Endocast Morphology of Homo Naledi from the Dinaledi Chamber, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Endocast Morphology of Homo Naledi from the Dinaledi Chamber, South Africa Endocast morphology of Homo naledi from the Dinaledi Chamber, South Africa Ralph L. Hollowaya,1,2, Shawn D. Hurstb,1, Heather M. Garvinc,d, P. Thomas Schoenemannb,e, William B. Vantif, Lee R. Bergerd, and John Hawksd,g,2 aDepartment of Anthropology, Columbia University, New York, NY 10027; bDepartment of Anthropology, Indiana University, Bloomington, IN 47405; cDepartment of Anatomy, Des Moines University, Des Moines, IA 50312; dEvolutionary Studies Institute, University of Witwatersrand, Johannesburg 2000, South Africa; eStone Age Institute, Bloomington, IN 47405; fScience and Engineering Library, Columbia University, New York, NY 10027; and gDepartment of Anthropology, University of Wisconsin–Madison, Madison, WI 53706 Contributed by Ralph L. Holloway, April 5, 2018 (sent for review December 1, 2017; reviewed by James K. Rilling and Chet C. Sherwood) Hominin cranial remains from the Dinaledi Chamber, South Africa, We examined the endocast morphology of H. naledi from the represent multiple individuals of the species Homo naledi. This Dinaledi Chamber and compared this morphology with other species exhibits a small endocranial volume comparable to Aus- hominoids and fossil hominins. The skeletal material from the tralopithecus, combined with several aspects of external cranial Dinaledi Chamber includes seven cranial portions that preserve anatomy similar to larger-brained species of Homo such as Homo substantial endocranial surface detail, representing partial crania habilis and Homo erectus. Here, we describe the endocast anat- of at least five individuals. The external morphology of these omy of this recently discovered species. Despite the small size of specimens has been described and illustrated (13). All are the H. naledi endocasts, they share several aspects of structure in morphologically consistent with an adult developmental stage. common with other species of Homo, not found in other hominins Collectively, the remains document nearly the entire cortical sur- or great apes, notably in the organization of the inferior frontal face (SI Appendix,Fig.S1) with a high degree of gyral and sulcal and lateral orbital gyri. The presence of such structural innovations detail. The DH1 calvaria preserves portions of the left and right in a small-brained hominin may have relevance to behavioral evo- parietal lobes, complete left and mostly complete right occipital lution within the genus Homo. lobes, and a small portion of both cerebellar lobes. The endocranial surface of the DH3 calvaria preserves a mostly complete left brain evolution | human evolution | South Africa | Homo | hemisphere with most of the frontal, temporal, and parietal lobes. paleoanthropology Additional fragments, including the DH2 and DH4 calvariae, du- plicate some of this morphology and in no case contradict the uman brains are larger than those of the living great apes, morphology observable in the relatively more complete specimens. Hand they also exhibit many differences in organization from The DH1 (Fig. 1 and SI Appendix, Fig. S2) and DH2 (SI Ap- those primates. Understanding when and how these changes pendix, Figs. S3 and S4) calvariae represent individuals with took place is the key challenge of paleoneurology (1, 2). The size approximately the same ECV, while the DH3 (Fig. 2 and SI of the brain and several externally visible aspects of brain anat- Appendix, Fig. S5) calvaria is smaller. Previously, virtual re- omy can be assessed in fossil hominins based upon evidence from construction of these crania yielded volume estimates of 560 mL endocasts, which are natural or artificial impressions of the for a composite model based on DH1 and DH2 elements and endocranial surface. Endocasts do not perfectly reflect the un- 465 mL for the DH3/DH4 composite (6). Here, we have carried derlying cerebral cortex, in part because three tissue layers sep- out physical reconstructions of the DH1 and DH3 specimens (SI arate the endocranial surface from the brain itself and in part because many fossils present insufficient surface detail to pre- Significance serve clear evidence of gyral and sulcal impressions. Neverthe- less, some endocasts provide enough sulcal morphology to The new species Homo naledi was discovered in 2013 in a re- enable reliable identification of features with salience for func- mote cave chamber of the Rising Star cave system, South Africa. tional interpretations (1–5). This species survived until between 226,000 and 335,000 y ago, Hominin skeletal material from the Dinaledi Chamber, South placing it in continental Africa at the same time as the early Africa, represents the species Homo naledi (6). This fossil ancestors of modern humans were arising. Yet, H. naledi was assemblage represents at least 15 individuals, both adults and strikingly primitive in many aspects of its anatomy, including the juveniles across all stages of development (7). The Dinaledi small size of its brain. Here, we have provided a description of Chamber assemblage was deposited between 236,000 and endocast anatomy of this primitive species. Despite its small 335,000 y ago (8), meaning that this sample of H. naledi existed brain size, H. naledi shared some aspects of human brain orga- at the same time as some archaic humans within Africa (9), in- nization, suggesting that innovations in brain structure were cluding those that some workers identify as “early Homo sapiens” ancestral within the genus Homo. (10). The cranial, dental, and postcranial remains of H. naledi Author contributions: R.L.H., S.D.H., H.M.G., P.T.S., W.B.V., L.R.B., and J.H. designed re- exhibit a mosaic of derived, humanlike traits combined with search, performed research, analyzed data, and wrote the paper. primitive traits shared with Australopithecus and other stem Reviewers: J.K.R., Emory University; and C.C.S., George Washington University. hominins (6, 11). This morphological pattern makes it difficult to Conflict of interest statement: R.L.H. and C.C.S. are coauthors on a 2018 paper published determine the phylogenetic placement of H. naledi relative to in PNAS. other species within Homo: For example, Bayes factor tests on This open access article is distributed under Creative Commons Attribution-NonCommercial- cranial and dental traits clearly place H. naledi within the Homo NoDerivatives License 4.0 (CC BY-NC-ND). clade, but do not exclude it as a sister taxon of Homo antecessor, 1R.L.H. and S.D.H. contributed equally to this work. Asian Homo erectus, Homo floresiensis, Homo habilis, or even H. 2To whom correspondence may be addressed. Email: [email protected] or jhawks@ sapiens (12). The small endocranial volume (ECV) of H. naledi, wisc.edu. which is within the range known for australopiths, is one of many This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. primitive traits that contrast with other, more humanlike, cranial 1073/pnas.1720842115/-/DCSupplemental. and dental traits. Published online May 14, 2018. 5738–5743 | PNAS | May 29, 2018 | vol. 115 | no. 22 www.pnas.org/cgi/doi/10.1073/pnas.1720842115 Downloaded by guest on September 30, 2021 parallel each other. The entire frontal bends sharply in an an- terior–inferior direction toward the ventral edge (SI Appendix, Fig. S5), rather than more directly anteriorly toward the frontal pole, which is also a derived trait (18). Hominin endocasts differ from great apes in the extent of frontal and occipital petalial asymmetry (25, 26). None of the endocasts of H. naledi from the Dinaledi Chamber preserve both frontal poles and lateral prefrontal surfaces, preventing an as- sessment of frontal petalia. The left frontal pole of DH3 suggests a somewhat greater lateral width. The DH1 occipital shows a left occipital petalia, with the left occipital lobe both markedly larger and more posteriorly projecting than the right (Fig. 1). U.W. 101-200 is a less complete occipital fragment but is consistent with a left occipital petalia equally marked as DH1 (SI Appendix, Fig. 1. Posterior oblique view of 3D model of the positive endocranial surface of the DH1 occipital fragment with oblique lighting applied and Fig. S12). This pattern is commonly seen in modern humans and features labeled: 1, tempero-occipital fissure; 2, parietal lobe; 3, beginning fossil hominins, including both Homo and Australopithecus, al- of sigmoid sulcus; 4, possible lunate sulcus; 5, inferior occipital sulcus; 6, though the greater degree of petalial asymmetry seen in H. naledi possible dorsal remnant of the lunate sulcus; 7, possible occipital polar sul- is most like that seen in modern humans and the larger fossil cus; 8, transverse sinus; 9, occipital pole; 10, midsagittal plane; and 11, cer- endocasts of later Homo. Greater variation in asymmetry within ebellar lobe. the human brain has been suggested to reflect a degree of adaptive plasticity than other living primates (27). In modern humans, left occipital petalia with right frontal petalia is asso- Appendix), resulting in water-displacement volumes of 555 mL ciated with righthandedness (28). for DH1 and 460 mL for DH3, both in good agreement with the One indicator of the posterior organization of the brain is the virtual reconstructions. position of the lunate sulcus. This sulcus is relatively well-marked The most notable morphological differences of the frontal in many endocasts of great apes, where its high, transversely lobes between humans and apes involve the inferior frontal and extensive and relatively rostral position marks the extent of the lateral orbital gyri. In apes, this area of the frontal lobes includes primary visual cortex. In living humans, the overall cortex is the fronto-orbital sulcus, which is usually well preserved on ape substantially larger, but the primary visual cortex is relatively less endocasts. A fronto-orbital sulcus is also evident on the MH1 enlarged than the cortex as a whole. The lunate sulcus in humans endocast of Australopithecus sediba (14) and on some endocasts is variable and less well represented on the cortical surface, but of Australopithecus africanus (15, 16).
Recommended publications
  • Morphological Affinities of Homo Naledi with Other Plio
    Anais da Academia Brasileira de Ciências (2017) 89(3 Suppl.): 2199-2207 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720160841 www.scielo.br/aabc | www.fb.com/aabcjournal Morphological affinities ofHomo naledi with other Plio- Pleistocene hominins: a phenetic approach WALTER A. NEVES1, DANILO V. BERNARDO2 and IVAN PANTALEONI1 1Instituto de Biociências, Universidade de São Paulo, Departamento de Genética e Biologia Evolutiva, Laboratório de Estudos Evolutivos e Ecológicos Humanos, Rua do Matão, 277, sala 218, Cidade Universitária, 05508-090 São Paulo, SP, Brazil 2Instituto de Ciências Humanas e da Informação, Universidade Federal do Rio Grande, Laboratório de Estudos em Antropologia Biológica, Bioarqueologia e Evolução Humana, Área de Arqueologia e Antropologia, Av. Itália, Km 8, Carreiros, 96203-000 Rio Grande, RS, Brazil Manuscript received on December 2, 2016; accepted for publication on February 21, 2017 ABSTRACT Recent fossil material found in Dinaledi Chamber, South Africa, was initially described as a new species of genus Homo, namely Homo naledi. The original study of this new material has pointed to a close proximity with Homo erectus. More recent investigations have, to some extent, confirmed this assignment. Here we present a phenetic analysis based on dentocranial metric variables through Principal Components Analysis and Cluster Analysis based on these fossils and other Plio-Pleistocene hominins. Our results concur that the Dinaledi fossil hominins pertain to genus Homo. However, in our case, their nearest neighbors are Homo habilis and Australopithecus sediba. We suggest that Homo naledi is in fact a South African version of Homo habilis, and not a new species.
    [Show full text]
  • A New Star Rising: Biology and Mortuary Behaviour of Homo Naledi
    Commentary Biology and mortuary behaviour of Homo naledi Page 1 of 4 A new star rising: Biology and mortuary behaviour AUTHOR: of Homo naledi Patrick S. Randolph-Quinney1,2 AFFILIATIONS: September 2015 saw the release of two papers detailing the taxonomy1, and geological and taphonomic2 context 1School of Anatomical Sciences, of a newly identified hominin species, Homo naledi – naledi meaning ‘star’ in Sesotho. Whilst the naming and Faculty of Health Sciences, description of a new part of our ancestral lineage has not been an especially rare event in recent years,3-7 the University of the Witwatersrand presentation of Homo naledi to the world is unique for two reasons. Firstly, the skeletal biology, which presents Medical School, Johannesburg, a complex mixture of primitive and derived traits, and, crucially, for which almost every part of the skeleton is South Africa represented – a first for an early hominin species. Secondly, and perhaps more importantly, this taxon provides 2Evolutionary Studies Institute, evidence for ritualistic complex behaviour, involving the deliberate disposal of the dead. Centre for Excellence in Palaeosciences, University of the The initial discovery was made in September 2013 in a cave system known as Rising Star in the Cradle of Humankind Witwatersrand, Johannesburg, World Heritage Site, some 50 km outside of Johannesburg. Whilst amateur cavers had been periodically visiting the South Africa chamber for a number of years, the 2013 incursion was the first to formally investigate the system for the fossil remains of early hominins. The exploration team comprised Wits University scientists and volunteer cavers, and CORRESPONDENCE TO: was assembled by Lee Berger of the Evolutionary Studies Institute, who advocated that volunteer cavers would use Patrick Randolph-Quinney their spelunking skills in the search for new hominin-bearing fossil sites within the Cradle of Humankind.
    [Show full text]
  • Homo Naledi, a New Species of the Genus Homo from the Dinaledi
    RESEARCH ARTICLE elifesciences.org Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa Lee R Berger1,2*, John Hawks1,3, Darryl J de Ruiter1,4, Steven E Churchill1,5, Peter Schmid1,6, Lucas K Delezene1,7, Tracy L Kivell1,8,9, Heather M Garvin1,10, Scott A Williams1,11,12, Jeremy M DeSilva1,13, Matthew M Skinner1,8,9, Charles M Musiba1,14, Noel Cameron1,15, Trenton W Holliday1,16, William Harcourt-Smith1,17,18, Rebecca R Ackermann19, Markus Bastir1,20, Barry Bogin1,15, Debra Bolter1,21, Juliet Brophy1,22, Zachary D Cofran1,23, Kimberly A Congdon1,24, Andrew S Deane1,25, Mana Dembo1,26, Michelle Drapeau27, Marina C Elliott1,26, Elen M Feuerriegel1,28, Daniel Garcia-Martinez1,20,29, David J Green1,30, Alia Gurtov1,3, Joel D Irish1,31, Ashley Kruger1, Myra F Laird1,11,12, Damiano Marchi1,32, Marc R Meyer1,33, Shahed Nalla1,34, Enquye W Negash1,35, Caley M Orr1,36, Davorka Radovcic1,37, Lauren Schroeder1,19, Jill E Scott1,38, Zachary Throckmorton1,39, Matthew W Tocheri40,41, Caroline VanSickle1,3,42, Christopher S Walker1,5, Pianpian Wei1,43, Bernhard Zipfel1 1Evolutionary Studies Institute and Centre of Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa; 2School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa; 3Department of Anthropology, University of Wisconsin-Madison, Madison, United States; 4Department of Anthropology, Texas A&M University, College Station, United States; 5Department of Evolutionary Anthropology, Duke University, Durham, United States; 6Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland; 7Department of Anthropology, University of Arkansas, Fayetteville, United States; *For correspondence: 8 [email protected] School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom; 9Department of Human Evolution, Max Planck Institute for Evolutionary Competing interests: The Anthropology, Leipzig, Germany; 10Department of Anthropology/Archaeology and authors declare that no competing interests exist.
    [Show full text]
  • Tooth Size Apportionment, Bayesian Inference, and the Phylogeny of Homo Naledi
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423087; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Tooth size apportionment, Bayesian inference, and the phylogeny of Homo naledi Joel D. Irish a,b,*, Mark Grabowskia,c aResearch Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF UK bEvolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa c Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway *Corresponding author. E-mail address: [email protected] Acknowledgements Thank you to the individuals currently or formerly affiliated with the institutions at which the odontometric measurements of North and sub-Saharan H. sapiens samples were recorded. These include: Charles Merbs and Donald Morris from Arizona State University (ASU); Elden Johnson from the University of Minnesota; Douglas Ubelaker, David Hunt, and Carol Butler from the National Museum of Natural History; Ian Tattersall, Jaymie Brauer, and Gary Sawyer from the American Museum of Natural History; Andre Langaney, Frances Roville-Sausse, and Miya Awazu Periera da Silva from the Musée de l’Homme; Romuald Schild, Michal Kobusiewicz, and Jacek Kabaciński from the Combined Prehistoric Expedition to Gebel Ramlah; and Renée Friedman from the Hierakonpolis Expedition. Thanks are also extended to Lee Berger, from the Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences; Darryl de Ruiter, Texas A&M, for those measurements presented in our 2016 TSA publication that are incorporated here; and Lucas Delezene, University of Arkansas, who provided a list of publications containing Asian H.
    [Show full text]
  • Review of the Homo Naledi Fossil Collection from South Africa Using the Biological Species Concept Sergey V
    ropolo nth gy A Vyrskiy, Anthropol 2018, 6:1 Anthropology DOI: 10.4172/2332-0915.1000201 ISSN: 2332-0915 ReviewResearch Article Article OpenOpen Access Access Review of the Homo naledi Fossil Collection from South Africa Using the Biological Species Concept Sergey V. Vyrskiy* 3-35, Dali Street Lok Volzhskie, Pristannoye Village, Saratov Region, Russia Abstract While analysing the description of Homo naledi, it was observed that the founders failed to specify any maternal or other species phyletically associated with H. naledi. Moreover, the direction of further evolution of the species was not determined, and it was concluded that the species is extinct. Furthermore, exclusively morphometric characteristics of the remains have been used for species diagnostics, which is typical of the methods of the morphological species concept. For a more precise definition of the position ofH. naledi among other species of the genus Homo within the African bipedal primate system, this study attempted to identify the fossil characters that are diagnostically essential from the point of view of the biological species concept. This study helped reveal the age of the fossil collection deposit and concluded that H. naledi shares a common origin with other species of the genus Homo. In addition, it was shown that H. naledi had a hand structure that was progressive for its time and a high cerebral index, which raises doubts regarding the validity of its extinction. Keywords: Biological species concept; Homo naledi; Bipedal Only the biological species concept (BSC) distinguishes the primates; Omnivorous; Radicophagous relationship between individuals and taxa in the vertical dimension of deposit systematics.
    [Show full text]
  • Multimodal Spatial Mapping and Visualisation of Dinaledi Chamber and Rising Star Cave
    Article Multimodal spatial mapping and visualisation of Dinaledi Chamber and Rising Star Cave Kruger, Ashley, Randolph-Quinney, Patrick, S. and Elliott, Marina Available at http://clok.uclan.ac.uk/16971/ Kruger, Ashley, Randolph-Quinney, Patrick, S. and Elliott, Marina (2016) Multimodal spatial mapping and visualisation of Dinaledi Chamber and Rising Star Cave. South African Journal of Science, 112 (5/6). ISSN 0038-2353 It is advisable to refer to the publisher’s version if you intend to cite from the work. 10.17159/ sajs.2016/20160032 For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>. For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/ All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/ CLoK Central Lancashire online Knowledge www.clok.uclan.ac.uk Research Article Spatial mapping and visualisation of Rising Star Cave Page 1 of 11 Multimodal spatial mapping and visualisation of AUTHORS: Dinaledi Chamber and Rising Star Cave Ashley Kruger1 Patrick Randolph-Quinney1,2* Marina Elliott1 The Dinaledi Chamber of the Rising Star Cave has yielded 1550 identifiable fossil elements – representing the largest single collection of fossil hominin material found on the African continent to date. The fossil chamber AFFILIATIONS: in which Homo naledi was found was accessible only through a near-vertical chute that presented immense 1Evolutionary Studies Institute, practical and methodological limitations on the excavation and recording methods that could be used within School of Geosciences, the Cave.
    [Show full text]
  • Three High Profile Genus Homo Discoveries in the Early 21 Century
    Sociology and Anthropology 7(6): 277-288, 2019 http://www.hrpub.org DOI: 10.13189/sa.2019.070606 Three High Profile Genus Homo Discoveries in the Early 21st Century and the Continuing Complexities of Species Designation: A Review—Part II Conrad B. Quintyn Department of Anthropology, Bloomsburg University, USA Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Human paleontologists are unable to fossil associated with simple stone tools in a cave called extricate species-level variation from individual, sexual, Liang Bua (LB1) on the island of Flores. Most of the regional, geographical, pathological, and skull bone skeletal elements for LB1 were recovered in a small area variations despite sophisticated statistical methodology. (500 cm2) at a depth of 5.9 m in Sector 7 of the excavation Additionally, true variation within and between groups at Liang Bua [52]. The root of the controversy concerning cannot be generated from a handful of regional and the taxonomic affiliation of LB1, in my opinion, is the geographical specimens presently used in comparative disjunction between its morphology and geological age. studies. I therefore conclude that we cannot identify LB1 ranges in age from 74,000 to 17,000 years ago using species in the human paleontological record. This various dating techniques (i.e., ESR/U series date on a conclusion is supported by the analysis and discussion (in Stegodon molar, luminescence, and accelerator mass this paper) of research conducted on, what I deem to be, spectrometry) to calibrate the dates.
    [Show full text]
  • Dembo-Et-Al-2016.Pdf
    Journal of Human Evolution 97 (2016) 17e26 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The evolutionary relationships and age of Homo naledi: An assessment using dated Bayesian phylogenetic methods * Mana Dembo a, b, c, , Davorka Radovcic c, d, Heather M. Garvin c, e, f, Myra F. Laird c, g, h, Lauren Schroeder c, i, j, Jill E. Scott c, k, l, Juliet Brophy c, m, Rebecca R. Ackermann i, n, ** *** Chares M. Musiba c, o, Darryl J. de Ruiter c, p, Arne Ø. Mooers a, q, , Mark Collard a, b, c, r, a Human Evolutionary Studies Program, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada b Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada c Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa d Department of Geology and Paleontology, Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia e Department of Applied Forensic Sciences, Mercyhurst University, Erie, PA 16546, USA f Department of Anthropology/Archaeology, Mercyhurst University, Erie, PA 16546, USA g Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA h New York Consortium in Evolutionary Primatology, New York, NY 10024, USA i Department of Archaeology, University of Cape Town, Rondebosch 7701, South Africa j Department of Anthropology, University at Buffalo SUNY, Buffalo, NY
    [Show full text]
  • Multimodal Spatial Mapping and Visualisation of Dinaledi Chamber
    Research Article Spatial mapping and visualisation of Rising Star Cave Page 1 of 11 Multimodal spatial mapping and visualisation of AUTHORS: Dinaledi Chamber and Rising Star Cave Ashley Kruger1 Patrick Randolph-Quinney1,2* Marina Elliott1 The Dinaledi Chamber of the Rising Star Cave has yielded 1550 identifiable fossil elements – representing the largest single collection of fossil hominin material found on the African continent to date. The fossil chamber AFFILIATIONS: in which Homo naledi was found was accessible only through a near-vertical chute that presented immense 1Evolutionary Studies Institute, practical and methodological limitations on the excavation and recording methods that could be used within School of Geosciences, the Cave. In response to practical challenges, a multimodal set of recording and survey methods was thus University of the Witwatersrand, Johannesburg, South Africa developed and employed: (1) recording of fossils and the excavation process was achieved through the use 2School of Anatomical Sciences, of white-light photogrammetry and laser scanning; (2) mapping of the Dinaledi Chamber was accomplished University of the Witwatersrand, by means of high-resolution laser scanning, with scans running from the excavation site to the ground Johannesburg, South Africa surface and the cave entrance; (3) at ground surface, the integration of conventional surveying techniques *Current address: School as well as photogrammetry with the use of an unmanned aerial vehicle was applied. Point cloud data were of Forensic and Applied used to provide a centralised and common data structure for conversion and to corroborate the influx of Sciences, University of Central different data collection methods and input formats. Data collected with these methods were applied to the Lancashire, Preston, Lancashire, United Kingdom excavations, mapping and surveying of the Dinaledi Chamber and the Rising Star Cave.
    [Show full text]
  • Dental Caries in South African Fossil Hominins AUTHORS: Ian Towle1 Joel D
    Dental caries in South African fossil hominins AUTHORS: Ian Towle1 Joel D. Irish2,3 Isabelle De Groote4 Once considered rare in fossil hominins, caries has recently been reported in several hominin species, Christianne Fernée5,6 requiring a new assessment of this condition during human evolution. Caries prevalence and location Carolina Loch1 on the teeth of South African fossil hominins were observed and compared with published data from AFFILIATIONS: other hominin samples. Teeth were viewed macroscopically, with lesion position and severity noted and 1Sir John Walsh Research Institute, described. For all South African fossil hominin specimens studied to date, a total of 10 carious teeth (14 Faculty of Dentistry, University of Otago, Dunedin, New Zealand lesions), including 4 described for the first time here, have been observed. These carious teeth were 2Research Centre in Evolutionary found in a minimum of seven individuals, including five Paranthropus robustus, one early Homo, and Anthropology and Palaeoecology, Liverpool John Moores University, one Homo naledi. All 14 lesions affected posterior teeth. The results suggest cariogenic biofilms and Liverpool, United Kingdom foods may have been present in the oral environment of a wide variety of hominins. Caries prevalence in 3 Evolutionary Studies Institute studied fossil hominins is similar to those in pre-agricultural human groups, in which 1–5% of teeth are and Centre for Excellence in PaleoSciences, University of the typically affected. Witwatersrand, Johannesburg, South Africa Significance: 4Department of Archaeology, Ghent University, Ghent, Belgium • This study adds to the growing evidence that dental caries was present throughout the course of human 5Department of Anthropology and evolution.
    [Show full text]
  • Meet the Man Who Gives Ancient Human Ancestors Their Faces Paleo Artist John Gurche Created Homo Naledi’S Face by Making Hundreds of Minute Anatomical Calculations
    Meet the Man Who Gives Ancient Human Ancestors Their Faces Paleo artist John Gurche created Homo naledi’s face by making hundreds of minute anatomical calculations. EXCLUSIVE: BUILDING THE FACE OF A NEWLY FOUND ANCESTOR As a paleoartist, John Gurche focuses on combining art and science to create the faces of our long-lost ancestors. With the discovery of Homo naledi, the newest addition to the genus Homo, Gurche was tasked with determining how this creature would have looked, based on bone scans of the fossils found. PUBLISHED SEPTEMBER 14, 2015 We don’t know how old our newfound ancestor Homo naledi is, or how precisely the species is related to us. One thing we can see, now, is what it looks like— thanks to a fossil-based reconstruction created by paleoartist John Gurche. “It was wonderful watching this thing come to be over time,” says Gurche, whose Homo naledibust has been seen by millions of people on the Internet since it was unveiled last week. When photographed in John Gurche’s workshop, Homo naledi’s face (top) didn't have its skin yet. Casts of other primates’ faces used for comparative purposes include a bonobo, left, a chimpanzee, center, and a model of Homo floresiensis, right. PHOTOGRAPH BY JOHN GURCHE Gurche is the artist in residence at the Museum of the Earth in Ithaca, New York, and one of a small handful of experts who forensically reconstruct faces of long-dead hominins. He has created similar busts of other ancient human relatives, including Homo floresiensis, a diminutive hominin sometimes referred to as the Flores hobbit found on the Indonesian island of Flores in 2003, and Australopithecus sediba, discovered by paleontologist Lee Berger in South Africa in 2010.
    [Show full text]
  • Homoplasy in the Evolution of Modern Human- Like Joint Proportions in Australopithecus Afarensis
    RESEARCH ARTICLE Homoplasy in the evolution of modern human- like joint proportions in Australopithecus afarensis Anjali M Prabhat1, Catherine K Miller1,2, Thomas Cody Prang3, Jeffrey Spear4,5, Scott A Williams4,5, Jeremy M DeSilva1,2* 1Anthropology, Dartmouth College, Hanover, United States; 2Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, United States; 3Department of Anthropology, Texas A&M University, College Station, United States; 4Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States; 5New York Consortium in Evolutionary Primatology, New York, United States Abstract The evolution of bipedalism and reduced reliance on arboreality in hominins resulted in larger lower limb joints relative to the joints of the upper limb. The pattern and timing of this transition, however, remains unresolved. Here, we find the limb joint proportions ofAustralopithecus afarensis, Homo erectus, and Homo naledi to resemble those of modern humans, whereas those of A. africanus, Australopithecus sediba, Paranthropus robustus, Paranthropus boisei, Homo habilis, and Homo floresiensis are more ape- like. The homology of limb joint proportions in A. afarensis and modern humans can only be explained by a series of evolutionary reversals irrespective of differing phylogenetic hypotheses. Thus, the independent evolution of modern human- like limb joint propor- tions in A. afarensis is a more parsimonious explanation. Overall, these results support an emerging perspective in hominin paleobiology that A. afarensis was the most terrestrially adapted australopith despite the importance of arboreality throughout much of early hominin evolution. *For correspondence: Jeremy. M. DeSilva@ dartmouth. edu Competing interest: The authors declare that no competing Introduction interests exist.
    [Show full text]