Synaptic Specializations Mediated by Synaptotagmin Isoforms

Total Page:16

File Type:pdf, Size:1020Kb

Synaptic Specializations Mediated by Synaptotagmin Isoforms Synaptic Specializations Mediated by Synaptotagmin Isoforms The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Turecek, Josef. 2019. Synaptic Specializations Mediated by Synaptotagmin Isoforms. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029600 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Synaptic specializations mediated by Synaptotagmin isoforms A dissertation presented by Josef Turecek to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Neurobiology Harvard University Cambridge, Massachusetts March 2019 © 2019 – Josef Turecek All rights reserved Dissertation Advisor: Professor Wade Regehr Josef Turecek Synaptic specializations mediated by Synaptotagmin isoforms The timing of neurotransmitter release in response to presynaptic firing varies widely across synapses in the brain. The release of synaptic vesicles can be synchronous and occur within milliseconds of an action potential, or asynchronous and persist for tens of milliseconds. Release can also undergo short-term facilitation in which it is enhanced by two closely timed action potentials. The molecular properties of synapses that determine the relative timing of synaptic vesicle release have remained poorly understood. We have found that Synaptotagmin 7 (Syt7) plays a major role in multiple aspects of synaptic transmission. Syt7 mediates short-term facilitation at almost all synapses where it is present, including seven different synapses tested here. Loss of Syt7 also eliminated facilitation that was activated by trains of stimuli at Purkinje cell and vestibular synapses, revealing an interplay between short-term facilitation and depression that maintains constant synaptic strength. Changes in the initial probability of release were not detectable in Syt7 KOs at three different synapses, and removal of Syt7 did not reduce the rate of recovery from depression in cerebellar Purkinje cell synapses. Facilitation could be rescued in Syt7 KOs by presynaptic expression of Syt7, but not Ca2+-insensitive Syt7. At cerebellar parallel fibers we found that Syt7 can mediate both facilitation and asynchronous release, but there are additional mechanisms of facilitation and asynchronous release in the absence of Syt7. In contrast to facilitation, the presence or absence of Syt7 does not determine whether asynchronous release occurs. Syt7 was most strongly expressed at Purkinje cell synapses in the cerebellar nuclei, even though no asynchronous release could be detected. Inhibitory synapses in the inferior olive are exclusively asynchronous, and we found that release synchrony is instead determined by the absence of Synaptotagmin 1 and 2. Syt7 plays a role in shaping the kinetics of asynchronous release in the inferior olive, but does not control the magnitude of asynchronous release. Our findings suggest that Syt7 could be a Ca sensor for facilitation that is iii prominent at many synapses, and that it may also play a role in asynchronous release in combination with other additional mechanisms. iv Table of Contents Abstract ....................................................................................................................................................... iii Table of Contents ........................................................................................................................................ v Acknowledgements .................................................................................................................................... vi Chapter 1: Introduction ............................................................................................................................. 1 Chapter 2: Synaptic specializations support frequency-independent Purkinje cell output from the cerebellar cortex ........................................................................................................................................ 15 Chapter 3: Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses .................................................................................................................................................................... 65 Chapter 4: Synaptotagmin 7 mediates both facilitation and asynchronous release at granule cell synapses .................................................................................................................................................... 101 Chapter 5: Neuronal regulation of fast Synaptotagmin isoforms controls the relative contribution of synchronous and asynchronous release ................................................................................................ 134 Chapter 6: Conclusion ........................................................................................................................... 173 Appendix A, The calcium sensor Synaptotagmin 7 is required for synaptic facilitation ................. 178 Appendix B, The role of CaV2.1 channel facilitation in synaptic facilitation ................................... 205 References ................................................................................................................................................ 234 v Acknowledgments I would like to thank my advisor Wade Regehr for his rigorous training and guidance. I also thank current and former members of the Regehr lab for supplying the lab with humor: Kimberly McDaniels, Skyler Jackman, Laurence Witter, Stephanie Rudolph, Jay Wang, Chris Chen, Chris Weyrer, Chong Guo, Kyung Han, Tomas Osorno, Mehak Khan, Monica Thanawala, and Diasynou Fioravante. I thank members of my dissertation advisory committee: Pascal Kaeser, Chinfei Chen, and Bruce Bean for taking the time to provide me with feedback and suggestions. I also thank Rachel Wilson for her career and personal advice. I thank Karen Harmin for keeping a watchful eye over my graduate education. I would like to thank my parents, Frank and Olga Turecek for their endless support, and for providing me with the opportunity to obtain a world-class education. Finally, I would like to thank Keiko Weir for her close friendship, support, wisdom, and love. vi Chapter 1 Introduction The presynaptic terminal Neurotransmitter is typically released from presynaptic terminals by highly specialized machinery. Transmitter is stored in synaptic vesicles that undergo fusion in the presence of calcium. Fusion of the vesicle with the presynaptic membrane releases its internal contents, allowing neurotransmitter to enter the synaptic cleft and be detected post-synaptically by neurotransmitter receptors. Fusion usually occurs at a release site where fusion machinery is concentrated and synaptic vesicles are docked and primed to be released. Synchronous and asynchronous release Several forms of release can occur, and they are distinguished by their timing relative to presynaptic action potentials. When an action potential invades the presynaptic bouton, synchronous release is evoked within a millisecond, closely time-locked to presynaptic spiking (Katz and Miledi, 1965, Sabatini and Regehr, 1996, Borst and Sakmann, 1996). In contrast, asynchronous release is delayed and loosely time-locked to the presynaptic action potential, occurring for tens to hundreds of milliseconds after spiking (Atluri and Regehr, 1998, Lu and Trussell, 2000, Hefft and Jonas, 2005, Iremonger and Bains, 2007, Daw et al., 2009, Best and Regehr, 2009, Peters et al., 2010). Release can also occur in the absence of presynaptic activity in the form of spontaneous release. For individual release sites the rate of spontaneous release is very low and may serve to maintain synapses rather than contributing to the rapid processing of information (but see Carter and Regehr, 2002). Different forms of release are evoked more effectively by different patterns of activity. Synchronous release is often maximally evoked by single stimuli or infrequent presynaptic firing. In contrast, asynchronous release is always weakly evoked by single stimuli and instead builds with repeated stimulation, especially if the frequency of stimulation is high (Atluri and Regehr, 1998, Lu and Trussell, 2000, Hefft and Jonas, 2005, Iremonger and Bains, 2007, Daw et al., 2009, Best and Regehr, 2009, Peters et al., 2010). Thus, the contribution of asynchronous release is only prominent when presynaptic firing is elevated, or during brief bursts of presynaptic activity. 2 The contributions of synchronous, asynchronous and spontaneous release at different synapses in the brain can vary widely. Release at almost all synapses is predominantly synchronous, but some synapses have especially fast synchronized release. At the mature Calyx of Held, synchronous release occurs for less than a millisecond after firing (Borst and Sakmann, 1996). Inhibitory (GABAergic) synapses can also be very rapid. For example, the release of GABA at cerebellar Purkinje cell synapses is restricted to two milliseconds following a spike (Person and Raman, 2012b). Release at these synapses is tightly controlled, and there is no evidence of asynchronous release in mature animals, even after prolonged
Recommended publications
  • Identification of Secretory Granule Phosphatidylinositol 4,5-Bisphosphate- Interacting Proteins Using an Affinity Pulldown Strategy*□S
    Research Identification of Secretory Granule Phosphatidylinositol 4,5-Bisphosphate- interacting Proteins Using an Affinity Pulldown Strategy*□S Shona L. Osborne‡§, Tristan P. Wallis¶ʈ, Jose L. Jimenez**, Jeffrey J. Gorman¶ʈ, and Frederic A. Meunier‡§‡‡ Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) syn- required for secretion is synthesized on the plasma mem- thesis is required for calcium-dependent exocytosis in neu- brane (4), and the binding of vesicle-associated proteins to rosecretory cells. We developed a PtdIns(4,5)P2 bead pull- PtdIns(4,5)P2 in trans is thought to be important for bringing down strategy combined with subcellular fractionation to the vesicle and plasma membranes together prior to exocy- Downloaded from identify endogenous chromaffin granule proteins that inter- tosis to ensure rapid and efficient fusion upon calcium influx act with PtdIns(4,5)P . We identified two synaptotagmin iso- 2 (5). Putative PtdIns(4,5)P effectors include synaptotagmin 1 forms, synaptotagmins 1 and 7; spectrin; ␣-adaptin; and 2 (Syt1) (6, 7), calcium-activated protein for secretion (CAPS) (8, synaptotagmin-like protein 4 (granuphilin) by mass spec- 9), and rabphilin (10). trometry and Western blotting. The interaction between https://www.mcponline.org CAPS binds to PtdIns(4,5)P2 and is a potential PtdIns(4,5)P2 synaptotagmin 7 and PtdIns(4,5)P2 and its functional rele- vance was investigated. The 45-kDa isoform of synaptotag- effector for priming of secretory granule exocytosis (9). How- min 7 was found to be highly expressed in adrenal chromaf- ever, recent work on the CAPS1 knock-out mouse highlighted fin cells compared with PC12 cells and to mainly localize to an involvement of CAPS1 in the refilling or storage of cate- secretory granules by subcellular fractionation, immunoiso- cholamine in mature secretory granules therefore suggesting lation, and immunocytochemistry.
    [Show full text]
  • Calcium Dependence of Retrograde Inhibition by Endocannabinoids at Synapses Onto Purkinje Cells
    The Journal of Neuroscience, July 16, 2003 • 23(15):6373–6384 • 6373 Cellular/Molecular Calcium Dependence of Retrograde Inhibition by Endocannabinoids at Synapses onto Purkinje Cells Stephan D. Brenowitz and Wade G. Regehr Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 Many types of neurons release endocannabinoids from their dendrites in response to elevation of intracellular calcium levels. Endocan- nabinoids then activate presynaptic cannabinoid receptors, thereby inhibiting neurotransmitter release for tens of seconds. A crucial step in understanding the physiological role of this retrograde signaling is to determine its sensitivity to elevations of postsynaptic calcium. Here we determine and compare the calcium dependence of endocannabinoid-mediated retrograde inhibition at three types of synapses onto cerebellar Purkinje cells. Previous studies have shown that Purkinje cell depolarization results in endocannabinoid- mediated retrograde inhibition of synapses received from climbing fibers, granule cell parallel fibers, and inhibitory interneurons. Using several calcium indicators with a range of affinities, we performed a series of in situ and in vitro calibrations to quantify calcium levels in Purkinje cells. We found that postsynaptic calcium levels of ϳ15 ␮M are required for half-maximal retrograde inhibition at all of these synapses. In contrast, previous studies had suggested that endocannabinoid release could occur with slight elevations of calcium above resting levels, which implies that inhibition should be widespread and continuously modulated by subtle changes in intracellular calcium levels. However, our results indicate that such small changes in intracellular calcium are not sufficient to evoke endocannabinoid release. Instead, because of its high requirement for calcium, retrograde inhibition mediated by calcium-dependent endocannabinoid release from Purkinje cells will occur under more restricted conditions and with greater spatial localization than previously appreciated.
    [Show full text]
  • Synaptotagmin 7 Switches Short-Term Synaptic Plasticity from Depression
    www.nature.com/scientificreports OPEN Synaptotagmin 7 switches short‑term synaptic plasticity from depression to facilitation by suppressing synaptic transmission Takaaki Fujii1, Akira Sakurai1, J. Troy Littleton2 & Motojiro Yoshihara1* Short‑term synaptic plasticity is a fast and robust modifcation in neuronal presynaptic output that can enhance release strength to drive facilitation or diminish it to promote depression. The mechanisms that determine whether neurons display short‑term facilitation or depression are still unclear. Here we show that the Ca2+‑binding protein Synaptotagmin 7 (Syt7) determines the sign of short‑term synaptic plasticity by controlling the initial probability of synaptic vesicle (SV) fusion. Electrophysiological analysis of Syt7 null mutants at Drosophila embryonic neuromuscular junctions demonstrate loss of the protein converts the normally observed synaptic facilitation response during repetitive stimulation into synaptic depression. In contrast, overexpression of Syt7 dramatically enhanced the magnitude of short‑term facilitation. These changes in short‑term plasticity were mirrored by corresponding alterations in the initial evoked response, with SV release probability enhanced in Syt7 mutants and suppressed following Syt7 overexpression. Indeed, Syt7 mutants were able to display facilitation in lower [Ca2+] where release was reduced. These data suggest Syt7 does not act by directly sensing residual Ca2+ and argues for the existence of a distinct Ca2+ sensor beyond Syt7 that mediates facilitation. Instead, Syt7 normally suppresses synaptic transmission to maintain an output range where facilitation is available to the neuron. Synaptotagmins (Syts) are a large family of Ca2+ binding proteins, with the Syt1 isoform functioning as the major Ca2+ sensor for synchronous synaptic vesicle (SV) fusion1. Ca2+ also controls presynaptic forms of short-term plasticity, with other Syt isoforms representing promising candidates to mediate these processes.
    [Show full text]
  • Communication Between the Endoplasmic Reticulum and Peroxisomes in Mammalian Cells
    Communication between the Endoplasmic Reticulum and Peroxisomes in Mammalian Cells by Rong Hua A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto © Copyright by Rong Hua (2017) ii Communication between the Endoplasmic Reticulum and Peroxisomes in Mammalian Cells Rong Hua Doctor of Philosophy Department of Biochemistry University of Toronto 2017 Abstract Peroxisomes are important metabolic organelles found in virtually all eukaryotic cells. Since their discovery, peroxisomes have long been seen in close proximity to the endoplasmic reticulum (ER). The interplay between the two organelles is suggested to be important for peroxisome biogenesis as the ER may serve as a source for both lipids and peroxisomal membrane proteins (PMPs) for peroxisome growth and maintenance. On the other hand, various lipid molecules are exchanged between them for the biosynthesis of specialized lipids such as bile acids, plasmalogens and cholesterol. However, how proteins and lipids are transported between the two organelles is not yet fully understood. Previously, the peroxisomal biogenesis factor PEX16 was shown to serve as a receptor for PMPs in the ER and also as a mediator of the subsequent transport of these ER-targeted PMPs to peroxisomes. Here, I extended these results by carrying out a comprehensive mutational analysis of PEX16 aimed at gaining insights into the molecular targeting signals responsible for its ER-to-peroxisome trafficking and the domain(s) involved in its PMP recruitment function at the ER. I also showed that the recruitment function of PEX16 is conserved in plants. To gain further mechanistic insight into PEX16 function, the proteins proximal to iii PEX16 were identified using the proximity-dependent BioID analysis.
    [Show full text]
  • A Minimum-Labeling Approach for Reconstructing Protein Networks Across Multiple Conditions
    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions Arnon Mazza1, Irit Gat-Viks2, Hesso Farhan3, and Roded Sharan1 1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email: [email protected]. 2 Dept. of Cell Research and Immunology, Tel Aviv University, Tel Aviv 69978, Israel. 3 Biotechnology Institute Thurgau, University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland. Abstract. The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to fa- cilitate the interpretation and representation of these data. A fundamen- tal challenge in this domain is the reconstruction of a protein-protein sub- network that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorith- mic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza in- fection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes. 1 Introduction With the increasing availability of high-throughput data, network biol- arXiv:1307.7803v1 [q-bio.QM] 30 Jul 2013 ogy has become the method of choice for filtering, interpreting and rep- resenting these data.
    [Show full text]
  • Cholinergic Modulation of Excitatory Synaptic Transmission in the CA3 Area of the Hippocampus
    The Journal of Neuroscience, January 1, 2001, 21(1):75–83 Cholinergic Modulation of Excitatory Synaptic Transmission in the CA3 Area of the Hippocampus Kaspar E. Vogt and Wade G. Regehr Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 Cholinergic innervation of the hippocampus has been impli- dependent facilitation of MF synapses. In addition we were cated in memory formation and retrieval. Here we study cho- unable to evoke an increase in presynaptic calcium levels in MF linergic modulation of excitatory transmission in the CA3 area of boutons with local application of nicotinic receptor agonists. the rat hippocampus. We used a combination of optical mea- This finding does not support a leading hypothesis for MF surements of presynaptic calcium and electrophysiological modulation in which activation of presynaptic nicotinic recep- measurements of synaptic currents to study associational– tors enhances transmission directly by elevating presynaptic commissural (A/C) and mossy fiber (MF) synapses in brain calcium levels. However, indirect synaptic modulation could slices. Direct synaptic modulation mediated by ACh receptors arise from nicotinic excitation of inhibitory neurons. Thus, to is only evident at the A/C synapse, where synaptic inhibition understand cholinergic modulation within the CA3 region, it is primarily reflects presynaptic calcium channel inhibition medi- necessary to take into account secondary actions on synapses ated by muscarinic receptors. MF synapses can, however, be arising from other chemical messengers released by other cell indirectly modulated by muscarinic receptor activation. Musca- types and to consider effects on firing patterns of presynaptic rine elevates the firing rate of inhibitory cells, which increases cells, which in turn influence release via use-dependent synap- GABA release and inhibits MF synapses by activating presyn- tic plasticity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • A Web-Platform for Analysis of Host Factors Involved in Viral Infections Discovered by Genome Wide Rnai Screen
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2017 vhfRNAi: A web-platform for analysis of host factors involved in viral infections discovered by genome wide RNAi screen Anamika Thakur#, Abid Qureshi# and Manoj Kumar* Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh-160036, India #Equal contribution * To whom correspondence should be addressed. Tel, 91-172-6665453; Fax, 91-172- 2690585; 91-172-2690632; Email, [email protected] Supplementary Tables Table S1: Statistics of unique and duplicate host factors in each virus Table S2: Table denoting genes common among different viruses Table S3: Statistics of GWAS analysis Table S1. Statistics of unique and duplicate host factors in each virus S. No. Virus Unique-Entries Duplicate-Entries 1. Adeno-associated virus (AAV) 926 533 2. Avian influenza virus (AIV) 0 11 3. Borna disease virus (BDV) 14 20 4. Dengue virus 2 (DEN-2) 27 13 5. Hepatitis C virus (HCV) 236 213 6. Human immunodeficiency virus 1 (HIV) 1388 857 7. Human parainfluenza virus 3 (HPIV-3) 0 27 8. Human herpesvirus 1 (HSV-1) 34 38 9. Influenza A virus (IAV) 700 513 10. Lymphocytic choriomeningitis virus (LCMV) 0 54 11. Marburgvirus (MARV) 0 11 12. Poliovirus (PV) 3340 1035 13. Rotavirus (RV) 347 175 14. Sendai virus (SeV) 32 27 15. Sindbis virus (SIV) 70 41 16. Vaccinia virus (VACV) 482 296 17. Vesicular stomatitis virus (VSV) 9 78 18. West Nile virus (WNV) 313 137 Table S1. Statistics of unique host factors for each virus having overlapping and unique factors in different viruses Non-overlap – Overall- S.
    [Show full text]
  • Lysosome Biogenesis and Lysosomal Membrane Proteins: Trafficking Meets Function
    FOCUS ON ENDOCYTOREVIEWSSIS Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function Paul Saftig* and Judith Klumperman‡ Abstract | Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis. Lysosome-related organelle Lysosomes are ubiquitous organelles that constitute the limiting membrane and have diverse functions, including (LRO). A cell-type-specific primary degradative compartments of the cell. They acidification of the lysosomal lumen, protein import from organelle belonging to a family receive their substrates through endocytosis, phago­ the cytosol, membrane fusion and transport of degrada­ that includes melanosomes, cytosis or autophagy (FIGS 1,2). The catabolic function of tion products to the cytoplasm8 (FIG. 1). The most abun­ platelet-dense bodies and lysosomes is complemented by lysosome-related organelles dant LMPs are lysosome­associated membrane protein 1 cytotoxic T cell granules. LROs contain subsets of lysosomal (LROs), such as melanosomes, lytic granules, major histo­ (LAMP1), LAMP2, lysosome integral membrane pro­ proteins in addition to compatibility complex (MHC) class II compartments and tein 2 (LIMP2; also known as SCARB2) and the tetraspanin cell-type-specific proteins.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]