Excess Capacity and Pricing in Bertrand- Edgeworth Markets: Experimental Evidence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DUOPOLY MICROECONOMICS Principles and Analysis Frank Cowell
Prerequisites Almost essential Monopoly Useful, but optional Game Theory: Strategy and Equilibrium DUOPOLY MICROECONOMICS Principles and Analysis Frank Cowell April 2018 Frank Cowell: Duopoly 1 Overview Duopoly Background How the basic elements of the Price firm and of game competition theory are used Quantity competition Assessment April 2018 Frank Cowell: Duopoly 2 Basic ingredients . Two firms: • issue of entry is not considered • but monopoly could be a special limiting case . Profit maximisation . Quantities or prices? • there’s nothing within the model to determine which “weapon” is used • it’s determined a priori • highlights artificiality of the approach . Simple market situation: • there is a known demand curve • single, homogeneous product April 2018 Frank Cowell: Duopoly 3 Reaction . We deal with “competition amongst the few” . Each actor has to take into account what others do . A simple way to do this: the reaction function . Based on the idea of “best response” • we can extend this idea • in the case where more than one possible reaction to a particular action • it is then known as a reaction correspondence . We will see how this works: • where reaction is in terms of prices • where reaction is in terms of quantities April 2018 Frank Cowell: Duopoly 4 Overview Duopoly Background Introduction to a simple simultaneous move Price price-setting problem competitionCompetition Quantity competition Assessment April 2018 Frank Cowell: Duopoly 5 Competing by price . Simplest version of model: • there is a market for a single, homogeneous good • firms announce prices • each firm does not know the other’s announcement when making its own . Total output is determined by demand • determinate market demand curve • known to the firms . -
1 Continuous Strategy Markov Equilibrium in a Dynamic Duopoly
1 Continuous Strategy Markov Equilibrium in a Dynamic Duopoly with Capacity Constraints* Milan Horniacˇek CERGE-EI, Charles University and Academy of Sciences of Czech Republic, Prague The paper deals with an infinite horizon dynamic duopoly composed of price setting firms, producing differentiated products, with sales constrained by capacities that are increased or maintained by investments. We analyze continuous strategy Markov perfect equilibria, in which strategies are continuous functions of (only) current capacities. The weakest possible criterion of a renegotiation-proofness, called renegotiation-quasi-proofness, eliminates all equilibria in which some continuation equilibrium path in the capacity space does not converge to a Pareto efficient capacity vector giving both firms no lower single period net profit than some (but the same for both firms) capacity unconstrained Bertrand equilibrium. Keywords: capacity creating investments, continuous Markov strategies, dynamic duopoly, renegotiation-proofness. Journal of Economic Literature Classification Numbers: C73, D43, L13. * This is a revised version of the paper that I presented at the 1996 Econometric Society European Meeting in Istanbul. I am indebted to participants in the session ET47 Oligopoly Theory for helpful and encouraging comments. Cristina Rata provided an able research assistance. The usual caveat applies. CERGE ESC Grant is acknowledged as a partial source of financial support. 2 1. INTRODUCTION Many infinite horizon, discrete time, deterministic oligopoly models involve physical links between periods, i.e., they are oligopolistic difference games. These links can stem, for example, from investment or advertising. In difference games, a current state, which is payoff relevant, should be taken into account by rational players when deciding on a current period action. -
1 Bertrand Model
ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself with the strategic choices of its competition. In the former, this is trivially true since there isn't any competition. While the latter is so insignificant that the single firm has no effect. In an oligopoly where there is more than one firm, and yet because the number of firms are small, they each have to consider what the other does. Consider the product launch decision, and pricing decision of Apple in relation to the IPOD models. If the features of the models it has in the line up is similar to Creative Technology's, it would have to be concerned with the pricing decision, and the timing of its announcement in relation to that of the other firm. We will now begin the exposition of Oligopolistic Competition. 1 Bertrand Model Firms can compete on several variables, and levels, for example, they can compete based on their choices of prices, quantity, and quality. The most basic and funda- mental competition pertains to pricing choices. The Bertrand Model is examines the interdependence between rivals' decisions in terms of pricing decisions. The assumptions of the model are: 1. 2 firms in the market, i 2 f1; 2g. 2. Goods produced are homogenous, ) products are perfect substitutes. 3. Firms set prices simultaneously. 4. Each firm has the same constant marginal cost of c. What is the equilibrium, or best strategy of each firm? The answer is that both firms will set the same prices, p1 = p2 = p, and that it will be equal to the marginal ECON 312: Oligopolisitic Competition 2 cost, in other words, the perfectly competitive outcome. -
A Cournot-Nash–Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers
A Cournot-Nash–Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers Anna Nagurney1,2 and Tilman Wolf3 1Department of Operations and Information Management Isenberg School of Management University of Massachusetts, Amherst, Massachusetts 01003 2School of Business, Economics and Law University of Gothenburg, Gothenburg, Sweden 3Department of Electrical and Computer Engineering University of Massachusetts, Amherst, Massachusetts 01003 December 2012; revised May and July 2013 Computational Management Science 11(4), (2014), pp 475-502. Abstract: This paper develops a game theory model of a service-oriented Internet in which profit-maximizing service providers provide substitutable (but not identical) services and compete with the quantities of services in a Cournot-Nash manner, whereas the network transport providers, which transport the services to the users at the demand markets, and are also profit-maximizers, compete with prices in Bertrand fashion and on quality. The consumers respond to the composition of service and network provision through the demand price functions, which are both quantity and quality dependent. We derive the governing equilibrium conditions of the integrated game and show that it satisfies a variational in- equality problem. We then describe the underlying dynamics, and provide some qualitative properties, including stability analysis. The proposed algorithmic scheme tracks, in discrete- time, the dynamic evolution of the service volumes, quality levels, and the prices until an approximation of a stationary point (within the desired convergence tolerance) is achieved. Numerical examples demonstrate the modeling and computational framework. Key words: network economics, game theory, oligopolistic competition, service differen- tiation, quality competition, Cournot-Nash equilibrium, service-oriented Internet, Bertrand competition, variational inequalities, projected dynamical systems 1 1. -
Potential Games and Competition in the Supply of Natural Resources By
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository Potential Games and Competition in the Supply of Natural Resources by Robert H. Mamada A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved March 2017 by the Graduate Supervisory Committee: Carlos Castillo-Chavez, Co-Chair Charles Perrings, Co-Chair Adam Lampert ARIZONA STATE UNIVERSITY May 2017 ABSTRACT This dissertation discusses the Cournot competition and competitions in the exploita- tion of common pool resources and its extension to the tragedy of the commons. I address these models by using potential games and inquire how these models reflect the real competitions for provisions of environmental resources. The Cournot models are dependent upon how many firms there are so that the resultant Cournot-Nash equilibrium is dependent upon the number of firms in oligopoly. But many studies do not take into account how the resultant Cournot-Nash equilibrium is sensitive to the change of the number of firms. Potential games can find out the outcome when the number of firms changes in addition to providing the \traditional" Cournot-Nash equilibrium when the number of firms is fixed. Hence, I use potential games to fill the gaps that exist in the studies of competitions in oligopoly and common pool resources and extend our knowledge in these topics. In specific, one of the rational conclusions from the Cournot model is that a firm’s best policy is to split into separate firms. In real life, we usually witness the other way around; i.e., several firms attempt to merge and enjoy the monopoly profit by restricting the amount of output and raising the price. -
Microeconomics III Oligopoly — Preface to Game Theory
Microeconomics III Oligopoly — prefacetogametheory (Mar 11, 2012) School of Economics The Interdisciplinary Center (IDC), Herzliya Oligopoly is a market in which only a few firms compete with one another, • and entry of new firmsisimpeded. The situation is known as the Cournot model after Antoine Augustin • Cournot, a French economist, philosopher and mathematician (1801-1877). In the basic example, a single good is produced by two firms (the industry • is a “duopoly”). Cournot’s oligopoly model (1838) — A single good is produced by two firms (the industry is a “duopoly”). — The cost for firm =1 2 for producing units of the good is given by (“unit cost” is constant equal to 0). — If the firms’ total output is = 1 + 2 then the market price is = − if and zero otherwise (linear inverse demand function). We ≥ also assume that . The inverse demand function P A P=A-Q A Q To find the Nash equilibria of the Cournot’s game, we can use the proce- dures based on the firms’ best response functions. But first we need the firms payoffs(profits): 1 = 1 11 − =( )1 11 − − =( 1 2)1 11 − − − =( 1 2 1)1 − − − and similarly, 2 =( 1 2 2)2 − − − Firm 1’s profit as a function of its output (given firm 2’s output) Profit 1 q'2 q2 q2 A c q A c q' Output 1 1 2 1 2 2 2 To find firm 1’s best response to any given output 2 of firm 2, we need to study firm 1’s profit as a function of its output 1 for given values of 2. -
Topics in Mean Field Games Theory & Applications in Economics And
Topics in Mean Field Games Theory & Applications in Economics and Quantitative Finance Charafeddine Mouzouni To cite this version: Charafeddine Mouzouni. Topics in Mean Field Games Theory & Applications in Economics and Quan- titative Finance. Analysis of PDEs [math.AP]. Ecole Centrale Lyon, 2019. English. tel-02084892 HAL Id: tel-02084892 https://hal.archives-ouvertes.fr/tel-02084892 Submitted on 29 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N◦ d’ordre NNT : 2019LYSEC006 THESE` de DOCTORAT DE L’UNIVERSITE´ DE LYON oper´ ee´ au sein de l’Ecole Centrale de Lyon Ecole Doctorale 512 Ecole Doctorale InfoMaths Specialit´ e´ de doctorat : Mathematiques´ et applications Discipline : Mathematiques´ Soutenue publiquement le 25/03/2019, par Charafeddine MOUZOUNI Topics in Mean Field Games Theory & Applications in Economics and Quantitative Finance Devant le jury compos´ede: M. Yves Achdou Professeur, Universite´ Paris Diderot President´ M. Martino Bardi Professeur, Universita` di Padova Rapporteur M. Jean-Franc¸ois Chassagneux Professeur, Universite´ Paris Diderot Rapporteur M. Franc¸ois Delarue Professeur, Universite´ Nice-Sophia Antipolis Examinateur Mme. Catherine Rainer Maˆıtre de conferences,´ Universite´ de Brest Examinatrice M. Francisco Silva Maˆıtre de conferences,´ Universite´ de Limoges Examinateur Mme. -
ABSTRACT Asymptotics for Mean Field Games of Market Competition
ABSTRACT Asymptotics for mean field games of market competition Marcus A. Laurel Director: P. Jameson Graber, Ph.D. The goal of this thesis is to analyze the limiting behavior of solutions to a system of mean field games developed by Chan and Sircar to model Bertrand and Cournot competition. We first provide a basic introduction to control theory, game theory, and ultimately mean field game theory. With these preliminaries out of the way, we then introduce the model first proposed by Chan and Sircar, namely a cou- pled system of two nonlinear partial differential equations. This model contains a parameter that measures the degree of interaction between players; we are inter- ested in the regime goes to 0. We then prove a collection of theorems which give estimates on the limiting behavior of solutions as goes to 0 and ultimately obtain recursive growth bounds of polynomial approximations to solutions. Finally, we state some open questions for further research. APPROVED BY DIRECTOR OF HONORS THESIS: Dr. P. Jameson Graber, Department of Mathematics APPROVED BY THE HONORS PROGRAM: Dr. Elizabeth Corey, Director DATE: ASYMPTOTICS FOR MEAN FIELD GAMES OF MARKET COMPETITION A Thesis Submitted to the Faculty of Baylor University In Partial Fulfillment of the Requirements for the Honors Program By Marcus A. Laurel Waco, Texas December 2018 TABLE OF CONTENTS Acknowledgments . iii Dedication . iv Chapter One: Introductions of Pertinent Concepts . 1 Chapter Two: Bertrand and Cournot Mean Field Games . 15 Chapter Three: Proof of Error Estimates . 21 Chapter Four: Conclusions and Open Questions . 46 References . 48 ii ACKNOWLEDGMENTS I am particularly grateful toward my thesis mentor, Dr. -
Quality and Welfare in a Mixed Duopoly with Regulated Prices: the Case of a Public and a Private Hospital
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Herr, Annika Working Paper Quality and welfare in a mixed duopoly with regulated prices: The case of a public and a private hospital DICE Discussion Paper, No. 07 Provided in Cooperation with: Düsseldorf Institute for Competition Economics (DICE) Suggested Citation: Herr, Annika (2010) : Quality and welfare in a mixed duopoly with regulated prices: The case of a public and a private hospital, DICE Discussion Paper, No. 07, ISBN 978-3-86304-006-2, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE), Düsseldorf This Version is available at: http://hdl.handle.net/10419/41424 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made -
Search Costs, Demand-Side Economies and the Incentives to Merge Under Bertrand Competition
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Moraga-Gonzalez, Jose L.; Petrikaite, Vaiva Working Paper Search Costs, Demand-Side Economies and the Incentives to merge under Bertrand Competition Tinbergen Institute Discussion Paper, No. 12-017/1 Provided in Cooperation with: Tinbergen Institute, Amsterdam and Rotterdam Suggested Citation: Moraga-Gonzalez, Jose L.; Petrikaite, Vaiva (2012) : Search Costs, Demand-Side Economies and the Incentives to merge under Bertrand Competition, Tinbergen Institute Discussion Paper, No. 12-017/1, Tinbergen Institute, Amsterdam and Rotterdam, http://nbn-resolving.de/urn:NBN:nl:ui:31-1871/38484 This Version is available at: http://hdl.handle.net/10419/87185 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu TI 2012-017/1 Tinbergen Institute Discussion Paper Search Costs, Demand-Side Economies and the Incentives to Merge under Bertrand Competition José L. -
WHY COMPETITION in the POLITICS INDUSTRY IS FAILING AMERICA a Strategy for Reinvigorating Our Democracy
SEPTEMBER 2017 WHY COMPETITION IN THE POLITICS INDUSTRY IS FAILING AMERICA A strategy for reinvigorating our democracy Katherine M. Gehl and Michael E. Porter ABOUT THE AUTHORS Katherine M. Gehl, a business leader and former CEO with experience in government, began, in the last decade, to participate actively in politics—first in traditional partisan politics. As she deepened her understanding of how politics actually worked—and didn’t work—for the public interest, she realized that even the best candidates and elected officials were severely limited by a dysfunctional system, and that the political system was the single greatest challenge facing our country. She turned her focus to political system reform and innovation and has made this her mission. Michael E. Porter, an expert on competition and strategy in industries and nations, encountered politics in trying to advise governments and advocate sensible and proven reforms. As co-chair of the multiyear, non-partisan U.S. Competitiveness Project at Harvard Business School over the past five years, it became clear to him that the political system was actually the major constraint in America’s inability to restore economic prosperity and address many of the other problems our nation faces. Working with Katherine to understand the root causes of the failure of political competition, and what to do about it, has become an obsession. DISCLOSURE This work was funded by Harvard Business School, including the Institute for Strategy and Competitiveness and the Division of Research and Faculty Development. No external funding was received. Katherine and Michael are both involved in supporting the work they advocate in this report. -
Nash Equilibrium
Nash Equilibrium u A game consists of – a set of players – a set of strategies for each player – A mapping from set of strategies to a set of payoffs, one for each player N.E.: A Set of strategies form a NE if, for player i, the strategy chosen by i maximises i’s payoff, given the strategies chosen by all other players u NE is the set of strategies from which no player has an incentive to unilaterally deviate u NE is the central concept of non- cooperative game theory I.e. situtations in which binding agreements are not possible Example Player 2 C D C (10,10) (0,20) This is the Player 1 game’s D (20,0) (1,1) payoff matrix. Player A’s payoff is shown first. Player B’s payoff is shown second. NE: (DD) = (1,1) Another Example…. Player B L R U (3,9) (1,8) Player A D (0,0) (2,1) Two Nash equilibria: (U,L) = (3,9) (D,R) = (2,1) Applying the NE Concept Modelling Short Run ‘Conduct’ Bertrand Competition Cournot Competition [Building blocks in modeling the intensity of competition in an industry in the short run] p pmonop P(N))? C N Bertrand Price Competition u What if firms compete using only price-setting strategies,? u Games in which firms use only price strategies and play simultaneously are Bertrand games. Bertrand Games (1883) 1. 2 players, firms i and j 2. Bertrand Strategy - All firms simultaneously set their prices. 3. Homogenous product 4. Perfect Information 5. Each firm’s marginal production cost is constant at c.