Wheels-Down Water Landing Involving Cessna U206F Floatplane, VH-UBI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design of Seaplanes
APPENDIX C3: Design of Seaplanes This appendix is a part of the book General Aviation Aircraft Design: Applied Methods and Procedures by Snorri Gudmundsson, published by Elsevier, Inc. The book is available through various bookstores and online retailers, such as www.elsevier.com, www.amazon.com, and many others. The purpose of the appendices denoted by C1 through C5 is to provide additional information on the design of selected aircraft configurations, beyond what is possible in the main part of Chapter 4, Aircraft Conceptual Layout. Some of the information is intended for the novice engineer, but other is advanced and well beyond what is possible to present in undergraduate design classes. This way, the appendices can serve as a refresher material for the experienced aircraft designer, while introducing new material to the student. Additionally, many helpful design philosophies are presented in the text. Since this appendix is offered online rather than in the actual book, it is possible to revise it regularly and both add to the information and new types of aircraft. The following appendices are offered: C1 – Design of Conventional Aircraft C2 – Design of Canard Aircraft C3 – Design of Seaplanes (this appendix) C4 – Design of Sailplanes C5 – Design of Unusual Configurations Figure C3-1: A Lake LA-250 Renegade, shown here during climb after T-O, is a popular option for amphibious aircraft. The large deflected flap on the horizontal tail is a hydraulically actuated trim tab used for slow speed operations only. It trims out the thrust effect of the highly mounted piston-propeller, improving its handling. -
WATER WINGS Story and Photos by Guy R Maher
OWNERS’ MANUAL: WATER WINGS Story and Photos by Guy R Maher VWDEOLVKHGRQEDVHOHJ,KDYHWKHÀDSVVHW 7XUQLQJ¿QDOWKHÀDSVDUHORZHUHGWRIXOO EDWGHJUHHVRXWRIDSRVVLEOH7KH DQGWKHSRZHULVVHWWRLQFKHVRIPDQLIROG SURSFRQWUROLVVHWWRKLJK5307XUQLQJ¿QDO SUHVVXUH0DLQWDLQLQJDWRNQRW ,PDNHRQHODVWFKHFNRIWKHODQGLQJJHDU DSSURDFKVSHHGIROORZHGE\DJHQWOHÀDUH DQGFRQ¿UPWKDWLWLVGH¿QLWHO\LQWKH³83´ DQGZHVHWWOHQLFHO\LQWRWKHODNH3RZHU SRVLWLRQ<HV\RXUHDGWKDWFRUUHFWO\7KH immediately to idle and full back pressure on ODQGLQJJHDUPXVWEHLQWKH³8S´SRVLWLRQIRU the control wheel after splashdown yields a ,DPDERXWWRODQGRQZDWHU smooth deceleration of this plane now turned ERDW7KDW¶VZKDW,FDOOIXQ 2828 CessnaCCeessssnana PilotsPililotots AssociationAAssssoociciatatiioon | JulyJJullyy 2018201018 VanFleet’s 172XP is equipped with Wipaire, Inc.’s Wipline 2350 amphibious floats. www.cessna.orgwwwww.w ceesssnan ..orgg 299 VanFleet’s 172XP has a modified engine that increases the horsepower from 195 to 210. 7KHDLUSODQH,¶PÀ\LQJLVDEHDXWLIXOUHGDQGZKLWH 6HYHUDO\HDUVODWHUVKHPRYHGWR*HRUJLDWREHFRPHWKH &HVVQD;3HTXLSSHGZLWKDVHWRI:LSDLUH dietitian for Athens Regional Hospital. At last she was ,QF¶V:LSOLQHDPSKLELRXVÀRDWV7KHRULJLQDO able to pursue her lifelong dream - to obtain her private 7&0,2.HQJLQHKDVDOVREHHQPRGL¿HGXSSLQJ SLORWOLFHQVHLQD&HVVQDLQ&KDQJLQJMREVWR WKHKRUVHSRZHUIURPWR7KHRZQHURIWKLV Ross Abbott as a pharmaceutical representative, getting VSHFLDO;3DIIHFWLRQDWHO\FDOOHGSamanthaLV6XVDQ PDUULHGKDYLQJDFKLOGDQGEX\LQJD&HVVQD VanFleet, owner/operator of VanFleet Aviation based in WREXLOGWLPHNHSWWKLQJVEXV\IRU9DQ)OHHW7KH -
Aviation Investigation Report A04w0114 Upset on Water
Transportation Safety Board Bureau de la sécurité des transports of Canada du Canada AVIATION INVESTIGATION REPORT A04W0114 UPSET ON WATER LANDING BIG RIVER AIR LTD. CESSNA A185F SEAPLANE C-GVYE TALTSON RIVER (FERGUSON’S CABIN) NORTHWEST TERRITORIES 07 JUNE 2004 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report Upset on Water Landing Big River Air Ltd. Cessna A185F Seaplane C-GVYE Taltson River (Ferguson’s Cabin) Northwest Territories 07 June 2004 Report Number A04W0114 Summary The Cessna A185F seaplane (registration C-GVYE, serial number 18503778) operated by Big River Air Ltd., departed Four Mile Lake, Alberta, on a visual flight rules flight to the Taltson River, Northwest Territories. The purpose of the flight was to transport three passengers to a site on the river known as Ferguson’s Cabin. At approximately 1700 mountain daylight time, as the aircraft was landing on the water near Ferguson’s Cabin, the left float dug in and the left wing struck the water. The aircraft immediately cartwheeled and came to rest floating inverted in the river, with only the bottoms of the floats visible at the surface. The pilot and the front seat passenger sustained serious injuries; however, they managed to exit the submerged and damaged aircraft through a broken window in the left cabin door. Four fishermen in boats responded to the accident, removed the survivors from the cold water, and transported them to a warm shelter. -
Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L
Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L. Pepermans Technische Universiteit Delft Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability by L. Pepermans to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday October 30, 2019 at 14:30 AM. Student number: 4144538 Project duration: September 1, 2018 – October 30, 2019 Thesis committee: Ir. B.T.C Zandbergen , TU Delft, supervisor Prof. E.K.A Gill, TU Delft Dr.ir. D. Dirkx, TU Delft This thesis is confidential and cannot be made public until October 30, 2019. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: S-IVB upper stage of Skylab 3 mission in orbit [23] Preface Before you lies my thesis to graduate from Delft University of Technology on the feasibility and cost-effectiveness of reusable upper stages. During the accompanying literature study, it was determined that the technology readiness level is sufficiently high for upper stage reusability. However, it was unsure whether a cost-effective system could be build. I have been interested in the field of Entry, Descent, and Landing ever since I joined the Capsule Team of Delft Aerospace Rocket Engineering (DARE). During my time within the team, it split up in the Structures Team and Recovery Team. In September 2016, I became Chief Recovery for the Stratos III student-built sounding rocket. During this time, I realised that there was a lack of fundamental knowledge in aerodynamic decelerators within DARE. -
1954 Cessna 180 Seaplane
1976 Cessna A185F Seaplane N185AS Airspeeds Vs0 41*- 40 degrees flaps Vs1 55 Vx 80 Vy 90 Vfe 120 Va 118 Vno 146 Vne 182 Best Glide 80 *All speeds in Knots Engine Specs Continental IO520 D (Horizontally Opposed, 6 cylinder, Air Cooled) 300 HP @ 2850 RPM Max RPM- 2850 RPM Oil Type: Phillips X/C 20W50 or W100 Aeroshell Max oil Capacity: 12 U.S. Quarts Normal Operations: 9-10 U.S. Quarts Propeller Specs Manufacturer: McCaulley Prop Type: Constant Speed Number Blades: 2 Prop Diameter: 86 Fuel Capacity: 80 U.S. gallons – 40 each wing Usable: 74 U.S. gallons Fuel Burn: 16 Gallons Per Hour (average) Fuel Type: 100/130 Aviation fuel or 100 LL Floats Manufacturer: EDO Model: 582-3430 100% Bouyancy per Float: 3515 lbs. Float Airplane Bouyancy Max Floatation Weight 3430 C185 3515 lbs. 3905 lbs. 460 lbs.* <------------------------------- 21' --------------------------------> * without optional items Back Co Weight and Balance Gross Weight: 3525 lbs. Empty Weight: 2156 lbs. Useful Load: 1369 lbs. Float Storage Lockers: 100 lbs. maximum each side Sample Weight and Balance Weight Arm Moment Empty Airplane 2156.15 40.40 87113.40 Front Seats 400 15500 Rear Seats 0 0 Baggage Area 1 10 2000 Baggage area 2 30 3000 Float Compartments 0 0 Fuel 300 14000 Totals 2896.15 41.99 121613.4 EDO 3430 FAA Regulations Each float must have 4 compartments minimum Each float must support 90% of gross weight (both floats support 180%) Must be able to support the aircraft with two compartments flooded Note: The model number “3430” refers to the buoyancy of each float. -
Critical Soft Landing Technology Issues for Future U. S. Space Missions
NASA CR-185673 January 1992 Critical Soft Landing Technology Issues for Future U. S. Space Missions J. M. Macha, D.W. Johnson and D. D. McBride Parachute Systems Division Sandia National Laboratories Albuquerque, NM 87185 Prepared for: National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, TX 77058 This work was supported by NASA/JSC under Contract No. T-9317R This document has been approved for public release; its distribution is unlimited. Nabonal _ San.diaLaboratories (NA_A-CR-185oTJ) CRITICAL SOFT LANDING N92-26886 TECHNOLGGY ISSUES F_R FUTURE US SPACE MISSIOtwS Final Report (3andia National LlbS.) 26 p G3116 Abstract There has not been a programmatic need for research and development to support parachute-based landing systems since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs through the year 2020 require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed all through the Mercury, Gemini and Apollo programs. A study has been performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended. Acknowledgements In carrying out this study, the authors benefitted greatly from discussions with many personnel of the NASA Johnson Space Center. -
British Aircraft in Russia Bombers and Boats
SPRING 2004 - Volume 51, Number 1 British Aircraft in Russia Viktor Kulikov 4 Bombers and Boats: SB-17 and SB-29 Combat Operations in Korea Forrest L. Marion 16 Were There Strategic Oil Targets in Japan in 1945? Emanuel Horowitz 26 General Bernard A. Schriever: Technological Visionary Jacob Neufeld 36 Touch and Go in Uniforms of the Past JackWaid 44 Book Reviews 48 Fleet Operations in a Mobile War: September 1950 – June 1951 by Joseph H. Alexander Reviewed by William A. Nardo 48 B–24 Liberator by Martin Bowman Reviewed by John S. Chilstrom 48 Bombers over Berlin: The RAF Offensive, November 1943-March 1944 by Alan W. Cooper Reviewed by John S. Chilstrom 48 The Politics of Coercion: Toward A Theory of Coercive Airpower for Post-Cold War Conflict by Lt. Col. Ellwood P. “Skip” Hinman IV Reviewed by William A. Nardo 49 Ending the Vietnam War: A History of America’s Involvement and Extrication from the Vietnam War by Henry Kissinger Reviewed by Lawrence R. Benson 50 The Dynamics of Military Revolution, 1300-2050 by MacGregor Knox and Williamson Murray, eds. Reviewed by James R. FitzSimonds 50 To Reach the High Frontier: A History of U.S. Launch Vehicles by Roger D. Launius and Dennis R. Jenkins, eds. Reviewed by David F. Crosby 51 History of Rocketry and Astronautics: Proceedings of the Thirtieth History Symposium of the International Academy of Astronautics, Beijing, China, 1996 by Hervé Moulin and Donald C. Elder, eds. Reviewed by Rick W. Sturdevant 52 Secret Empire: Eisenhower, the CIA, and the Hidden Story of America’s Space Espionage by Philip Taubman Reviewed by Lawrence R. -
Post-Landing Orion Crew Survival in Warm Ocean Areas: a Case Study in Iterative Environmental Design
Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design George E. Rains1, Grant C. Bue2, Jerry Pantermuehl1 1ESCG-Jacobs-Svedrup, Houston TX 2NASA Johnson Space Center, Houston TX Copyright © SAE International ABSTRACT varied across different vehicles, programs, and nations, but a common component has always been some capability for crew survival following The Orion crew module (CM) is being an unplanned or off-nominal water landing. designed to perform survivable land and water landings. There are many issues Given the geography of the U.S. manned space associated with post-landing crew survival. program, where all manned launches have taken place eastward over the Atlantic Ocean, it In general, the most challenging of the was inevitable that all of NASA’s early manned realistic Orion landing scenarios from an spacecraft would be capable of performing water environmental control standpoint is the off- landings. Since a water landing capability had nominal water landing. Available power to be provided, in any case, for the first and other consumables will be very limited astronauts to survive possible contingencies following a launch failure, it was expeditious for after landing, and it may not be possible to NASA to make water landing the normal mode provide full environmental control within of operation following a successful mission. the crew cabin for very long after This programmatic logic held true for Mercury, splashdown. Given the bulk and thermal Gemini, and Apollo, and was revised only with insulation characteristics of the crew-worn the advent of the Space Shuttle. The new Orion spacecraft may return to water landing as the pressure suits, landing in a warm tropical normal mode of operation, but with additional ocean area would pose a risk to crew capability for post-landing crew support. -
Private Sector Lunar Exploration Hearing
PRIVATE SECTOR LUNAR EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION SEPTEMBER 7, 2017 Serial No. 115–27 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–174PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S. -
Basic Aviation Safety
Basic Aviation Safety May 2013 Office of Aviation Services 300 E. Mallard Drive, Suite 200 Boise, Idaho 83706 Designed and produced February 1990 Revised June 2012, May 2013 Additional copies of this publication may be downloaded from www.iat.gov May 2013 Revision Note The May 2013 revision is an interim revision to provide personnel engaged in aviation operations with corrected information on helicopter crash positions. This revision replaces information on helicopter crash positions (page 16) with the May 22, 2013 Interagency Aviation Safety Alert No. IA SA 13-01. The Safety Alert is included at the back of this publication. This is the only information revised from the June 2012 edition. This page intentionally blank. BASIC AVIATION SAFETY Contents Helicopter Safety .............................................................................................................................. 1 Safety around Helicopters ............................................................................................................ 2-4 Helicopter Capabilities and Limitations ......................................................................................5-11 Personal Protective Equipment ..................................................................................................12-16 Airplane Safety ............................................................................................................................... 17 Airplane Capabilities and Limitations ........................................................................................18-21 -
NASA Composite Materials Development: Lessons Learned and Future Challenges
NASA Composite Materials Development: Lessons Learned and Future Challenges Dr. Darrel R. Tenney AS&M Senior Engineer (Retired NASA Engineer) Analytical Services & Materials, Inc. 107 Research Drive, Hampton, Virginia 23666-1340 [email protected] Dr. John G. Davis, Jr. AS&M Senior Scientist (Retired NASA Engineer) Analytical Services & Materials, Inc. 107 Research Drive, Hampton, Virginia 23666-1340 [email protected] Dr. R. Byron Pipes John L. Bray Distinguished Professor of Engineering Purdue University, West Lafayette, IN 47907 [email protected] Dr. Norman Johnston Technical Consultant (Retired NASA Scientist) 30046 Creek Run, Buena Vista, CO 81211 [email protected] NATO Research and Technology Agency (RTA) AVT 164 - Support of composite systems Fall 2009 – Bonn Abstract Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960’s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. -
ICON A5 Checklists Issue A0
CHECKLISTS MODEL A5 Publication ICA014502, Issue A0 Date: 31 October 2019 ICON Aircraft / 2141 ICON Way, Vacaville, CA 95688 WARNING: Sport flying has inherent risks that can result in serious injury or death. It is the pilot in command’s sole respon- sibility to ensure the safety of themselves and their passengers. These checklists are provided for refer- ence only and are not all inclusive. It is the pilot’s responsibility to operate this aircraft IAW the POH and Maintenance Manual, as well as to comply with all applicable FAA regulations, ASTM standards, and any local government restrictions. ICON Aircraft Inc. 2141 ICON Way Vacaville, CA 95688 https://www.iconaircraft.com All rights reserved. No part of this manual may be reproduced or copied in any form or by any means without written permission of ICON Aircraft, Inc. II ICON A5 Normal Procedures PREFLIGHT INSPECTION Prior to flight, the aircraft should be inspected in accordance with the following checklists and in the sequence shown in the diagram. Carefully verify that the airplane is in a condition for safe operation. PREFLIGHT INSPECTION PROCESS 1 10 11 2 9 3 8 4 7 5 6 THIS IS NOT ALL INCLUSIVE. IT IS THE PILOT’S RESPONSIBILITY TO EXERCISE GOOD JUDGE- MENT AND TO COMPLY WITH ALL ASPECTS OF THE ICON A5 PILOT’S OPERATING HAND- BOOK, FAA REGULATIONS, ASTM STANDARDS, AND APPLICABLE LAWS. 1 ICON A5 Normal Procedures (1) Cabin 1. Baggage Area—SECURE stored items 2. Throttle Lever—CHECK freedom of motion 3. Controls—CHECK freedom of motion to all stops 4.