. Recessive loss-of-function NaV1.4 mutations have been described in congenital myopathy and myasthenic syndromes. We report two families with the NaV1.4 mutation p.R1451L, located in VSD-IV. Heterozygous carriers in both families manifest with myotonia and/or hyperPP. In contrast, a homozygous case presents with both hypoPP and myotonia, but unlike carriers of recessive NaV1.4 mutations does not manifest symptoms of myopathy or myasthenia. Functional analysis revealed reduced current density and enhanced closed state inactivation of the mutant channel, but no evidence for gating pore currents. The rate of recovery from inactivation was hastened, explaining the myotonia in p.R1451L carriers and the absence of myasthenic presentations in the homozygous proband. Our data suggest that recessive loss-of-function NaV1.4 variants can present with hypoPP without congenital myopathy or myasthenia and that myotonia can present even in carriers of homozygous NaV1.4 loss-of-function mutations. -
The Molecular Basis for Dent's Disease: an X-Linked
Proc. R. Coll. Physicians Edinb. 1997; 27: 167-177 THE MOLECULAR BASIS FOR DENT’S DISEASE: AN X-LINKED HYPERCALCIURIC NEPHROLITHIASIS DISORDER* R. V. Thakker,† MRC Molecular Endocrinology Group, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London SUMMARY Renal stone disease, which affects 12% of males and 5% of females by the seventh decade, occurs as an inherited disorder in 45% of patients when it is most commonly associated with hypercalciuria. The biochemical basis for hereditary nephrolithiasis and hypercalciuria is unknown, and this has therefore been investigated by a ‘positional cloning’ approach. As a first step in this approach, the chromosomal location of Dent’s disease, which is an unusual form of the renal Fanconi syndrome was determined. An X-linked inheritance for Dent’s disease, which is characterised by a low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and renal failure, was indicated by the observation of a greater disease severity in males and an absence of male to male transmission in five British families. X-linked polymorphic genetic markers were used in linkage studies of these families and the gene was mapped to Xp11. In addition, in one family with Dent’s disease, a microdeletion involving the DNA probe M27β was identified. This microdeletion was further characterised by using yeast artificial chromosomes (YACs) and its size was estimated to be 515 Kb. A search for renal expressed genes from this region identified a novel gene encoding a chloride channel (CLCN5) with similarities to a family of voltage-gated chloride channels. Molecular genetic studies of CLCN5 demonstrated that mutations, which resulted in a functional loss, were associated with Dent’s disease.