Functions of the Mirror Neuron System: Implications for Neurorehabilitation Giovanni Buccino, MD, Phd,* Ana Solodkin, Phd,W and Steven L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mirror Neuron System and Social Cognition Spring Quarter 2017 Tuth 11:00 - 12:20 Pm CSB 005
Department of Cognitive Science 0515 University of California, San Diego (858) 534-6771 La Jolla, CA 92093 COGS171: Mirror Neuron System and Social Cognition Spring Quarter 2017 TuTH 11:00 - 12:20 pm CSB 005 Instructor: J. A. Pineda, Ph.D. TA: TBN [email protected] Phone: 858-534-9754 SeCtion: F 9-9:50 am CSB 005 OffiCe Hours: M 9-11 am, CSB 107 (or by appointment) This class will examine the neuroanatomy, physiology, and funCtional Correlates of the human mirror neuron system and its putative role in soCial Cognition, e.g., aCtion understanding, empathy, and theory of mind. We will examine the developmental, neuroimaging, electrophysiologiCal, as well as clinical evidence for and against this hypothesis. All students will: 1. Write a CritiCal review or “thought” essay (no longer than 1 page) on the weeks labeled with an asterisk (Weeks 2,3,4,6,8,10) based on one of the required readings that week. See Class website (or ask instruCtor) for a sample of a CritiCal review. Essays are due on Tuesday of the assigned week - for a total of 6 essays, although only 5 will count towards grade (25%). 2. You will also be responsible for: • a term paper due at end of class (8-10 pages) on an issue relevant to mirroring and social cognition. You will work on this as a group of 3-4 students. See Class website for instruCtions on structure of proposal. (15%) • an oral presentation of the term paper (10-15 minutes). (10%) 3. Take the midterm (25%) and final (25%). -
The Mirror Neuron System: How Cognitive Functions Emerge from Motor Organization Leonardo Fogassi
The mirror neuron system: How cognitive functions emerge from motor organization Leonardo Fogassi To cite this version: Leonardo Fogassi. The mirror neuron system: How cognitive functions emerge from motor or- ganization. Journal of Economic Behavior and Organization, Elsevier, 2010, 77 (1), pp.66. 10.1016/j.jebo.2010.04.009. hal-00921186 HAL Id: hal-00921186 https://hal.archives-ouvertes.fr/hal-00921186 Submitted on 20 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: The mirror neuron system: How cognitive functions emerge from motor organization Author: Leonardo Fogassi PII: S0167-2681(10)00177-0 DOI: doi:10.1016/j.jebo.2010.04.009 Reference: JEBO 2604 To appear in: Journal of Economic Behavior & Organization Received date: 26-7-2009 Revised date: 19-4-2010 Accepted date: 20-4-2010 Please cite this article as: Fogassi, L., The mirror neuron system: How cognitive functions emerge from motor organization, Journal of Economic Behavior and Organization (2010), doi:10.1016/j.jebo.2010.04.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. -
Empathy, Mirror Neurons and SYNC
Mind Soc (2016) 15:1–25 DOI 10.1007/s11299-014-0160-x Empathy, mirror neurons and SYNC Ryszard Praszkier Received: 5 March 2014 / Accepted: 25 November 2014 / Published online: 14 December 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract This article explains how people synchronize their thoughts through empathetic relationships and points out the elementary neuronal mechanisms orchestrating this process. The many dimensions of empathy are discussed, as is the manner by which empathy affects health and disorders. A case study of teaching children empathy, with positive results, is presented. Mirror neurons, the recently discovered mechanism underlying empathy, are characterized, followed by a theory of brain-to-brain coupling. This neuro-tuning, seen as a kind of synchronization (SYNC) between brains and between individuals, takes various forms, including frequency aspects of language use and the understanding that develops regardless of the difference in spoken tongues. Going beyond individual- to-individual empathy and SYNC, the article explores the phenomenon of syn- chronization in groups and points out how synchronization increases group cooperation and performance. Keywords Empathy Á Mirror neurons Á Synchronization Á Social SYNC Á Embodied simulation Á Neuro-synchronization 1 Introduction We sometimes feel as if we just resonate with something or someone, and this feeling seems far beyond mere intellectual cognition. It happens in various situations, for example while watching a movie or connecting with people or groups. What is the mechanism of this ‘‘resonance’’? Let’s take the example of watching and feeling a film, as movies can affect us deeply, far more than we might realize at the time. -
Neurological Principles and Rehabilitation of Action Disorders: Rehabilitation Interventions
Neurorehabilitation and Neural Repair Neurological Principles and Supplement to 25(5) 33$--435 ©TheAuthor(s) 2011 Reprints and permission: http://W'NW. Rehabilitation of Action Disorders: sagepub.com/journalsPermissions.nav DOl: 10.1 1771154596831 1410942 Rehabilitation Interventions http://nnr.sagepub.com ®SAGE I 3 Valerie Pomeroy, PhD , Salvatore M. Aglioti, MD\ VictorW. Mark, MD , 4 6 Dennis McFarland, PhD , Cathy Stinear, PhD\ Steven L. Wolf, PhD , 7 7 Maurizio Corbetta, MD , and Susan M. Fitzpatrick, PhD ,8 This third chapter discusses the evidence for the rehabilitation of the most common movement disorders of the upper extremity. The authors also present a framework, building on the computation, anatomy, and physiology (CAP) model, for incorporating some of the principles discussed in the 2 previous chapters by Frey et al and Sathian et al in the practice of rehabilitation and for discussing potentially helpful interventions based on emergent neuroscience principles. Introduction General Principles for Delivery of Therapy Interventions Much of the evidence-based body of knowledge informing upper-limb rehabilitation has been generated from research Delivery of therapy interventions is multifaceted, and certain with patients recovering from stroke. It is not srnprising, general principles should be considered in each patient: given the number of affected individuals worldwide, that stroke would serve as the dominant model. However, many 1, The establishment of a 'contract' between people principles informing neurorehabilitation interventions can with neurological deficits and their therapy team. be translated from stroke into interventions for other neuro 2. Analysis of behavioral deficits in relation to known logical conditions when appropriate. principles of brain organization. -
Occupational Therapy Consensus Recommendations for Functional Neurological Disorder
Occasional essay J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-322281 on 30 July 2020. Downloaded from Occupational therapy consensus recommendations for functional neurological disorder Clare Nicholson ,1 Mark J Edwards,2 Alan J Carson,3 Paula Gardiner,4 Dawn Golder,5 Kate Hayward,1 Susan Humblestone,6 Helen Jinadu,7 Carrie Lumsden,8 Julie MacLean,9 Lynne Main,10 Lindsey Macgregor,11 Glenn Nielsen,2 Louise Oakley,12 Jason Price,13 Jessica Ranford,9 Jasbir Ranu,1 Ed Sum,14 Jon Stone 3 ► Additional material is ABSTRact jerks and dystonia), sensory symptoms, cognitive published online only. To view Background People with functional neurological deficits and seizure-like events (commonly known please visit the journal online as dissociative seizures or non- epileptic seizures). (http:// dx. doi. org/ 10. 1136/ disorder (FND) are commonly seen by occupational jnnp- 2019- 322281). therapists; however, there are limited descriptions in the Fatigue and persistent pain are also commonly literature about the type of interventions that are likely experienced as part of the disorder. Symptoms For numbered affiliations see to be helpful. This document aims to address this issue by can present acutely and resolve quickly or can be end of article. providing consensus recommendations for occupational long lasting. Regardless of duration, those affected therapy assessment and intervention. frequently experience high levels of distress, Correspondence to Methods The recommendations were developed in four disability, unemployment, social care utilisation and Mrs Clare Nicholson, Therapy 2 Services, University College stages. Stage 1: an invitation was sent to occupational reduced quality of life. The stigma associated with London Hospitals NHS therapists with expertise in FND in different countries to FND contributes to the burden of the diagnosis.3 Foundation Trust National complete two surveys exploring their opinions regarding OT is generally recognised as an integral part Hospital for Neurology and best practice for assessment and interventions for FND. -
1 the Development of Empathy: How, When, and Why Nicole M. Mcdonald & Daniel S. Messinger University of Miami Department Of
1 The Development of Empathy: How, When, and Why Nicole M. McDonald & Daniel S. Messinger University of Miami Department of Psychology 5665 Ponce de Leon Dr. Coral Gables, FL 33146, USA 2 Empathy is a potential psychological motivator for helping others in distress. Empathy can be defined as the ability to feel or imagine another person’s emotional experience. The ability to empathize is an important part of social and emotional development, affecting an individual’s behavior toward others and the quality of social relationships. In this chapter, we begin by describing the development of empathy in children as they move toward becoming empathic adults. We then discuss biological and environmental processes that facilitate the development of empathy. Next, we discuss important social outcomes associated with empathic ability. Finally, we describe atypical empathy development, exploring the disorders of autism and psychopathy in an attempt to learn about the consequences of not having an intact ability to empathize. Development of Empathy in Children Early theorists suggested that young children were too egocentric or otherwise not cognitively able to experience empathy (Freud 1958; Piaget 1965). However, a multitude of studies have provided evidence that very young children are, in fact, capable of displaying a variety of rather sophisticated empathy related behaviors (Zahn-Waxler et al. 1979; Zahn-Waxler et al. 1992a; Zahn-Waxler et al. 1992b). Measuring constructs such as empathy in very young children does involve special challenges because of their limited verbal expressiveness. Nevertheless, young children also present a special opportunity to measure constructs such as empathy behaviorally, with less interference from concepts such as social desirability or skepticism. -
Mirror Neurons and Their Reflections
Open Access Library Journal Mirror Neurons and Their Reflections Mehmet Tugrul Cabioglu1, Sevgin Ozlem Iseri2 1Department of Physiology, Faculty of Medicine, Baskent University, Ankara, Turkey 2Department of Clinical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey Received 23 October 2015; accepted 7 November 2015; published 12 November 2015 Copyright © 2015 by authors and OALib. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Human mirror neuron system is believed to provide the basic mechanism for social cognition. Mirror neurons were first discovered in 1990s in the premotor area (F5) of macaque monkeys. Besides the premotor area, mirror neuron systems, having different functions depending on their locations, are found in various cortical areas. In addition, the importance of cingulate cortex in mother-infant relationship is clearly emphasized in the literature. Functional magnetic resonance imaging, electroencephalography, transcortical magnetic stimulation are the modalities used to evaluate the, activity of mirror neurons; for instance, mu wave suppression in electroencephalo- graphy recordings is considered as an evidence of mirror neuron activity. Mirror neurons have very important functions such as language processing, comprehension, learning, social interaction and empathy. For example, autistic individuals have less mirror neuron activity; therefore, it is thought that they have less ability of empathy. Responses of mirror neurons to object-directed and non-object directed actions are different and non-object directed action is required for the activa- tion of mirror neurons. Previous researchers find significantly more suppression during the ob- servation of object-directed movements as compared to mimed actions. -
Visual Recognition of Words Learned with Gestures Induces Motor
www.nature.com/scientificreports OPEN Visual recognition of words learned with gestures induces motor resonance in the forearm muscles Claudia Repetto1*, Brian Mathias2,3, Otto Weichselbaum4 & Manuela Macedonia4,5,6 According to theories of Embodied Cognition, memory for words is related to sensorimotor experiences collected during learning. At a neural level, words encoded with self-performed gestures are represented in distributed sensorimotor networks that resonate during word recognition. Here, we ask whether muscles involved in gesture execution also resonate during word recognition. Native German speakers encoded words by reading them (baseline condition) or by reading them in tandem with picture observation, gesture observation, or gesture observation and execution. Surface electromyogram (EMG) activity from both arms was recorded during the word recognition task and responses were detected using eye-tracking. The recognition of words encoded with self-performed gestures coincided with an increase in arm muscle EMG activity compared to the recognition of words learned under other conditions. This fnding suggests that sensorimotor networks resonate into the periphery and provides new evidence for a strongly embodied view of recognition memory. Traditional perspectives in cognitive science describe human behaviour as mediated by cognitive representations1. Such representations have been defned as mental structures that encode, store and process information arising from sensory-motor systems 2. According to these perspectives, information provided to perceptual systems about the environment is incomplete. As a result, the brain has the essential role of transforming this information into cognitive representations, which enable rapid and accurate behaviours. In recent years, embodied approaches have claimed that perception, action and the environment jointly contribute to cognitive processes3,4, highlighting a change in our understanding of the role of the body in cognition. -
Social Cognition and the Mirror Neuron System of the Brain
Motivating Questions Social Cognition and the Mirror How do our brains perceive the Neuron System of the Brain mental states of others despite their inaccessibility? How do we understand the actions, emotions and the intentions of others? Rationally? Intuitively? Jaime A. Pineda, Ph.D. Cognitive Neuroscience Laboratory How do we understand first- COGS1 class and third-person experiences? Classic Explanation A Different Perspective Theory-Theory (argument from analogy; disembodied Simulation Theory knowledge; visual hypothesis) (Direct-matching hypothesis; embodied knowledge) Map visual information onto Involves striate, extrastriate, motor representations of the inferotemporal lobe and same action superior temporal sulcus, among others Mirroring systems bridges between perception and action that allow for simulation Mirror neurons EEG Mu rhythms A Different Perspective The Mirror Neuron System Simulation Theory (Direct-matching hypothesis; embodied knowledge) Map visual information onto motor representations of the same action Mirroring systems bridges between perception and action that allow for simulation Mirror neurons EEG Mu rhythms Iacoboni and Dapretto, Nature Reviews, 2006,7:942-951 1 Biological Motion Biological Motion Perception: Monkeys Visual system's ability to Gender recover object information Activity engaged in Perret and colleagues from sparse input Emotional state (1989; 1990; 1994) Cells in superior temporal polysensory area (STPa) of the macaque temporal cortex appear sensitive to biological motion Oram & Perrett, J. Cog. Neurosci., 1994, 6(2), 99-116 Biological Motion Perception: Humans Brain Circuit for Social Perception (SP) An area in the superior • SP is processing of temporal sulcus (STS) in information that results in humans responds to the accurate analysis of biological motion the intentions of others • STS involved in the Other areas do as well, processing of a variety of including frontal cortex, social signals SMA, insula, thalamus, amygdala Grossman et al. -
The Role of Spasticity in Functional Neurorehabilitation- Part I: The
Research article iMedPub Journals ARCHIVES OF MEDICINE 2016 http://www.imedpub.com/ Vol.8 No.3:7 ISSN 1989-5216 The Role of Spasticity in Functional Neurorehabilitation- Part I: The Pathophysiology of Spasticity, the Relationship with the Neuroplasticity, Spinal Shock and Clinical Signs Angela Martins* Department of Veterinary Science, Lusophone University of Humanities and Technology, Hospital Veterinário da Arrábida, Portugal *Corresponding author: Angela Martins, Department of Veterinary Science, Lusophone University of Humanities and Technology, Hospital Veterinário da Arrábida, Portugal, Tel: 212181441; E-mail: [email protected] Rec date: Feb 29, 2016; Acc date: Apr 05, 2016; Pub date: April 12, 2016 Copyright: © 2016 Martins A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Martins A. The Role of Spasticity in Functional Neurorehabilitation- Part I: The Pathophysiology of Spasticity, the Relationship with the Neuroplasticity, Spinal Shock and Clinical Signs. Arch Med. 2016, 8:3 the quadrupeds spinal cord injuries are predominantly thoraco-lumbar [6] due to the discontinuity of the intercapital Abstract ligament [6], the clinical sign of spasticity is frequently addressed in functional neurorehabilitation (FNR) [7-9]. The symptom/clinical sign of spasticity is extremely Spasticity both on the biped and quadruped usually develops important in functional neurorehabilitation, since it in the antigravity muscles. reduces the functional independence both in the quadruped animal as in the human biped. In the human biped, spasticity appears in the upper- extremity flexor muscles as result of a stroke, whereas an This clinical sign/symptom manifests itself alonside with excessive muscle spasm is in the lower extremity extensor pain, muscle weakness, impaired coordination and poor muscles is secondary to SCI. -
EEG Evidence for Mirror Neuron Activity During the Observation of Human and Robot Actions: Toward an Analysis of the Human Qualities of Interactive Robots
ARTICLE IN PRESS Neurocomputing 70 (2007) 2194–2203 www.elsevier.com/locate/neucom EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots Lindsay M. Obermana,b,Ã, Joseph P. McCleeryb, Vilayanur S. Ramachandrana,b,c, Jaime A. Pinedac,d aCenter for Brain and Cognition, UC San Diego, La Jolla, CA 92093-0109, USA bDepartment of Psychology, UC San Diego, La Jolla, CA 92093-0109, USA cDepartment of Neurosciences, UC San Diego, La Jolla, CA 92093-0662, USA dDepartment of Cognitive Science, UC San Diego, La Jolla, CA 92093-0515, USA Received 4 February 2005; received in revised form 17 January 2006; accepted 1 February 2006 Available online 2 January 2007 Abstract The current study investigated the properties of stimuli that lead to the activation of the human mirror neuron system, with an emphasis on those that are critically relevant for the perception of humanoid robots. Results suggest that robot actions, even those without objects, may activate the human mirror neuron system. Additionally, both volitional and nonvolitional human actions also appear to activate the mirror neuron system to relatively the same degree. Results from the current studies leave open the opportunity to use mirror neuron activation as a ‘Turing test’ for the development of truly humanoid robots. r 2007 Elsevier B.V. All rights reserved. Keywords: Mirror neuron; Humanoid; Anthropomorphic; Robot; Volition; Action observation; Social interaction 1. Introduction observation/execution network known as the ‘mirror neuron’ system. A great deal of robotics research has recently investi- Single unit studies indicate that neurons in area F5 of the gated issues surrounding the creation of robots that are macaque premotor cortex, which are indistinguishable able to socially interact with humans and other robots from neighboring neurons in terms of their motor proper- [7,8,36]. -
Mirror Neuron System Could Result in Some of the Symptoms of Autism
Broken Mirrors: A Theory of Autism Scienctific American - October 16, 2006 By Vilayanur S. Ramachandran and Lindsay M. Oberman At first glance you might not notice anything odd on meeting a young boy with autism. But if you try to talk to him, it will quickly become obvious that something is seriously wrong. He may not make eye contact with you; instead he may avoid your gaze and fidget, rock his body to and fro, or bang his head against the wall. More disconcerting, he may not be able to conduct anything remotely resembling a normal conversation. Even though he can experience emotions such as fear, rage and pleasure, he may lack genuine empathy for other people and be oblivious to subtle social cues that most children would pick up effortlessly. In the 1940s two physicians--American psychiatrist Leo Kanner and Austrian pediatrician Hans Asperger-- independently discovered this developmental disorder, which afflicts about 0.5 percent of American children. Neither researcher had any knowledge of the other's work, and yet by an uncanny coincidence each gave the syndrome the same name: autism, which derives from the Greek word autos, meaning "self." The name is apt, because the most conspicuous feature of the disorder is a withdrawal from social interaction. More recently, doctors have adopted the term "autism spectrum disorder" to make it clear that the illness has many related variants that range widely in severity but share some characteristic symptoms. Ever since autism was identified, researchers have struggled to determine what causes it. Scientists know that susceptibility to autism is inherited, although environmental risk factors also seem to play a role [see "The Early Origins of Autism," by Patricia M.