Ralph L. Mcnutt, Jr

Total Page:16

File Type:pdf, Size:1020Kb

Ralph L. Mcnutt, Jr Ralph L. McNutt, Jr. The John Hopkins University Applied Physics Laboratory, USA ISSI – BJ Forum: Session 1 Introduction and Exploration of Outer Overview Heliosphere and Interstellar 9:40 AM – 10:10 AM Medium - Beijing, China Thursday 7 November 2019 Introduction and Agenda • Context: The Current Effort • History: What Interstellar Probe Is • Science: The Compelling Case - Science Goal 1: Understand our Heliosphere as a Habitable Astrosphere - Science Goal 2: Understand Formation and Evolution of Planetary Systems - Science Goal 3: Uncover Early Galaxy and Star Formation • An Example Science Traceability Matrix • Example Instruments and Example Payload(s) • Where Could We Go: Target Map • Constraints and Trade-Offs • Mission Architecture Options and Engineering Requirements • “Deeper Dive” Tasks – Engineering Ramp Up • Final Thoughts 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 2 Study Team and Collaborators • R. L. McNutt, Jr (Study Principal Investigator) • P. C . B r a ndt (Study Project Scientist) • K. E. Mandt (Deputy Study Project Scientist) • M. V. Paul (Study Manager) • E. Provornikova (Working Group Lead – Heliosphere/Local Interstellar Medium) • C. Lisse (Working Group Lead – Circum-Solar Debris Disk/Astrophysics) • K. Runyon (Working Group Lead – Kuiper Belt Objects/Planetary) • A. Rymer (Working Group Lead - Exoplanetary Connections) And almost 200 professional scientists and engineers world-wide actively working in support for Interstellar Exploration 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 3 Status • Contract with NASA Heliophysics Division added funding 25 July 2019 • Period of performance extended to 30 April 2022 - Allows for final report to be delivered late Fall 2021 to help inform next Heliophysics Decadal Survey • Effort comparable to pre-phase A study effort at APL 2002– 2006 on Solar Probe - Focused on engineering design and trades as informed by cross- disciplinary science community 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 4 Meetings and Presentations (Recent) • Invited talk at AOGS meeting in Singapore 1 August 2019 - Session ST05 - From the Heliosphere to Interstellar Exploration • Invited talk NASA NASA STMD/SMD Workshop 10 September 2019 - Interstellar Medium Spacecraft Technology Workshop – Washington DC • Invited talk at Horizon 2061 meeting in Toulouse 11 September 2019 • Invited talks at EPSC – DPS Joint Meeting 17 September 2019 - Session MIT6 = Interstellar Probe: science, mission designs, opportunities and challenges • Talks at 70th IAC in Washington DC 24 October 2019 - Session 4.4 Strategies for Rapid Implementation of Interstellar Missions: Precursors and Beyond • Special Session at 70th IAC in Washington DC 25 October 2019 - Interstellar Probe: Humanity's First Deliberate Step into the Galaxy by 2030 • Invited Lecture in Oak Ridge, Tennessee 28 October 2019 - Talk, tour, and update on Pu-238 production status at Oak Ridge National Laboratory 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 5 Recent Publications Brandt et al (2019) McNutt et al (2019) 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 6 “Interstellar Probe” • … is a mission through the outer heliosphere and to the nearby “Very Local” interstellar medium (VLISM) • … uses today’s technology to taKe the first explicit step on the path of interstellar exploration (faster than the Voyagers – on an SLS or commercial equivalent) • … can pave the way, scientifically, technically, and programmatically for more ambitious future journeys (and more ambitious science goals) 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 7 Voyager 1 at 147 AU; 20.5 light hours from Earth To the VLISM: The Next Step Logarithmic scale We are here Earth: The “pale blue dot” Planets from 40.4 AU (from Voyager 1 in 1990) 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 8 Three “Special Probes”… One Beginning … and One To Go Parker Solar Parker Solar Probe: Probe 12 August 2018 3:31 a.m. EDT Interstellar ✓ March 1960: The “Simpson Probe Committee” Ulysses Ulysses: 6 October 1990 11:47:16 UTC ✓ (STS-41 launch) 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 9 The third one: Interstellar Probe - A 59-year(+) Old Idea • 1960: The Space Studies Board “Outer solar system probe: to be aimed away from the Sun…” • 1965: Eugene Parker advocates mission to heliospheric boundary region Deep Space Probe (1965) Jupiter Galactic Probe (1967) • 1977: Voyager-1 launch Pioneer 10/11 (1980) • 1990: The Interstellar Probe (Holzer et al., 1990) • 1999: JPL Study (NASA STDT) • 2001: NIAC Study, APL Voyager (1977) • 2005: Innovative Interstellar Explorer (McNutt et al., 2005) (“Vision Mission”) • 2009: The Interstellar Heliopause Mission (Wimmer-Schweingruber et al., New Horizons (2006) 2009) • 2015: Keck Institute of Space Studies (KISS) Report 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 10 Two Distinct Questions • What should we do? • The question for a future Science Definition Team or equivalent and the science community overall via Decadal Surveys • What could we do? • The question at hand for this study 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 11 The Current Study • The Johns Hopkins University Applied Physics Laboratory has been tasked by the NASA Heliophysics Division to (re-)study the mission (as of 13 June 2018) • Provide input to help support the next round of “Decadal Surveys” in the United States - Focus on the time frame in the next Heliophysics Decadal: 2023 – 2032: Could we launch a scientifically compelling mission that decade? – technical question but not without science implications 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 12 Notional “Starting Place” • The Task at hand: A Heliophysics engineering study informed by science • But… Look for possible synergies across the other Divisions within NASA’s Science Mission Directorate • Study Name: “First Pragmatic Interstellar Probe Mission Study” • Payload Mass: Within current payload-to-S/C-mass ratios • Technology: All technology shall be ready for flight by 1 January 2030 • These study requirements needed to conduct the engineering analysis. Think of this as the “parameter space” that we have chosen deliberately to make sure this is pragmatic 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 13 The Compelling Case: Questions Span NASA Science Divisions Heliophysics Potential for Science Goal 1: The HeliospherePlanetary as a Habitable Astrosphere expandedAs we Global Nature of the Heliospheric Interactions scienceseek acrossanswers all ofto Science Goal 2: Origin and Evolution of NASA’sthe Planetary Systems Science Properties of dwarf planets/KBOs and large-scale question structure of the circum-solar debris disk Mission Directorateof Science Goal 3: Early Formation and Evolution of GalaxiesAstrophysics and Stars habitability Uncovering the Diffuse Extragalactic Background Light 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 14 Science Goal 1: The Heliosphere as a Habitable Astrosphere • Integral to evolution of habitable systems Mira • Missing in the family portrait of Astrospheres BZ Cam • Dedicated measurements resolve LL Orionis the new physics uncovered by the Voyagers IRC+10216 • The first ENA and UV images looking back uniquely determines the global nature • Voyager, IBEX, Cassini, JUICE and IMAP guide Zeta Ophiuchi the optimal exit 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 15 Science Goal 2: Formation and Evolution of Planetary Systems Debris Disks: Signposts of terrestrial Dwarf Planets: Unexplored active worlds planet formation and evolution KBOs: Fossils of solar system formation and composition Eta Corvi – 1400 Myr Pluto • IR imaging reveals our unseen circum-solar debris disk • Flyby observations provide leaps in understanding solar system Charon Fomalhaut – 440 Myr Quaoar and Weywot 400 AU formation and Kuiper Belt comparative planetology • Ground truth for exoplanetary systems and disks 2014MU69 HL Tauri - < 1 Myr 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 16 Science Goal 3: Uncover Early Galaxy and Star Formation • Extragalactic Background Light (EBL) is all the light that has ever shined • Holds the collective knowledge of Obscured by Zodiacal Cloud early formation: (1) starlight in z = 20 z=2-5 galaxies - 2 – 5 galaxies,Z ~ 10 (2) galactic dust re-emission, and (3) the light from 100’s µm 100’s , Z, ~1100 - , Z = 6 6 Z = , Dust the first stars Myr Myrs • Uncover the EBL by going beyond Reionization ~0.38 1000 - the Zodiacal Cloud, which Diffuse EBL 1 EBL Diffuse obscures the 1-100 µm window 150 by 10 - 100x • EBL measurements provide Decadal-level cosmology science enabled by unique outside location 7 November 2019 ISSI-BJ Forum on EXPLORATION OF OUTER HELIOSPHERE AND NEARBY INTERSTELLAR MEDIUM 17 A “Menu” Approach • Look widely across the science and technical communities • Assemble a “Menu” of what has been done and what can
Recommended publications
  • Linking Stars, Planets and Debris Through Herschel Observations of Radial Velocity Exoplanet Host Stars
    Linking stars, planets and debris through Herschel observations of radial velocity exoplanet host stars Jonathan P. Marshall Universidad Autónoma de Madrid Introduction • Herschel observed 104 radial velocity exoplanet host stars, of which 30 also had detectable circumstellar discs (DEBRIS, DUNES, GT and SKARPS) • Given that we expect planets to form from the agglomeration of planetesimals, there should be some link between the two • Previous work with Spitzer identified no correlation between planets and debris (Moro-martin et al. 2007, Bryden et al. 2009) • Observational signatures of planets may be visible in the spatial distribution of dust discs around other stars Imaging exoplanets • We find exoplanets in systems with debris discs (Marois et al. 2008; Bonnefoy et al. 2011; Rameau et al. 2013) Multi-component discs • HIP 17439’s debris disc is potentially the result of two cold dust belts Ertel et al. 2014 Schueppler et al., subm. Dynamical interactions • e.g. Eta Corvi’s Spitzer IRS spectrum shows evidence for KBO material in inner system Matthews et al. 2010 Lisse et al. 2012 Perturbation • Stars hosting exoplanets with low orbital eccentricities show a weak tendency to have brighter discs • Planets with lower eorb are less disruptive to parent bodies in debris belts Maldonado et al. 2012 Eccentric discs • e.g. HIP 15371 • Asymmetric structure proposed to be the result of dynamical perturbation by a planetary companion . Similar evidence seen in other discs (in sub-mm) tends to be weak, potentially result of low s/n observation . Not necessarily a planet, as remnant gas could affect dust Faramaz et al. 2014 Coplanarity • Inclination of star, i*, and disc, id • Debris discs are generally seen to lie along the equatorial plane of the host star • Few exceptions, e.g.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Juno Spacecraft Description
    Juno Spacecraft Description By Bill Kurth 2012-06-01 Juno Spacecraft (ID=JNO) Description The majority of the text in this file was extracted from the Juno Mission Plan Document, S. Stephens, 29 March 2012. [JPL D-35556] Overview For most Juno experiments, data were collected by instruments on the spacecraft then relayed via the orbiter telemetry system to stations of the NASA Deep Space Network (DSN). Radio Science required the DSN for its data acquisition on the ground. The following sections provide an overview, first of the orbiter, then the science instruments, and finally the DSN ground system. Juno launched on 5 August 2011. The spacecraft uses a deltaV-EGA trajectory consisting of a two-part deep space maneuver on 30 August and 14 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 559 km. Jupiter arrival is on 5 July 2016 using two 53.5-day capture orbits prior to commencing operations for a 1.3-(Earth) year-long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar (90 degree inclination) with a periapsis altitude of 4200-8000 km and a semi-major axis of 23.4 RJ (Jovian radius) giving an orbital period of 13.965 days. The primary science is acquired for approximately 6 hours centered on each periapsis although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Juno is a spin-stabilized spacecraft equipped for 8 diverse science investigations plus a camera included for education and public outreach.
    [Show full text]
  • The Europa Clipper Mission: Investigating an Ocean World's Habitability
    PPS01-15 JpGU-AGU Joint Meeting 2020 The Europa Clipper Mission: Investigating an Ocean World's Habitability *Steven Douglas Vance1, Robert T Pappalardo1, David A Senske1, Haje Korth2, Kate Craft2, Sam Howell1, Rachel L Klima2, Erin J Leonard1, Cynthia B Phillips1, Christina Richey1 1. NASA Jet Propulsion Laboratory, California Institute of Technology, 2. The Johns Hopkins University Applied Physics Laboratory Europa is believed to have a liquid ocean beneath its icy shell, abundant physical energy, and drivers for chemical disequilibrium. The Europa Clipper mission will conduct multiple fly-bys of Europa while orbiting Jupiter, with the overarching goal to explore this moon to investigate its habitability. This goal encompasses three Mission Objectives: I. Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; II. Understand the habitability of Europa's ocean through composition and chemistry; and III. Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa Clipper addresses these with a capable payload of scientific instruments, plus gravity/radio and radiation science investigations. NASA selected a payload consisting of both remote-sensing and in-situ-observing instruments. The remote-sensing instruments observe the wavelength range from ultraviolet through radar, which are the Europa Ultraviolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa Thermal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The in-situ-measuring particle instruments comprise the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary Exploration (MASPEX), and the SUrface Dust Analyzer (SUDA).
    [Show full text]
  • Node Report for PDS MC Face-To-Face Meeting
    InSight and Mars 2020 Archive Status Ed Guinness, Ray Arvidson and Susie Slavney PDS Geosciences Node PDS Management Council St. Louis, Missouri April 22, 2015 InSight Archives Instrument Team Rep PDS Curator HP3 / RAD Heat Flow and Physical Matthias Grott, Troy Geosciences Properties Package / Hudson, Nils Mueller (DLR) (lead node) Radiometer SEIS Seismic Experiment for Philippe Lognonné (IPGP), Geosciences Investigating the Subsurface Renee Weber (MSFC) IDA Instrument Deployment Arm Ashitey Trebi-Ollennu, Geosciences Julie Costillo (JPL) IDC, ICC Instrument Deployment Justin Maki, Payam Imaging Camera, Instrument Context Zamani (JPL) Camera APSS / Auxiliary Payload Sensor Don Banfield (Cornell), Atmospheres TWINS Subsystem / Temperature Luis Mora (CAB) and Wind for InSight MAG Magnetometer Chris Russell (UCLA) PPI RISE Rotation and Interior Sami Asmar (JPL) Geosciences Structure Experiment SPICE NAIF NAIF The InSight DAWG is led by Sue Smrekar, Project Scientist, and Susie Slavney. It meets monthly. April 22, 2015 PDS Geosciences Node 2 InSight Archive Development Schedule Start End Task 7/23/2014 1/30/2015 Teams prepare first drafts of SISs, PDS labels 2/1/2015 3/31/2015 Teams prepare review-ready EDR SISs, sample products, PDS labels 5/1/2015 6/30/2015 PDS conducts EDR peer reviews 8/1/2015 EDR peer reviews are complete 8/18/2015 GDS 4.0 freeze 3/8/2016 Launch 9/20/2016 Landing • Camera archive schedule is different due to delay in instrument delivery. Peer reviews probably to occur in fall 2015. • The RDR schedule is TBD; some teams may do RDRs at the same time as EDRs. April 22, 2015 PDS Geosciences Node 3 InSight Archive Development Status Heat Flow and Physical Properties Package / Radiometer (HP3/RAD) • SIS nearly complete; describes raw, calibrated and derived data products; includes detailed instrument descriptions.
    [Show full text]
  • Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification
    Juno Magnetometer Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Prepared by: Jack Connerney and Patricia Lawton Juno Magnetometer MAG Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Approved: John E. P. Connerney Date MAG Principal Investigator Raymond J. Walker Date PDS PPI Node Manager Concurrence: Patricia J. Lawton Date MAG Ground Data System Staff 2 Table of Contents 1 Introduction ............................................................................................................................. 1 1.1 Distribution list ................................................................................................................... 1 1.2 Document change log ......................................................................................................... 2 1.3 TBD items ........................................................................................................................... 3 1.4 Abbreviations ...................................................................................................................... 4 1.5 Glossary .............................................................................................................................. 6 1.6 Juno Mission Overview ...................................................................................................... 7 1.7 Software Interface Specification Content Overview .........................................................
    [Show full text]
  • Telescope to Seek Dust Where Other Earths May Lie 22 January 2015, by Whitney Clavin
    Telescope to seek dust where other Earths may lie 22 January 2015, by Whitney Clavin The new instrument, based at the Large Binocular Telescope Observatory at the top of Mount Graham in southeastern Arizona, will obtain the best infrared images yet of dust permeating a star's habitable zone, the region around the star where water—an essential ingredient for life as we know it—could pool on a planet. Earth sits comfortably within our sun's habitable zone, hence its glistening surface of oceans. Scientists want to take pictures of exo-Earths and break up their light into a rainbow of colors. This color information is displayed in plots, called The Large Binocular Telescope Interferometer (LBTI) spectra, which reveal chemical clues about whether instrument set its eyes on a dusty star system called Eta a planet could sustain life. But dust—which comes Corvi, depicted here in this artist's concept. Recent from colliding asteroids and evaporating collisions between comets and rocky bodies within the comets—can outshine the feeble light of a planet, star system are thought to have generated the surplus of making this task difficult. dust. Credit: Large Binocular Telescope Observatory "Imagine trying to view a firefly buzzing around a lighthouse in Canada from Los Angeles," said Denis Defrère of the University of Arizona, lead The NASA-funded Large Binocular Telescope author of the new study that appears in the Jan. 14 Interferometer, or LBTI, has completed its first issue of the Astrophysical Journal. "Now imagine study of dust in the "habitable zone" around a star, that fog is in the way.
    [Show full text]
  • Investigations of Moon-Magnetosphere Interactions by the Europa Clipper Mission
    EPSC Abstracts Vol. 13, EPSC-DPS2019-366-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Investigations of Moon-Magnetosphere Interactions by the Europa Clipper Mission Haje Korth (1), Robert T. Pappalardo (2), David A. Senske (2), Sascha Kempf (3), Margaret G. Kivelson (4,5), Kurt Retherford (6), J. Hunter Waite (6), Joseph H. Westlake (1), and the Europa Clipper Science Team (1) Johns Hopkins University Applied Physics Laboratory, Maryland, USA, (2) Jet Propulsion Laboratory, California, USA, (3) University of Colorado, Colorado, USA, (4) University of Michigan, Michigan, USA, (5) University of California, California, USA, (6) Southwest Research Institute, Texas, USA. ([email protected]) 1. Introduction magnetic fields inducing eddy currents in the ocean. By measuring the induced field response at multiple The influence of the Jovian space environment on frequencies, the ice shell thickness and the ocean Europa is multifaceted, and observations of moon- layer thickness and conductivity can be uniquely magnetosphere interaction by the Europa Clipper will determined. The ECM consists of four fluxgate provide an understanding of the satellite’s interior sensors mounted on a 5-m-long boom and a control structure and compositional makeup among others. electronics hosted in a vault shielding it from The variability of Jupiter’s magnetic field at Europa radiation damage. The use of four sensors allows for induces electric currents within the moon’s dynamic removal of higher-order spacecraft- conducting ocean layer, the magnitude of which generated magnetic fields on a boom that is short depends on the ocean’s location, extent, and compared with the spacecraft dimensions.
    [Show full text]
  • Learned Factor Graph-Based Models for Localizing Ground Penetrating Radar
    Ground Encoding: Learned Factor Graph-based Models for Localizing Ground Penetrating Radar Alexander Baikovitz1, Paloma Sodhi1, Michael Dille2, Michael Kaess1 Learned sensor Correlation added to factor Estimation of system Abstract— We address the problem of robot localization using model graph of system poses trajectory ground penetrating radar (GPR) sensors. Current approaches x x ... x x for localization with GPR sensors require a priori maps of t-k-1 t-k t-1 t xt-k xt the system’s environment as well as access to approximate net global positioning (GPS) during operation. In this paper, T t-k,t we propose a novel, real-time GPR-based localization system GPR Submaps for unknown and GPS-denied environments. We model the localization problem as an inference over a factor graph. Our T ime t-k T ime t approach combines 1D single-channel GPR measurements to form 2D image submaps. To use these GPR images in the graph, we need sensor models that can map noisy, high- dimensional image measurements into the state space. These are challenging to obtain a priori since image generation has a complex dependency on subsurface composition and radar physics, which itself varies with sensors and variations in subsurface electromagnetic properties. Our key idea is to instead learn relative sensor models directly from GPR data that map non-sequential GPR image pairs to relative robot motion. These models are incorporated as factors within the Fig. 1: Estimating poses for a ground vehicle using subsurface measure- factor graph with relative motion predictions correcting for ments from Ground Penetrating Radar (GPR) as inference over a factor accumulated drift in the position estimates.
    [Show full text]
  • Debris Disks: the First 30 Years Where Will Herschel Take Us?
    With thanks to M. Wyatt, P. Kalas, L. Churcher, G. Duchene, B. Sibthorpe, A. Roberge Debris Disks: the first 30 years Where will Herschel take us? Brenda Matthews Herzberg Institute of Astrophysics & University of Victoria Outline • Debris disk: definition and discovery • Incidence and evolution • Characterizing debris disks • Disks around low-mass stars (AU Mic) • Planetary connection • Herschel surveys “Debris” Disks • Debris disks are produced from the remnants of the planet formation process • Second generation dust is produced through collisional processes • The debris disk can include – Planetesimal population (though not directly observable) – Dust produced (detectable from optical centimetre) • Dust may lie in belts at various radii from the star Solar System Debris Disk Kuiper Belt Asteroid Belt Debris Disk Snapshot: Zodiacal Light Photo: Stefan Binnewies "The light at its brightest was considerably fainter than the brighter" portions of the milky way... The outline generally appeared of a " parabolic or probably elliptical form, and it would seem excentric" as regards the sun, and also inclined, though but slightly to the ecliptic."" "-- Captain Jacob 1859 Discovery: Vega Phenomenon IRAS finds excess around 20% of main sequence stars (Rhee et al. 2007) Backman & Paresce 1993" "The Big Three"" The discovery of excess emission from main sequence stars at IRAS wavelengths (Aumann et al. 1984). Circumstellar Dust Disks Smith & Terrile 1984 Beta Pic was the Rosetta Stone Debris Disk for 15 years >300 refereed papers Dust must be second generation •! Debris disks cannot be the remnants of the protoplanetary disks found around pre-main sequence stars (Backman & Paresce 1993): –! The stars are old (e.g., up to 100s of Myr, even Gyr) –! The dust is small (< 100 micron) (Harper et al.
    [Show full text]
  • A Lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R
    i-SAIRAS2020-Papers (2020) 5051.pdf A lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R. Smith1, S. George1, D. Jonckers1 1STFC RAL Space, R100 Harwell Campus, OX11 0DE, United Kingdom, E-mail: [email protected] ABSTRACT the form of rovers and landers of various size [4]. Due to the costly nature of these missions, and the pressure Current science missions to the surface of other plan- for a guaranteed science return, they have been de- etary bodies tend to be very large with upwards of ten signed to minimise risk by using redundant and high instruments on board. This is due to high reliability re- reliability systems. This further increases mission cost quirements, and the desire to get the maximum science as components and subsystems are expected to be ex- return per mission. Missions to the lunar surface in the tensively qualified. next few years are key in the journey to returning hu- mans to the lunar surface [1]. The introduction of the As an example, the Mars Science Laboratory, nick- Commercial lunar Payload Services (CLPS) delivery named the Curiosity rover, one of the most successful architecture for science instruments and technology interplanetary rovers to date, has 10 main scientific in- demonstrators has lowered the barrier to entry of get- struments, requires a large team of people to control ting science to the surface [2]. Many instruments, and and cost over $2.5 billion to build and fly [5]. Curios- In Situ Surface Utilisation (ISRU) experiments have ity had 4 main science goals, with the instruments and been funded, and are being built with the intention of the design of the rover specifically tailored to those flying on already awarded CLPS missions.
    [Show full text]
  • Disks in Nearby Planetary Systems with JWST and ALMA
    Disks in Nearby Planetary Systems with JWST and ALMA Meredith A. MacGregor NSF Postdoctoral Fellow Carnegie Department of Terrestrial Magnetism 233rd AAS Meeting ExoPAG 19 January 6, 2019 MacGregor Circumstellar Disk Evolution molecular cloud 0 Myr main sequence star + planets (?) + debris disk (?) Star Formation > 10 Myr pre-main sequence star + protoplanetary disk Planet Formation 1-10 Myr MacGregor Debris Disks: Observables First extrasolar debris disk detected as “excess” infrared emission by IRAS (Aumann et al. 1984) SPHERE/VLT Herschel ALMA VLA Boccaletti et al (2015), Matthews et al. (2015), MacGregor et al. (2013), MacGregor et al. (2016a) Now, resolved at wavelengthsfrom from Herschel optical DUNES (scattered light) to millimeter and radio (thermal emission) MacGregor Planet-Disk Interactions Planets orbiting a star can gravitationally perturb an outer debris disk Expect to see a variety of structures: warps, clumps, eccentricities, central offsets, sharp edges, etc. Goal: Probe for wide separation planets using debris disk structure HD 15115 β Pictoris Kuiper Belt Asymmetry Warp Resonance Kalas et al. (2007) Lagrange et al. (2010) Jewitt et al. (2009) MacGregor Debris Disks Before ALMA Epsilon Eridani HD 95086 Tau Ceti Beta PictorisHR 4796A HD 107146 AU Mic Greaves+ (2014) Su+ (2015) Lawler+ (2014) Vandenbussche+ (2010) Koerner+ (1998) Hughes+ (2011) Matthews+ (2015) 49 Ceti HD 181327 HD 21997 Fomalhaut HD 10647 (q1 Eri) Eta Corvi HR 8799 Roberge+ (2013) Lebreton+ (2012) Moor+ (2015) Acke+ (2012) Liseau+ (2010) Lebreton+ (2016)
    [Show full text]