Economic Management Strategy: Hwrk 1 1 Simultaneous-Move

Total Page:16

File Type:pdf, Size:1020Kb

Economic Management Strategy: Hwrk 1 1 Simultaneous-Move Economic Management Strategy: Hwrk 1 1 Simultaneous-Move Game Theory Questions. 1.1 Chicken Lee and Spike want to see who is the bravest. To do so, they play a game called chicken. (Readers, don’t try this at home!) They take their cars and drive as fast as they can towards each other. If they both swerve, they both get utility 1. If one swerves and the other doesn’t, the one that swerves is the chicken and gets 0 and the brave one gets 2. If neither swerves, they crash and both get utility 3. (i) Model this as a game by− writing its normal form. (ii) Are there any pure-strategy equilibria of the game? Please explain why or why not for each possibility. (iii) Are there any mixed-strategy equilibria of the game? If yes, give the equilibrium. If no, please explain. Answer. One can write the normal form game as follows Lee Swerve Don0t Swerve 1, 1 0, 2 Spike Don0t 2, 0 3, 3 − − A Nash equilibrium is a set of strategies such that each player has no incentive for deviation given the other player’s strategy. A pure strategy N.E. is where the set of strategies are pure, that is, either Swerve or Don’t. There are two pure-strategy Nash equilibria, each with one swerving and the other not swerving (Don’t). We see this since the player not swerving receives 0, switching to swerving reduces his payoff to -3. The player swerving receives 2, switching to not swerving reduces his payoff to 1. A mixed-strategy N.E. is where the set of strategies in the Nash equilib- rium involve randomly choosing pure strategies with a particular distribution. Here there is also a mixed-strategy N.E. with each swerving with probability 3/4. We see this using the following logic. If Lee is choosing Swerve with 1 probability p and Don0t with probability 1 p, then Spike’s payoff for Swerve − is 1 p +0 (1 p)=p. Also with these probabilities Spike’s payoff for Don0t is 2 ·p +( · 3)−(1 p)=5p 3. Since Spike will also be mixing, he will could not· gain by− deviating.· − This− means that his payoffs from each strategy should be the same. Hence, p =5p 3orp =3/4andLeewillchooseSwerve with probability 3/4. Likewise, we− can derive Spike’s strategy as choosing Swerve with probability 3/4. In summation, the set of Nash equilibria are (Swerve,Don0t), (Don0t, Swerve), (.75 Swerve+.25 Don0t, .75 Swerve+ .25 Don0t). 1.2 The Hair-Cut Game Bill and Ted are about to graduate from high school. They decided to do something wild and get crazy haircuts for the last day of school. The problem is that they live across town and have no way of knowing what the other has decided. They concluded that getting haircuts would be most bodacious and give utility of 4 to each. This would improve their standard utility of 1 each. Bill got to thinking further and determined that if Ted didn’t get a haircut it would suck and he would get utility 0. Ted, however, thinks it would be excellent and get utility 2. Ted also determined that if Bill didn’t get a haircut and he did it would suck and he would get utility 0. Bill, however, thinks that case would be excellent and get utility 2.(i) Model this as a game by writing its normal form.(ii) Are there any pure-strategy equilibria of the game? Please explain why or why not for each possibility.(iii) Are there any mixed-strategy equilibria of the game? If yes, give the equilibrium. If no, please explain. Answer. One can write the normal form game as follows Ted Cut Don0t Cut 4, 4 0, 2 Bill Don0t 2, 0 1, 1 A Nash equilibrium is a set of strategies such that each player has no incentive for deviation given the other player’s strategy. A pure strategy 2 N.E. is where the set of strategies are pure, that is, either getting a haircut or not (don’t). There are two pure-strategy Nash equilibria: both getting haircuts and both not getting haircuts. A mixed-strategy N.E. is where the set of strategies in the Nash equilib- rium involve randomly choosing pure strategies with a particular distribution. Here there is also a mixed-strategy N.E. with each swerving with probabil- ity 3/4. We see this using the following logic. If Ted is choosing Cut with probability p and Don0t with probability 1 p, then Bill’s payoff for Cut is − 4 p +0 (1 p)=4p. Also with these probabilities Bill’s payoff for Don0t is· 2 p +1· (1− p)=1+p. Since Bill will also be mixing, he will could not gain· by deviating.· − This means that his payoffs from each strategy should be the same. Hence, 4p =1+p or p =1/3 and Ted will choose Cut with probability 1/3. Likewise, we can derive Bill’s strategy as choosing Cut with probability 1/3. In summation, the set of Nash equilibria are (Cut,Cut), (Don0t, Don0t), (1/3 Cut +2/3 Don0t, 1/3 Cut +2/3 Don0t). 2 Extensive Form Questions. 2.1 Boeing versus Airbus. Consider the rivalry between Airbus and Boeing to develop a new commercial jet aircraft. Suppose Boeing is ahead in the development process, and Airbus is considering whether to enter the market. If Airbus stays out, it earns zero profit, while Boeing enjoys a monopoly and earns a profit of $1 billion. If Airbus decides to enter and develop the rival plane, then Boeing has to decide whether to accommodate Airbus peacefully, or to wage a price war. In the event of peaceful competition, each firm will make a profitof$300 million. If there is a price war, however, each will lose $100 million because the prices will fall so low that neither will be able to recoup its development costs.(a.) Draw the tree for this game. Use backward induction to find the equilibrium.(b.) Why is Boeing unlikely to be happy about the equilibrium? What would it have preferred? Could it have made a credible threat to get Airbus to behave as it wanted?(c.) What if Boeing had moved first? Would there still have been a credibility problem with Price War? Explain. 3 Answer. The game tree will have Airbus at the first decision node. There would be two branches: enter and stay out. The enter leads to a decision node with Boeing deciding to accept or fight. The payoffs are (0 for Airbus,1 billion for Boeing) for stay out, (300 million, 300 million) for enter-accept, and (- 100 million, -100 million) for enter-fight. Since after enter is chosen, Boeing should rationally choose accept, it makes sense for Airbus to enter. Boeing would prefer to have Airbus stay out. It could make a threat of fighting, but this is not credible since at that stage it would hurt Boeing by 400 million. If Boeing could move first (such as hiring a crazy boss) the game tree would have branches: fight-enter, fight-stay out, accept-enter, accept-stay out. If Boeing chooses fight, then Airbus stays out. If Boeing chooses accept, then Airbus enters. Thus, Boeing would choose fight (hire the tough boss). 2.2 Tic-Tac-Toe Take the following game of tic-tac-toe with O’s turn to move. O O X X X Please write out the extensive form with labeling the possible moves by the following numbers. 1 2 O O X X X 3 4 Which outcomes are possible? What is/are the subgame perfect equilib- ria? Do you think you can write the entire tree out for tic-tac-toe from the beginning? Answer. FirstnoticethatifO chooses 1 and 2, he wins. If X chooses either 2 and 3 or 1 and 4, then he wins. All other choices results in a tie. Thus, are outcomes are possible, though some may be unlikely. The following table lists all possible outcome by the order of choices. The first row is O’s first move. The second row is X’s first move. The third row is O’s second move. The fourth row is X’s second move. For simplicity I let the game continue until all boxes were filled in. The fifth row shows the outcomes: X means 4 that X wins. O means that O wins. T means there was a tie. The sixth row shows the branches eliminated by O’s second decision (labelled c). The seventh row shows the additional branches eliminated by X’s first decision (labelled b). Notice the only remaining branches are ties. These will not be eliminated by O’s first move. Thus, they are the sub-game perfect equilibria. Notice that if O chooses either 1 or 2 on his first move, the subgame-perfect sequence from then on is determined. O 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 X 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 O 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2 X 4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1 T X O X O T X T O T O X X T T T T X T T X T X T .
Recommended publications
  • 1 Continuous Strategy Markov Equilibrium in a Dynamic Duopoly
    1 Continuous Strategy Markov Equilibrium in a Dynamic Duopoly with Capacity Constraints* Milan Horniacˇek CERGE-EI, Charles University and Academy of Sciences of Czech Republic, Prague The paper deals with an infinite horizon dynamic duopoly composed of price setting firms, producing differentiated products, with sales constrained by capacities that are increased or maintained by investments. We analyze continuous strategy Markov perfect equilibria, in which strategies are continuous functions of (only) current capacities. The weakest possible criterion of a renegotiation-proofness, called renegotiation-quasi-proofness, eliminates all equilibria in which some continuation equilibrium path in the capacity space does not converge to a Pareto efficient capacity vector giving both firms no lower single period net profit than some (but the same for both firms) capacity unconstrained Bertrand equilibrium. Keywords: capacity creating investments, continuous Markov strategies, dynamic duopoly, renegotiation-proofness. Journal of Economic Literature Classification Numbers: C73, D43, L13. * This is a revised version of the paper that I presented at the 1996 Econometric Society European Meeting in Istanbul. I am indebted to participants in the session ET47 Oligopoly Theory for helpful and encouraging comments. Cristina Rata provided an able research assistance. The usual caveat applies. CERGE ESC Grant is acknowledged as a partial source of financial support. 2 1. INTRODUCTION Many infinite horizon, discrete time, deterministic oligopoly models involve physical links between periods, i.e., they are oligopolistic difference games. These links can stem, for example, from investment or advertising. In difference games, a current state, which is payoff relevant, should be taken into account by rational players when deciding on a current period action.
    [Show full text]
  • 1 Bertrand Model
    ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself with the strategic choices of its competition. In the former, this is trivially true since there isn't any competition. While the latter is so insignificant that the single firm has no effect. In an oligopoly where there is more than one firm, and yet because the number of firms are small, they each have to consider what the other does. Consider the product launch decision, and pricing decision of Apple in relation to the IPOD models. If the features of the models it has in the line up is similar to Creative Technology's, it would have to be concerned with the pricing decision, and the timing of its announcement in relation to that of the other firm. We will now begin the exposition of Oligopolistic Competition. 1 Bertrand Model Firms can compete on several variables, and levels, for example, they can compete based on their choices of prices, quantity, and quality. The most basic and funda- mental competition pertains to pricing choices. The Bertrand Model is examines the interdependence between rivals' decisions in terms of pricing decisions. The assumptions of the model are: 1. 2 firms in the market, i 2 f1; 2g. 2. Goods produced are homogenous, ) products are perfect substitutes. 3. Firms set prices simultaneously. 4. Each firm has the same constant marginal cost of c. What is the equilibrium, or best strategy of each firm? The answer is that both firms will set the same prices, p1 = p2 = p, and that it will be equal to the marginal ECON 312: Oligopolisitic Competition 2 cost, in other words, the perfectly competitive outcome.
    [Show full text]
  • A Cournot-Nash–Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers
    A Cournot-Nash–Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers Anna Nagurney1,2 and Tilman Wolf3 1Department of Operations and Information Management Isenberg School of Management University of Massachusetts, Amherst, Massachusetts 01003 2School of Business, Economics and Law University of Gothenburg, Gothenburg, Sweden 3Department of Electrical and Computer Engineering University of Massachusetts, Amherst, Massachusetts 01003 December 2012; revised May and July 2013 Computational Management Science 11(4), (2014), pp 475-502. Abstract: This paper develops a game theory model of a service-oriented Internet in which profit-maximizing service providers provide substitutable (but not identical) services and compete with the quantities of services in a Cournot-Nash manner, whereas the network transport providers, which transport the services to the users at the demand markets, and are also profit-maximizers, compete with prices in Bertrand fashion and on quality. The consumers respond to the composition of service and network provision through the demand price functions, which are both quantity and quality dependent. We derive the governing equilibrium conditions of the integrated game and show that it satisfies a variational in- equality problem. We then describe the underlying dynamics, and provide some qualitative properties, including stability analysis. The proposed algorithmic scheme tracks, in discrete- time, the dynamic evolution of the service volumes, quality levels, and the prices until an approximation of a stationary point (within the desired convergence tolerance) is achieved. Numerical examples demonstrate the modeling and computational framework. Key words: network economics, game theory, oligopolistic competition, service differen- tiation, quality competition, Cournot-Nash equilibrium, service-oriented Internet, Bertrand competition, variational inequalities, projected dynamical systems 1 1.
    [Show full text]
  • Competition and Efficiency of Coalitions in Cournot Games
    1 Competition and Efficiency of Coalitions in Cournot Games with Uncertainty Baosen Zhang, Member, IEEE, Ramesh Johari, Member, IEEE, Ram Rajagopal, Member, IEEE, Abstract—We investigate the impact of coalition formation on Electricity markets serve as one motivating example of the efficiency of Cournot games where producers face uncertain- such an environment. In electricity markets, producers submit ties. In particular, we study a market model where firms must their bids before the targeted time of delivery (e.g., one day determine their output before an uncertain production capacity is realized. In contrast to standard Cournot models, we show that ahead). However, renewable resources such as wind and solar the game is not efficient when there are many small firms. Instead, have significant uncertainty (even on a day-ahead timescale). producers tend to act conservatively to hedge against their risks. As a result, producers face uncertainties about their actual We show that in the presence of uncertainty, the game becomes production capacity at the commitment stage. efficient when firms are allowed to take advantage of diversity Our paper focuses on a fundamental tradeoff revealed in to form groups of certain sizes. We characterize the tradeoff between market power and uncertainty reduction as a function such games. On one hand, in the classical Cournot model, of group size. In particular, we compare the welfare and output efficiency obtains as the number of individual firms approaches obtained with coalitional competition, with the same benchmarks infinity, as this weakens each firm’s market power (ability to when output is controlled by a single system operator.
    [Show full text]
  • Topics in Mean Field Games Theory & Applications in Economics And
    Topics in Mean Field Games Theory & Applications in Economics and Quantitative Finance Charafeddine Mouzouni To cite this version: Charafeddine Mouzouni. Topics in Mean Field Games Theory & Applications in Economics and Quan- titative Finance. Analysis of PDEs [math.AP]. Ecole Centrale Lyon, 2019. English. tel-02084892 HAL Id: tel-02084892 https://hal.archives-ouvertes.fr/tel-02084892 Submitted on 29 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N◦ d’ordre NNT : 2019LYSEC006 THESE` de DOCTORAT DE L’UNIVERSITE´ DE LYON oper´ ee´ au sein de l’Ecole Centrale de Lyon Ecole Doctorale 512 Ecole Doctorale InfoMaths Specialit´ e´ de doctorat : Mathematiques´ et applications Discipline : Mathematiques´ Soutenue publiquement le 25/03/2019, par Charafeddine MOUZOUNI Topics in Mean Field Games Theory & Applications in Economics and Quantitative Finance Devant le jury compos´ede: M. Yves Achdou Professeur, Universite´ Paris Diderot President´ M. Martino Bardi Professeur, Universita` di Padova Rapporteur M. Jean-Franc¸ois Chassagneux Professeur, Universite´ Paris Diderot Rapporteur M. Franc¸ois Delarue Professeur, Universite´ Nice-Sophia Antipolis Examinateur Mme. Catherine Rainer Maˆıtre de conferences,´ Universite´ de Brest Examinatrice M. Francisco Silva Maˆıtre de conferences,´ Universite´ de Limoges Examinateur Mme.
    [Show full text]
  • Cartel Formation in Cournot Competition with Asymmetric Costs: a Partition Function Approach
    games Article Cartel Formation in Cournot Competition with Asymmetric Costs: A Partition Function Approach Takaaki Abe School of Political Science and Economics, Waseda University, 1-6-1, Nishi-waseda, Shinjuku-ku, Tokyo 169-8050, Japan; [email protected] Abstract: In this paper, we use a partition function form game to analyze cartel formation among firms in Cournot competition. We assume that a firm obtains a certain cost advantage that allows it to produce goods at a lower unit cost. We show that if the level of the cost advantage is “moderate”, then the firm with the cost advantage leads the cartel formation among the firms. Moreover, if the cost advantage is relatively high, then the formed cartel can also be stable in the sense of the core of a partition function form game. We also show that if the technology for the low-cost production can be copied, then the cost advantage may prevent a cartel from splitting. Keywords: cartel formation; Cournot competition; partition function form game; stability JEL Classification: C71; L13 1. Introduction Many approaches have been proposed to analyze cartel formation. Ref. [1] first intro- duced a simple noncooperative game to study cartel formation among firms. As shown by the title of his paper, “A simple model of imperfect competition, where 4 are few and Citation: Abe, T. Cartel Formation in 6 are many”, this result suggests that cartel formation depends deeply on the number of Cournot Competition with firms in a market. Ref. [2] distinguished the issue of cartel stability from that of cartel Asymmetric Costs: A Partition formation.
    [Show full text]
  • ABSTRACT Asymptotics for Mean Field Games of Market Competition
    ABSTRACT Asymptotics for mean field games of market competition Marcus A. Laurel Director: P. Jameson Graber, Ph.D. The goal of this thesis is to analyze the limiting behavior of solutions to a system of mean field games developed by Chan and Sircar to model Bertrand and Cournot competition. We first provide a basic introduction to control theory, game theory, and ultimately mean field game theory. With these preliminaries out of the way, we then introduce the model first proposed by Chan and Sircar, namely a cou- pled system of two nonlinear partial differential equations. This model contains a parameter that measures the degree of interaction between players; we are inter- ested in the regime goes to 0. We then prove a collection of theorems which give estimates on the limiting behavior of solutions as goes to 0 and ultimately obtain recursive growth bounds of polynomial approximations to solutions. Finally, we state some open questions for further research. APPROVED BY DIRECTOR OF HONORS THESIS: Dr. P. Jameson Graber, Department of Mathematics APPROVED BY THE HONORS PROGRAM: Dr. Elizabeth Corey, Director DATE: ASYMPTOTICS FOR MEAN FIELD GAMES OF MARKET COMPETITION A Thesis Submitted to the Faculty of Baylor University In Partial Fulfillment of the Requirements for the Honors Program By Marcus A. Laurel Waco, Texas December 2018 TABLE OF CONTENTS Acknowledgments . iii Dedication . iv Chapter One: Introductions of Pertinent Concepts . 1 Chapter Two: Bertrand and Cournot Mean Field Games . 15 Chapter Three: Proof of Error Estimates . 21 Chapter Four: Conclusions and Open Questions . 46 References . 48 ii ACKNOWLEDGMENTS I am particularly grateful toward my thesis mentor, Dr.
    [Show full text]
  • Oligopolistic Competition
    Lecture 3: Oligopolistic competition EC 105. Industrial Organization Mattt Shum HSS, California Institute of Technology EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 1 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105.
    [Show full text]
  • Answer Hints
    HUL311 - APPLIED GAME THEORY MAJOR EXAMINATION (Nov 21, 2017), IITD SEM-I, AY 2017-18, Time Allowed: 2 Hours. (ANSWER ALL, Max marks=30) ANSWER HINTS Q1: Short Note [5 3 = 15 marks]. You must describe the problem and highlight its solu- × tion with possible realistic implications. (a) Inefficient trade and adverse selection. Your answer must contain (a) problem description (b) properly de- fined strategies of players (c) equilibrium solution and (d) realistic im- plications - e.g., application of `Lemon Market' in international trade, insurance (with healthy and unhealthy type), second hand car market, etc. (b) Cournot competition with cost uncertainty. Your answer must contain (a) problem description (b) properly de- fined strategies of players (q [0; )) (c) showing the best response i 2 1 function in graph with cH and cL and to show respective quantities and profits (d) realistic implications - e.g., credible cost/type revela- tion through advertersing, etc. (c) Effort choice in study groups. Your answer must contain (a) problem description (b) properly de- fined strategies of players (c) equilibrium solution and (d) realistic im- plications - e.g., voluntary contribution with type dependent donors - people donates beyond a cost threshold, jumping into the river to save a child - who will jump depend on cost threshold, etc. 1 Q2 [2:5 2 = 5 marks]. ∗ Consider two firms that play a Cournot competition game with demand p = 100 q; and costs 2 − for each firm given by ci(qi) = 10qi (it is known that, q = i=1 qi). Imagine that before the two firms play the Cournot game, firm 1 can invest in cost reduction.P If it invests, the costs of firm 1 will drop to c1(q1) = 5q1.
    [Show full text]
  • Search Costs, Demand-Side Economies and the Incentives to Merge Under Bertrand Competition
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Moraga-Gonzalez, Jose L.; Petrikaite, Vaiva Working Paper Search Costs, Demand-Side Economies and the Incentives to merge under Bertrand Competition Tinbergen Institute Discussion Paper, No. 12-017/1 Provided in Cooperation with: Tinbergen Institute, Amsterdam and Rotterdam Suggested Citation: Moraga-Gonzalez, Jose L.; Petrikaite, Vaiva (2012) : Search Costs, Demand-Side Economies and the Incentives to merge under Bertrand Competition, Tinbergen Institute Discussion Paper, No. 12-017/1, Tinbergen Institute, Amsterdam and Rotterdam, http://nbn-resolving.de/urn:NBN:nl:ui:31-1871/38484 This Version is available at: http://hdl.handle.net/10419/87185 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu TI 2012-017/1 Tinbergen Institute Discussion Paper Search Costs, Demand-Side Economies and the Incentives to Merge under Bertrand Competition José L.
    [Show full text]
  • Comparing Cournot and Bertrand Equilibria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Essex Research Repository Comparing Cournot and Bertrand Equilibria in a Differentiated Duopoly with Product R&D George Symeonidis University of Essex Abstract: This paper compares Bertrand and Cournot equilibria in a differentiated duopoly with substitute goods and product R&D. I find that R&D expenditure, prices and firms’ net profits are always higher under quantity competition than under price competition. Furthermore, output, consumer surplus and total welfare are higher in the Bertrand equilibrium than in the Cournot equilibrium if either R&D spillovers are weak or products are sufficiently differentiated. If R&D spillovers are strong and products are not too differentiated, then output, consumer surplus and total welfare are lower in the Bertrand case than in the Cournot case. Thus a key finding of the paper is that there are circumstances where quantity competition can be more beneficial than price competition both for consumers and for firms. Keywords: Product R&D, price versus quantity competition, welfare. JEL classification: L13, D43. Address for correspondence: Department of Economics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K. Phone: +44 1206 872511, fax: +44 1206 872724, e-mail: [email protected] 1. Introduction. The standard view that Bertrand competition is more efficient than Cournot competition has recently been challenged by a number of theoretical models. A common feature of these models is the idea that firms compete both in variables that can be easily changed in the short run, such as price or output, and in variables that constitute longer-term commitments, such as capacity or R&D expenditure.
    [Show full text]
  • MS&E 246: Lecture 3 Pure Strategy Nash Equilibrium
    MS&E 246: Lecture 3 Pure strategy Nash equilibrium Ramesh Johari January 16, 2007 Outline • Best response and pure strategy Nash equilibrium • Relation to other equilibrium notions • Examples • Bertrand competition Best response set Best response set for player n to s-n: R (s ) = arg max Π (s , s ) n -n sn ∈ Sn n n -n [ Note: arg maxx ∈ X f(x) is the set of x that maximize f(x) ] Nash equilibrium Given: N-player game A vector s = (s1, …, sN) is a (pure strategy) Nash equilibrium if: si ∈ Ri(s-i) for all players i. Each individual plays a best response to the others. Nash equilibrium Pure strategy Nash equilibrium is robust to unilateral deviations One of the hardest questions in game theory: How do players know to play a Nash equilibrium? Example: Prisoner’s dilemma Recall the routing game: AT&T near far near (-4,-4) (-1,-5) MCI far (-5,-1) (-2,-2) Example: Prisoner’s dilemma Here (near,near) is the unique (pure strategy) NE: AT&T near far near (-4,-4) (-1,-5) MCI far (-5,-1) (-2,-2) Summary of relationships Given a game: • Any DSE also survives ISD, and is a NE. (DSE = dominant strategy equilibrium; ISD = iterated strict dominance) Example: bidding game Recall the bidding game from lecture 1: Player 2’s bid $0 $1 $2 $3 $4 $0 $4.00 $4.00 $4.00 $4.00 $4.00 $1 $11.00 $7.00 $5.67 $5.00 $4.60 $2 $10.00 $7.33 $6.00 $5.20 $4.67 Player 1’s bid $3 $9.00 $7.00 $5.80 $5.00 $4.43 $4 $8.00 $6.40 $5.33 $4.57 $4.00 Example: bidding game Here (2,2) is the unique (pure strategy) NE: Player 2’s bid $0 $1 $2 $3 $4 $0 $4.00 $4.00 $4.00 $4.00 $4.00 $1 $11.00 $7.00 $5.67 $5.00 $4.60 $2 $10.00 $7.33 $6.00 $5.20 $4.67 Player 1’s bid $3 $9.00 $7.00 $5.80 $5.00 $4.43 $4 $8.00 $6.40 $5.33 $4.57 $4.00 Summary of relationships Given a game: • Any DSE also survives ISD, and is a NE.
    [Show full text]