Cover Next Page > Cover Next Page >

Total Page:16

File Type:pdf, Size:1020Kb

Cover Next Page > Cover Next Page > cover next page > title : Visions : How Science Will Revolutionize the Twenty-first Century author : Kaku, Michio. publisher : Oxford University Press isbn10 | asin : 0192880187 print isbn13 : 9780192880185 ebook isbn13 : 9780585244884 language : English subject Science--Forecasting, Twenty-first century--Forecasts. publication date : 1999 lcc : Q125.K35 1999eb ddc : 363.107 subject : Science--Forecasting, Twenty-first century--Forecasts. cover next page > < previous page page_i next page > Page i Visions Michio Kaku is the Henry Semat Professor of Theoretical Physics at the City College of New York. An internationally acclaimed physicist, he is the co-founder of string field theory. He graduated from Harvard and received his Ph.D. from Berkeley. He is the author of the critically acclaimed and bestselling Hyperspace, as well as Beyond Einstein (with Jennifer Thompson), Quantum Field Theory: A Modern Introduction, and Introduction to Superstrings. He hosts a weekly hour-long radio science programme that is nationally syndicated. < previous page page_i next page > < previous page page_ii next page > Page ii Other books by Michio Kaku HYPERSPACE BEYOND EINSTEIN < previous page page_ii next page > < previous page page_iii next page > Page iii Visions How Science Will Revolutionize the Twenty-First Century Michio Kaku City University of New York, New York, USA Oxford New York Melbourne OXFORD UNIVERSITY PRESS < previous page page_iii next page > < previous page page_iv next page > Page iv Oxford University Press, Great Clarendon Street, Oxford OX2 6DP Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dares Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Ibadan Oxford is a registered trade mark of Oxford University Press © Michio Kahu 1998 The moral rights of the author have been asserted First published 1998 First issued as an Oxford University Press paperback 1999 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press. Within the UK, exceptions are allowed in respect of any fair dealing for the purpose of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, or in the case of reprographic reproduction in accordance with the terms of the licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction in accordance with the terms of the licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside these terms and in other countries should be sent to the Rights Department, Oxford University Press, at the address above This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available ISBN 0 19 288018 7 10 9 8 7 6 5 4 3 Printed in Great Britain by Cox and Wyman Ltd Reading, Berkshire < previous page page_iv next page > < previous page page_v next page > Page v This book is dedicated to my parents < previous page page_v next page > < previous page page_vii next page > Page vii CONTENTS Preface ix Part One Visions Chapter 1 3 Choreographers of Matter, Life, and Intelligence Part Two The Computer Revolution Chapter 2 23 The Invisible Computer Chapter 3 43 The Intelligent Planet Chapter 4 70 Machines That Think Chapter 5 99 Beyond Silicon: Cyborgs and the Ultimate Computer Chapter 6 118 Second Thoughts: Will Humans Become Obsolete? Part Three The Biomolecular Revolution Chapter 7 139 Personal DNA Codes Chapter 8 162 Conquering CancerFixing Our Genes Chapter 9 181 Molecular Medicine and the Mind/Body Link Chapter 10 200 To Live Forever? < previous page page_vii next page > < previous page page_viii next page > Page viii Chapter 11 220 Playing God: Designer Children and Cones Chapter 12 241 Second Thoughts: The Genetics of a Brave New World? Part Four The Quantum Revolution Chapter 13 265 The Quantum Future Chapter 14 295 To Reach for the Stars Chapter 15 322 Toward a Planetary Civilization Chapter 16 338 Masters of Space and Time Notes 356 Recommended Reading 389 Index 394 < previous page page_viii next page > < previous page page_ix next page > Page ix PREFACE This is a book about the limitless future of science and technology, focusing on the next 100 years and beyond. A book with the proper scope, depth, and accuracy necessary to summarize the exciting and fast-paced progress of science could not be written without the insights and wisdom of the scientists who are making the future possible. Of course, no one person can invent the future. There is simply too much accumulated knowledge, there are too many possibilities and too many specializations. In fact, most predictions of the future have floundered because they have reflected the eccentric, often narrow viewpoints of a single individual. The same is not true of Visions. In the course of writing numerous books, articles, and science commentaries, I have had the rare privilege of interviewing over 150 scientists from various disciplines during a ten-year period. On the basis of these interviews, I have tried to be careful to delineate the time frame over which certain predictions will or will not be realized. Scientists expect some predictions to come about by the year 2020; others will not materialize until much laterfrom 2050 to the year 2100. As a result, not all predictions are created equalsome are more forward looking and necessarily more speculative than others. The time frames I've identified in the book, of course, are to be taken only as guidelines, to give readers a sense of when certain trends and technologies can be expected to emerge. The outline for the book is as follows: In Part I of Visions, I discuss the remarkable developments that await us in the computer revolution, which are already beginning to transform business, communications, and our lifestyles, and which I believe will one day give us the power to place intelligence in every part of our planet. In Part II, I turn to the biomolecular revolution, which will ultimately give us the power to alter and syn- < previous page page_ix next page > < previous page page_x next page > Page x thesize new forms of life, and crate new medicines and therapies. Part III focuses on the quantum revolution, perhaps the most profound of the three, which will give us control over matter itself. I wish to thank the following scientists who have given me their time, advice, and invaluable insights in the course of writing this book: Walter Gilbert, Nobel Laureate in Chemistry, Harvard University Murray Gell-Mann, Nobel Laureate in Physics, Santa Fe Institute Henry Kendall, Nobel Laureate in Physics, MIT Leon Lederman, Nobel Laureate in Physics, Illinois Institute of Technology Steven Weinberg, Nobel Laureate in Physics, University of Texas Joseph Rotbalt, physicist, Nobel Laureate in Peace Carl Sagan, Director, Laboratory for Planetary Studies, Cornell University Steven Jay Gould, Professor of Biology, Harvard University Douglas Hofstadter, Pulitzer Prize winning author, Indiana University Michael Dertouzos, Director of MIT Laboratory for Computer Sciences Paul Davies, author and cosmologist, University of Adelaide Hans Moravec, Robotics Institute, Carnegie-Mellon University Daniel Crevier, AI expert, CEO of Coreco, Inc. Jeremy Rifkin, founder of Foundation for Economic Trends Philip Morrison, Professor of Physics, MIT Miguel Virasoro, Director, International Center for Theoretical Physics, Trieste, Italy Mark Weiser, Xerox PARC Larry Tesler, chief scientist, Apple Computer Paul Ehrlich, environmentalist, Stanford University Paul Saffo, Director, Institute for the Future Francis Collins, Director, National Center for Human Genome Research (NCHG), National Institutes of Health Michael Blaese, Clinical Gene Therapy Branch (NCHG), National Institutes of Health Lawrence Brody, Laboratory of Gene Transfer (NCHG), National Institutes of Health Eric Green, Diagnostic Development Branch (NCHG), National Institutes of Health Jeffrey Trent, Director, Division of Intramural Research (NCHG), National Institutes of Health Paul Meltzer, Laboratory of Cancer Genetics (NCHG), National Institutes of Health Leslie Biesecker, Laboratory of Genetic Disease Research (NCHG), National Institutes of Health Anthony Wynshaw-Boris, Laboratory of Genetic Disease Research (NCHG), National Institutes of Health Steven Rosenberg, Head of Surgery, National Institutes of Health < previous page page_x next page > < previous page page_xi next page > Page xi Lieutenant Colonel Robert Bowman, Director, Institute for Space and Security Studies Paul Hoffman, Editor in Chief, Discover magazine Leonard Hayflick, Professor of Anatomy at the University of California at San Francisco School of Medicine Edward Witten, physicist, Institute for Advanced Study, Princeton Cumrun Vafa, physicist, Harvard University Paul Townsend, physicist, Cambridge University Alan Guth, cosmologist, MIT Barry Commoner, environmentalist,
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • Beyond Einstein... Are We All Afraid of the Truth?
    smw-genart-02-06 Beyond Einstein ... Are we all afraid of the Truth? Sanjay M Wagh Central India Research Institute, Post Box 606, Laxminagar, Nagpur 440 022, India ∗ (Dated: March 20, 2006) Abstract The power-point presentation [1] provided herein shows exactly why Einstein’s field equations of his general relativity are based on an illogical approach to representing the observable world. Einstein had, in fact, discarded these equations way back in 1928 when he had began his solitary search for a unified field theory. However, the rest of us learned, taught, and also put too much faith for too long (for more than seventy years) in an illogical approach to representing the observable world. Consequently, we have developed great reluctance, resulting from dogmatic perceptions, prestige, reputation, ..., that is holding us back from orienting ourselves in the “right” direction to the understanding of the observable phenomena. This raises the question mentioned in the title: Are we all afraid of the Truth? Rhetorically speaking, we could then also ask: are we all afraid of Virginia Woolf? In the sequel, I also illustrate my approach to going Beyond Einstein for developing an appropriate mathematical framework for the fundamental physical ideas behind the General Principle of Relativity, for the unification of fundamental arXiv:physics/0603149v1 [physics.gen-ph] 20 Mar 2006 physical interactions and, hence, for a theory of everything. ∗Electronic address: cirinag˙[email protected] 1 The title of this article may appear only as an eye-catching one to some, repelling one to some others, a thought provoking one to few others ..
    [Show full text]
  • Unification of the Maxwell- Einstein-Dirac Correspondence
    Unification of the Maxwell- Einstein-Dirac Correspondence The Origin of Mass, Electric Charge and Magnetic Spin Author: Wim Vegt Country: The Netherlands Website: http://wimvegt.topworld.center Email: [email protected] Calculations: All Calculations in Mathematica 11.0 have been printed in a PDF File Index 1 “Unified 4-Dimensional Hyperspace 5 Equilibrium” beyond Einstein 4-Dimensional, Kaluza-Klein 5-Dimensional and Superstring 10- and 11 Dimensional Curved Hyperspaces 1.2 The 4th term in the Unified 4-Dimensional 12 Hyperspace Equilibrium Equation 1.3 The Impact of Gravity on Light 15 2.1 EM Radiation within a Cartesian Coordinate 23 System in the absence of Gravity 2.1.1 Laser Beam with a Gaussian division in the x-y 25 plane within a Cartesian Coordinate System in the absence of Gravity 2.2 EM Radiation within a Cartesian Coordinate 27 System under the influence of a Longitudinal Gravitational Field g 2.3 The Real Light Intensity of the Sun, measured in 31 our Solar System, including Electromagnetic Gravitational Conversion (EMGC) 2.4 The Boundaries of our Universe 35 2.5 The Origin of Dark Matter 37 3 Electromagnetic Radiation within a Spherical 40 Coordinate System 4 Confined Electromagnetic Radiation within a 42 Spherical Coordinate System through Electromagnetic-Gravitational Interaction 5 The fundamental conflict between Causality and 48 Probability 6 Confined Electromagnetic Radiation within a 51 Toroidal Coordinate System 7 Confined Electromagnetic Radiation within a 54 Toroidal Coordinate System through Electromagnetic-Gravitational
    [Show full text]
  • Projected Roles for Disruptive and Emergent Technologies
    50 Technology as a Driver of Future Change in the Forest Sector Technology as a Driver of Future Change in the Forest Sector: Projected Roles for Disruptive and Emergent Technologies George H. Kubik Abstract: This paper examines emergent and disruptive technologies as potential drivers of change in forest sector futures. Two questions are addressed: (1) Which emergent and disruptive technologies can be projected to substantively impact forestry futures? (2) What are the possible implications of emergent and disruptive technologies for decision makers, policymakers, and other stakeholders involved in forest sector futures? A 20-year timeframe is used for this explorative paper. A cross-disciplinary review of futures literature was implemented to identify and investigate leading emergent and disruptive technologies. A list of candidate technologies was developed from the literature review and eight technologies were selected: artificial intelligence, autonomous vehicles, electronic performance enhancement systems, genomics and synthetic biology, the Internet of Things, materials science, nanotechnology, and robotics. Each of the eight technologies was then defined and three representative forecasts were projected for each technology. The goal is to provide decision makers, policymakers, and other stakeholders in the forest sector with an awareness of emergent and potentially disruptive technologies and how they might disrupt forest sector futures. The purpose of this paper is not to predict the future in detail, but to (1) promote awareness and informed thinking about the relationship between potentially disruptive technologies and forest sector futures and (2) stimulate a research agenda based on the study of these projected futures. KEY WORDS: emergent technology, disruptive technology, artificial intelligence, autonomous vehicles, electronic performance enhancement systems, genomics and synthetic biology, Internet of Things, materials science, nanotechnology and robotics Citation: Kubik, George H.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Apologia for Transhumanist Religion Gregory E
    A peer-reviewed electronic journal published by the Institute for Ethics and Emerging Technologies ISSN 1541-0099 15(1) - February 2006 Apologia for Transhumanist Religion Gregory E. Jordan, Ph.D. University of South Florida 4202 E. Fowler Ave. #30242 Tampa, Florida 33620 ([email protected]) http://jetpress.org/volume15/jordan2.htm Abstract This essay introduces the notion of transhumanist religions: their rationale, their context within the history of religions, and some fundamental constraints on their design and definition. Some of the many possible arguments for and against the design of such religions are discussed Religions, religious feelings, and religious experiences have been prominent throughout history in almost all human cultures. Religions, or cultural phenomena which can be analyzed as religions, are still influential elements of culture in all larger human societies. Religions that may resemble the earliest form of religions, those which anthropologists have called ‘primitive’ religions, continue today in some isolated societies. Later types of religions, which incorporated elements of those previous religions, have lasted for thousands of years and continue today. New religions, and new sects of old religions, continue to arise every year. Some of these new religions grow in numbers of adherents, while others eventually dwindle to none and disappear. The evolution of religions is characterized by variations on old themes as well as the introduction of new themes. Concerns and issues that arise in any sphere of a society’s culture can eventually affect religion. In the contemporary world, one of the most prominent cultural trends is the continuing increase in the sophistication, diversity, and multiplying applications of new technologies.
    [Show full text]
  • 467384274-Virtual-Salute-To-Graduates-2020.Pdf
    THE CITY COLLEGE OF NEW YORK VIRTUAL SALUTE TO GRADUATES JUNE 30, 2020 THE CITY UNIVERSITY OF NEW YORK VIRTUAL SALUTE 2020 | 1 PRESIDENT’S MESSAGE Dear CCNY Graduates of the Class of 2020, There are moments in our history that impress an indelible mark upon us, when we are called to do extraordinary things under the press of an indescribable moment. Anyone graduating in the midst of the COVID19 pandemic will be marked by this extraordinary moment. But even among that national class graduating in 2020, you are different. At a time when the inequitable imprint of this scourge underscores the other inequities in our society, the City College—and those who work study and graduate from it—stand apart. You graduate from an institution established to redress inequality, an institution that each generation has the responsibility of scanning the social and Vince Boudreau political landscape, and setting its sights on rectifying that which sits most uneasily in President the light of that responsibility. It has been over fifty years since we have faced the kinds of challenges we face today to our democracy, to the fabric of our society, and to the health and security of our people. As an institution, we were made for this moment. As graduates of CCNY, you now shoulder the responsibility of giving voice to your vision of that just society, a vision we have worked to develop and instill in you all the days of your work with us. You have struggled, sometimes mightily and against long odds, to reach this day, and we beam with pride at your accomplishment.
    [Show full text]
  • Gravity Beyond Einstein
    Thierry De Mees Gravito- magnetism including an introduction to the Coriolis Gravity Theory Gravity Beyond Einstein Second Edition - 2011 Gravito-magnetism including an introduction to the Coriolis Gravity Theory Gravity Beyond Einstein Second Edition - 2011 INDEX Index i Introduction 1 Chapter 1 Successes of a Novel Gravity Interpretation 7 The great Michelson & Morley, Lorentz and Einstein trap 9 1. The Michelson & Morley experiment, the Lorentz and the Einstein interpretation. 9 2. A null result means : a null result. 10 3. Conclusion. 11 4. References and interesting literature. 12 A coherent dual vector field theory for gravitation 13 1. Introduction : the Maxwell analogy for gravitation: a short history. 14 2. Law of gravitational motion transfer. 14 3. Gyrotation of a moving mass in an external gravitational field. 15 4. Gyrotation of rotating bodies in a gravitational field. 16 5. Angular collapse into prograde orbits. Precession of orbital spinning objects. 16 6. Structure and formation of prograde disc Galaxies. 18 7. Unlimited maximum spin velocity of compact stars. 20 8. Origin of the shape of mass losses in supernovae. 21 9. Dynamo motion of the sun. 22 10. Binary stars with accretion disc. 22 11. Repulsion by moving masses. 24 12. Chaos explained by gyrotation. 24 13. The link between Relativity Theory and Gyrotation Theory. 25 14. Discussion : implications of the relationship between Relativity and Gyrotation 26 15. Conclusion 26 16. References 26 Lectures on “A coherent dual vector field theory for gravitation”. 27 Lecture A: a word on the Maxwell analogy 27 Lecture B: a word on the flux theory approach 27 Lecture C: a word on the application of the Stokes theorem and on loop integrals 28 Lecture D: a word on the planetary systems 29 Lecture E : a word on the formation of disk galaxies 31 Discussion: the Dual Gravitation Field versus the Relativity Theory 33 What is the extend of the Dual Gravitation Field Theory (Gravitomagnetism)? 33 The centenary of the relativity theory.
    [Show full text]
  • Facebook Timeline
    Facebook Timeline 2003 October • Mark Zuckerberg releases Facemash, the predecessor to Facebook. It was described as a Harvard University version of Hot or Not. 2004 January • Zuckerberg begins writing Facebook. • Zuckerberg registers thefacebook.com domain. February • Zuckerberg launches Facebook on February 4. 650 Harvard students joined thefacebook.com in the first week of launch. March • Facebook expands to MIT, Boston University, Boston College, Northeastern University, Stanford University, Dartmouth College, Columbia University, and Yale University. April • Zuckerberg, Dustin Moskovitz, and Eduardo Saverin form Thefacebook.com LLC, a partnership. June • Facebook receives its first investment from PayPal co-founder Peter Thiel for US$500,000. • Facebook incorporates into a new company, and Napster co-founder Sean Parker becomes its president. • Facebook moves its base of operations to Palo Alto, California. N. Lee, Facebook Nation, DOI: 10.1007/978-1-4614-5308-6, 211 Ó Springer Science+Business Media New York 2013 212 Facebook Timeline August • To compete with growing campus-only service i2hub, Zuckerberg launches Wirehog. It is a precursor to Facebook Platform applications. September • ConnectU files a lawsuit against Zuckerberg and other Facebook founders, resulting in a $65 million settlement. October • Maurice Werdegar of WTI Partner provides Facebook a $300,000 three-year credit line. December • Facebook achieves its one millionth registered user. 2005 February • Maurice Werdegar of WTI Partner provides Facebook a second $300,000 credit line and a $25,000 equity investment. April • Venture capital firm Accel Partners invests $12.7 million into Facebook. Accel’s partner and President Jim Breyer also puts up $1 million of his own money.
    [Show full text]
  • Person of the Year" Covers for Time Magazine
    UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1-2012 Where in the World are the Women of Time? Women and the "Person of the Year" Covers for Time Magazine Krystle Lynne Anttonelli University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Gender, Race, Sexuality, and Ethnicity in Communication Commons, Mass Communication Commons, and the Women's Studies Commons Repository Citation Anttonelli, Krystle Lynne, "Where in the World are the Women of Time? Women and the "Person of the Year" Covers for Time Magazine" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1704. http://dx.doi.org/10.34917/4332685 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. WHERE ARE THE WOMEN OF TIME? WOMEN AND THE “PERSON OF THE YEAR” COVERS FOR TIME MAGAZINE by Krystle Anttonelli Bachelor
    [Show full text]
  • Kirwan Update July/August 2010
    Kirwan Update July/August 2010 The Changing Face of Black America Executive Notes Charisma S. Acey number of reasons, including increasingly The immigration issue Assistant Professor of restrictive immigration policies among City and Regional Planning has exploded again with a joint appointment European countries. Moreover, changes into the national spot- at the Kirwan Institute to U.S. immigration policy have directly light with Arizona’s affected the rates of legal migration to the draconian law. Given Most of the increase in scholarship United States: The 1965 act eliminated the the issue’s complexity, on immigration following the 1965 quota system, and refugee policies in the I would like to touch Immigration and Naturalization Act has 1980s also facilitated immigration. The most on four key points. Professor john a. powell followed the dramatic rise in non-European dramatic jump in African immigrant popu- Rather than looking at immigrant diversity, but has been heavily lation was between 2000 and 2005, accord- the immigration issue focused on Latino, Asian, and European ing to the 2007 report by Mary Mederios in isolation, we should socioeconomic attainment and assimila- Kent, “Immigration and America’s Black recognize the effect of our current socio- tion. According to the last U.S. Census, Population,” when 40 percent of the current political situation as the country deals African immigrants to the United States African immigrant population arrived. with a deep recession in the Obama era. from the mid-20th century now num- How do Black Caribbean and Black African Secondly, we should consider the role of ber approximately one million persons, migration differ? Studies of Black Caribbean immigration in Anglo-American global- mostly from West, East, and North Africa, migration have found evidence of assimila- ization, which has become the received with smaller numbers from Southern and tion with Black America, in terms of resi- wisdom for elites.
    [Show full text]
  • Arxiv:1709.09203V2 [Gr-Qc] 16 Oct 2019
    LIGO-P1700009 First search for nontensorial gravitational waves from known pulsars The LIGO Scientific Collaboration and the Virgo Collaboration, S. Buchner, I. Cognard, A. Corongiu, P. C. C. Freire, L. Guillemot, G. B. Hobbs, M. Kerr, A. G. Lyne, A. Possenti, A. Ridolfi, R. M. Shannon, B. W. Stappers, and P. Weltevrede (Dated: November 16, 2017) We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity. Introduction. The first gravitational waves detected candidates for searches for such signals in data from by the Advanced Laser Interferometer Gravitational-wave ground-based detectors, and analyses targeting them have Observatory (aLIGO) and Virgo have already been used already achieved sensitivities that are comparable to, or to place some of the most stringent constraints on de- even surpass, their canonical spin-down limit (i.e. the viations from the general theory of relativity (GR) in strain that would be produced if the observed slowdown the highly-dynamical and strong-field regimes of gravity in the pulsar's rotation was completely due to gravita- [1{4].
    [Show full text]