No. 87, July 2016 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combating Zika
PROJECT SUMMARIES VECTOR CONTROL Wolbachia-Infected Mosquitoes Scaled Deployment of Wolbachia-Infected Mosquitoes to Block Disease Transmission Organization: Eliminate Dengue Program, Monash University Location: Melbourne, Australia Problem: Dengue is estimated to threaten the health of almost 4 billion people living in tropical and subtropical regions of the world and Zika is currently exploding as an emerging global disease with major outbreaks underway throughout tropical South America. Solution: Infect mosquitoes with Wolbachia, a naturally occurring bacteria proven to block the transmission of dengue fever and Zika virus from mosquitoes to humans. The approach provides a natural, sustainable, cost-effective new tool for preventing transmission of a range of arboviruses including Zika, dengue and chikungunya. The project, which has been proven to work over long-term field tests, will now be tested in much larger populations in several Latin American communities. This method represents a paradigm shift in arboviral disease control. It's an innovative, cutting edge technology that provides a sustainable, long-term intervention for communities affected by arboviral diseases. Compared with conventional insecticide-based or genetic population suppression control methods that may provide limited, short-term reductions in the mosquito population, once Wolbachia has established in the local population, it persists without the need for continual reapplication or additional insecticide--based control methods while reducing the risk of infection with dengue, chikungunya and Zika viruses. In addition, residents are not required to change their behaviour or participate in ongoing activities after the mosquito releases are concluded. This research, which is the first of its kind in the world, could potentially benefit an estimated 2.5 billion people currently living in arboviral disease transmission areas worldwide. -
A Review on the Progress of Sex-Separation Techniques For
Mashatola et al. Parasites & Vectors 2018, 11(Suppl 2):646 https://doi.org/10.1186/s13071-018-3219-4 REVIEW Open Access A review on the progress of sex-separation techniques for sterile insect technique applications against Anopheles arabiensis Thabo Mashatola1,2,3, Cyrille Ndo4,5,6, Lizette L. Koekemoer1,2, Leonard C. Dandalo1,2, Oliver R. Wood1,2, Lerato Malakoane1,2, Yacouba Poumachu3,4,7, Leanne N. Lobb1,2, Maria Kaiser1,2, Kostas Bourtzis3 and Givemore Munhenga1,2* Abstract The feasibility of the sterile insect technique (SIT) as a malaria vector control strategy against Anopheles arabiensis has been under investigation over the past decade. One of the critical steps required for the application of this technique to mosquito control is the availability of an efficient and effective sex-separation system. Sex-separation systems eliminate female mosquitoes from the production line prior to irradiation and field release of sterile males. This is necessary because female mosquitoes can transmit pathogens such as malaria and, therefore, their release must be prevented. Sex separation also increases the efficiency of an SIT programme. Various sex-separation strategies have been explored including the exploitation of developmental and behavioural differences between male and female mosquitoes, and genetic approaches. Most of these are however species-specific and are not indicated for the major African malaria vectors such as An. arabiensis. As there is currently no reliable sex-separation method for An. arabiensis, various strategies were explored in an attempt to develop a robust system that can be applied on a mass- rearing scale. The progress and challenges faced during the development of a sexing system for future pilot and/or large-scale SIT release programmes against An. -
SIT) and Related Genetic and Biological Control Methods for Disease Transmitting Mosquitoes
Thematic Plan for the Development and Application of the Sterile Insect Technique (SIT) and Related Genetic and Biological Control Methods for Disease Transmitting Mosquitoes Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 The proper citation for this document is: FAO/IAEA. 2019. Thematic Plan for the Development and Application of the Sterile Insect Technique (SIT) and Related Genetic and Biological Control Methods for Disease Transmitting Mosquitoes, Vienna, Austria. 93 pp. 2 INDEX Executive Summary 7 1. Statement of the Problem 10 1.1 Diseases transmitted by Anopheles mosquitoes 10 1.1.1 Malaria 10 Key Facts about Malaria 10 Clinical manifestations 11 Transmission dynamics 11 Disease mortality and morbidity, and distribution 12 1.2.1 Major vectors 16 Aedes aegypti 16 Aedes albopictus 16 Distribution of vectors and their pathogens 17 1.2.2 Dengue 18 Key facts about dengue 18 Clinical manifestations 19 Transmission dynamics 20 Disease mortality and morbidity, and distribution 20 1.2.3 Chikungunya 21 Key facts about chikungunya 21 Clinical manifestations 21 Transmission dynamics 22 Disease mortality and morbidity, and distribution (Figure 4C) 22 1.2.4 Yellow Fever 23 Key facts about yellow fever 23 Clinical manifestations 23 Transmission dynamics 24 Disease mortality and morbidity, and distribution 25 1.2.5 Zika 25 Key facts about Zika 25 Clinical manifestations 25 Transmission dynamics 26 3 Disease mortality and morbidity, and distribution 26 1.3 Other vectors, and diseases that they transmit 27 1.3.1 Culex mosquitoes 27 1.3.2. Other Vectors and Pathogens 27 2. Current control practices 28 2.1 Current control methods for Anopheles vectors 28 2.1.1 Bed nets 28 2.1.2 Indoor Residual Spraying ‐ IRS 28 2.1.3 Larval source management 29 2.2 Current control methods for Aedes vectors 30 2.2.1 Larval control 30 2.2.2 Methods for the control of adults 32 3. -
TPPT Membership and Contact Information
International Plant Protection Convention (Last update 2019-06-11) TPPT Membership and contact information TECHNICAL PANEL ON PHYTOSANITARY TREATMENTS (TPPT) MEMBERSHIP AND CONTACT INFORMATION Participant role Name, mailing, address, telephone Email address Term begins Term ends & Expertise Steward Mr David OPATOWSKI [email protected]; Head, Plant Biosecurity, [email protected]; Plant Protection and Inspection Services (PPIS), P.O.Box 78,Bet Dagan, 50250 ISRAEL Tel: 972-(0)3-9681518 Mob.: 972-(0)506-241885 Fax: 972-(0)3-9681571 Member Mr Michael ORMSBY [email protected]; May 2010 2020 Chemical Senior AdviserManager, – Plants & Pathways (1st term) Biosecurity Science & Plant Risk Analysis Fumigation May 2015 Ministry for Primary Industries Temperature P.O Box 2526, (2nd term) Modified Wellington, 6011 atmosphere NEW ZEALAND Tel: +64 4 894 0486 Member Mr Eduardo WILLINK [email protected]; May 2010 2020 Fumigation Estación Experimental Agroindustrial Obispo [email protected]; (1st term) Colombres, Temperature May 2015 P.O.Box 9, Las Talitas (4101) (2nd term) Tucumán ARGENTINA Tel: +54 381-4521010 +54-381 154692512 Member Mr Scott MYERS [email protected]; May 2018 2023 Fumigation USDA APHIS (2nd term) 1398 W Truck Rd., Buzzards Bay, MA, Temperature USA Tel: 508-563-0959 Member Mr Matthew SMYTH [email protected]; May 2019 2024 Irradiation Australian Department of Agriculture & Water (2nd term) Resources Fumigation 7 London Circuit, Canberra ACT 2601 Temperature AUSTRALIA Tel: +61 2 6272 5662 Member -
The Impact of Releasing Sterile Mosquitoes on Malaria Transmission
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2018113 DYNAMICAL SYSTEMS SERIES B Volume 23, Number 9, November 2018 pp. 3837{3853 THE IMPACT OF RELEASING STERILE MOSQUITOES ON MALARIA TRANSMISSION Hongyan Yin School of Mathematics and Statistics Central China Normal University Wuhan 430079, China School of Mathematics and Statistics South-Central University for Nationalities Wuhan 430074, China Cuihong Yang∗ and Xin'an Zhang School of Mathematics and Statistics Central China Normal University Wuhan 430079, China Jia Li Department of Mathematical Science University of Alabama in Huntsville Huntsville AL 35899, USA (Communicated by Yuan Lou) Abstract. The sterile mosquitoes technique in which sterile mosquitoes are released to reduce or eradicate the wild mosquito population has been used in preventing the malaria transmission. To study the impact of releasing sterile mosquitoes on the malaria transmission, we first formulate a simple SEIR (susceptible-exposed-infected-recovered) malaria transmission model as our baseline model, derive a formula for the reproductive number of infection, and determine the existence of endemic equilibria. We then include sterile mosquitoes in the baseline model and consider the case of constant releases of sterile mosquitoes. We examine how the releases affect the reproductive numbers and endemic equilibria for the model with interactive mosquitoes and investigate the impact of releasing sterile mosquitoes on the malaria transmis- sion. 1. Introduction. Mosquito-borne diseases, such as malaria, transmitted between humans by mosquitoes, are big concerns for the public health. Malaria is the fifth cause of death from infectious diseases worldwide (after respiratory infections, HIV/AIDS, diarrheal diseases, and tuberculosis), and the second leading cause of death from infectious diseases in Africa after HIV/AIDS. -
Sterile Insect Technique (SIT) Against Aedes Species Mosquitoes: a Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials
insects Review Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials Clélia F. Oliva 1,2 , Mark Q. Benedict 3, C Matilda Collins 4 , Thierry Baldet 5, Romeo Bellini 6 , Hervé Bossin 7, Jérémy Bouyer 5,8 , Vincent Corbel 9, Luca Facchinelli 10 , Florence Fouque 11, Martin Geier 12, Antonios Michaelakis 13 , David Roiz 9 , Frédéric Simard 9, Carlos Tur 14 and Louis-Clément Gouagna 9,* 1 Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Centre Opérationnel de Balandran, 751 Chemin de Balandran, 30127 Bellegarde, France; clelia.oliva@ctifl.fr 2 Collectif TIS (Technique de l’Insecte Stérile), 751 Chemin de Balandran, 30127 Bellegarde, France 3 Mosquito Hunters, 620 Peachtree St, Atlanta, GA 30308, USA; [email protected] 4 Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK; [email protected] 5 ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), Cirad, Univ. Montpellier, 34398 Montpellier, France; [email protected] (T.B.); [email protected] (J.B.) 6 Centro Agricoltura Ambiente “Giorgio Nicoli”, S.r.l. Via Sant’Agata, 835, 40014 Crevalcore, Italy; [email protected] 7 Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia; [email protected] 8 Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria Citation: Oliva, C.F.; Benedict, M.Q.; 9 UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), Collins, CM.; Baldet, T.; Bellini, R.; IRD-CNRS-Univ. Montpellier, 34394 Montpellier, France; [email protected] (V.C.); [email protected] (D.R.); Bossin, H.; Bouyer, J.; Corbel, V.; [email protected] (F.S.) Facchinelli, L.; Fouque, F.; et al. -
Contents to Our Readers
http://www-naweb.iaea.org/nafa/index.html http://www.fao.org/agriculture/fao-iaea-nuclear-techniques/en/ No. 93, July 2019 Contents To Our Readers 1 Coordinated Research Projects 20 Other News 33 Staff 3 Developments at the Insect Pest Relevant Published Articles 36 Control Laboratory 22 Forthcoming Events 2019–2020 4 Papers in Peer Reports 29 Reviewed Journals 37 Past Events 2019 6 Announcements 30 Other Publications 43 Technical Cooperation Projects 7 To Our Readers The new fruit fly mass-rearing facility in Mauritius, finalized in May 2019, with the capacity to produce 15 million flies per week. The immediate plan is to simultaneously produce three fruit fly species (Bactrocera dorsalis, Bactrocera zonata and Zeugodacus cucurbitae). Insect Pest Control Newsletter, No. 93, July 2019 Fruit flies cause large losses to fruits and vegetables in We would like to announce that we have just published the Mauritius. The most economically important fruit fly spe- ‘Sterile Insect Release Density Calculations Spreadsheet’. cies attacking fruits are, in order of importance, Bactrocera The Spreadsheet is a valuable tool for the optimizing of dorsalis (recently introduced), B. zonata, Ceratitis rosa and fruit fly sterile insect release programmes. It was developed C. capitata. Preferred cultivated hosts include mango, gua- by colleagues from the Moscamed Regional Program and va, citrus, peach and loquat while the most heavily attacked the USDA-APHIS office in Guatemala. The spreadsheet wild fruit is the Indian almond. Fruit flies like Zeugodacus could be used for pests other than fruit flies, since the same cucurbitae, Dacus ciliatus and D. demmerezi also attack principles apply. -
Guide for Establishing and Maintaining Pest Free Areas
JUNE 2019 ENG Capacity Development Guide for Establishing and Maintaining Pest Free Areas Understanding the principal requirements for pest free areas, pest free places of production, pest free production sites and areas of low pest prevalence JUNE 2019 Capacity Development Guide for Establishing and Maintaining Pest Free Areas Understanding the principal requirements for pest free areas, pest free places of production, pest free production sites and areas of low pest prevalence Required citation: FAO. 2019. Guide for establishing and maintaining pest free areas. Rome. Published by FAO on behalf of the Secretariat of the International Plant Protection Convention (IPPC). The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material in the map(s) do not imply the expression of any opinion whatsoever on the part of FAO concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
On the Use of the Sterile Insect Technique Or the Incompatible
On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations Martin Strugarek, Herve Bossin, Yves Dumont To cite this version: Martin Strugarek, Herve Bossin, Yves Dumont. On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations. 2018. hal-01799954 HAL Id: hal-01799954 https://hal.archives-ouvertes.fr/hal-01799954 Preprint submitted on 25 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations Martin Strugarek1,2, Hervé Bossin3, and Yves Dumont4,5,6 1 AgroParisTech, 16 rue Claude Bernard, 75231 Paris Cedex 05 - France 2 Sorbonne Université, Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire Jacques-Louis Lions, équipe Mamba, F-75005 Paris 3 Institut Louis Malardé, Unit of Emerging Infectious Diseases, Papeete 98713, Tahiti, French Polynesia 4 CIRAD, Umr AMAP, Pretoria, South Africa 5 AMAP, Univ Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France 6University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa May 25, 2018 Abstract Vector control is critical to limit the circulation of vector-borne diseases like chikungunya, dengue or zika which have become important issues around the world. -
Effect of Irradiation on the Survival and Susceptibility of Female Anopheles Arabiensis To
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.27.919530; this version posted January 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effect of irradiation on the survival and susceptibility of female Anopheles arabiensis to 2 natural isolates of Plasmodium falciparum 3 4 Edwige Guissou1,2,3,4*, Serge Poda1,2,3, François de Sales Domombabele Hien1,3, Serge 5 Rakiswende Yerbanga1,3, Dari Frédéric Yannick Da1,3, Anna Cohuet2,3, Florence Fournet2,3, 6 Olivier Roux2,3, Hamidou Maiga1, Abdoulaye Diabaté1,3, Jeremie Gilles5, Jérémy Bouyer5, 7 Anicet G. Ouédraogo4, Jean-Baptiste Rayaissé3,6, Thierry Lefèvre1,2,3,7 †, Kounbobr Roch 8 Dabiré1,3 † 9 10 1 Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. 11 2 MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France. 12 3 Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina 13 Faso. 14 4 Université Nazi Boni, Bobo Dioulasso, Burkina Faso. 15 5 Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food 16 and Agriculture, Vienna, Austria. 17 6 Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo- 18 Dioulasso, Burkina Faso. 19 7 Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France 20 21 22 * Corresponding author: [email protected] 23 † contributed equally to this work bioRxiv preprint doi: https://doi.org/10.1101/2020.01.27.919530; this version posted January 30, 2020. -
Modelling Sterile Insect Technique to Control the Population of Anopheles Gambiae James E Gentile1*, Samuel SC Rund2 and Gregory R Madey1
Gentile et al. Malaria Journal (2015) 14:92 DOI 10.1186/s12936-015-0587-5 RESEARCH Open Access Modelling sterile insect technique to control the population of Anopheles gambiae James E Gentile1*, Samuel SC Rund2 and Gregory R Madey1 Abstract Background: There is a renewed effort to develop novel malaria control strategies as even well-implemented existing malaria control tools may fail to block transmission in some regions. Currently, transgenic implementations of the sterile insect technique (SIT) such as the release of insects with a dominant lethal, homing endonuclease genes, or flightless mosquitoes are in development. These implementations involve the release of transgenic male mosquitoes whose matings with wild females produce either no viable offspring or no female offspring. As these technologies are all in their infancy, little is known about the relative efficiencies of the various implementations. Methods: This paper describes agent-based modelling of emerging and theoretical implementations of transgenic SIT in Anopheles gambiae for the control of malaria. It reports on female suppression as it is affected by the SIT implementation, the number of released males, and competitiveness of released males. Conclusions: The simulation experiments suggest that a late-acting bisex lethal gene is the most efficient of the four implementations we simulated. They demonstrate 1) the relative impact of release size on a campaign’s effectiveness 2) late-acting genes are preferred because of their ability to exploit density dependent larval mortality 3) late-acting bisex lethal genes achieve elimination before their female-killing counterparts. Keywords: Agent-based modelling, SIT, Release of insects with a dominant lethal gene (RIDL) Introduction mass release of males sterilized through radiological or Mosquito-borne illnesses including dengue fever, lym- chemical means. -
Sterile Insect Response
New World Screwworm Ready Reference Guide―Sterile Insect Response New World Screwworm Overview New World screwworms (NWS), Cochliomyia hominivorax, are fly larvae (maggots) that infest living tissue of warm-blooded animals, causing a condition known as myiasis. Female NWS flies lay their eggs at the edges of wounds or on mucous membranes. The eggs hatch into larvae, burrow into the tissue, and continue to feed and grow. Infestations of NWS can be fatal if untreated. NWS is currently known to exist in parts of every country in South America except Chile, and in five countries in the Caribbean— Cuba, Jamaica, Haiti, the Dominican Republic, and Trinidad and Tobago. Eradication programs have been conducted in the United States, Mexico, Puerto Rico, the Virgin Islands, Curaçao (Netherlands Antilles), and all of Central America (except for the southern most part of Panama, known as the Darien Gap, that borders with Colombia and NWS endemic regions). For more information on NWS see the following Foreign Animal Disease Preparedness and Response Plan (FAD PReP) documents: Disease Response Strategy: New World Screwworm Myiasis Ready Reference Guide: New World Screwworm Maps & Timelines Ready Reference Guide: New World Screwworm Economic Impact. Sterile Insect Technique―History Sterile Insect Technique (SIT) employs the irradiation of -5 to 6-day-old NWS pupae with gamma radiation to create sterile NWS files. When mass produced, the release of these sterile flies results in sterile male flies mating with wild female flies which then lay unfertilized eggs. Since female NWS flies normally mate only once, the population of NWS is progressively reduced and, ultimately, eradicated.