(12) Patent Application Publication (10) Pub. No.: US 2011/0196614 A1 Banchereau Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0196614 A1 Banchereau Et Al US 2011 0196614A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0196614 A1 Banchereau et al. (43) Pub. Date: Aug. 11, 2011 (54) BLOODTRANSCRIPTIONAL SIGNATURE OF Related U.S. Application Data MYCOBACTERIUMITUBERCULOSS INFECTION (60) Provisional application No. 61/075,728, filed on Jun. 25, 2008. (75) Inventors: Jacques F. Banchereau, Dallas, TX Publication Classification (US); Damien Chaussabel, Bainbridge Island, WA (US); Anne (51) Int. Cl. O'Garra, London (GB); Matthew G06F 9/00 (2011.01) Berry, London (GB); Onn Min GOIN 33/48 (2006.01) Kon, London (GB) (52) U.S. Cl. .......................................................... 702/19 (57) ABSTRACT (73) Assignees: BAYLOR RESEARCH INSTITUTE, Dallas, TX (US); The present invention includes methods, systems and kits for NATIONAL INSTITUTE FOR distinguishing between active and latent mycobacterium MEDICAL RESEARCH, London tuberculosis infection in a patient Suspected of being infected (GB); IMPERIAL COLLEGE with mycobacterium tuberculosis, and distinguishing Such HEALTHCARE NHS TRUST, patients from uninfected individuals, the method including London (GB) the steps of obtaining a gene expression dataset from a whole blood obtained sample from the patient and determining the (21) Appl. No.: 12/602,488 differential expression of one or more transcriptional gene expression modules that distinguish between infected and (22) PCT Fled: Jun. 25, 2009 non-infected patients, wherein the dataset demonstrates an aggregate change in the levels of polynucleotides in the one or (86) PCT NO.: PCT/USO9A48698 more transcriptional gene expression modules as compared to matched non-infected patients, thereby distinguishing S371 (c)(1), between active and latent mycobacterium tuberculosis infec (2), (4) Date: Apr. 25, 2011 tion. Patent Application Publication Aug. 11, 2011 Sheet 2 of 19 US 2011/O196614 A1 igure 2 Active PTB Latent TB Healthy Controls Patent Application Publication Aug. 11, 2011 Sheet 3 of 19 US 2011/O196614 A1 Active PTB Figure 3A 8. Latent TB Healthy BCG non-vaccinated i Patent Application Publication Aug. 11, 2011 Sheet 4 of 19 US 2011/O196614 A1 Active PTB Figure 3B is Latent TB 88. Healthy BCG non-vaccinated Healthy BCG vaccinated Re&bsis Patent Application Publication Aug. 11, 2011 Sheet 5 of 19 US 2011/O196614 A1 Figure 3C E. g. its east Pala 2 DAL felloteh sculius III:4:53. FR33 cs: IF-38s Active PTB iii. Latent TB . s: Healthy BCG ics Cefa-Intersson L-3UDALF-001BH sci-m-ins non-vaccinate Healthy BCG vaccinated Patent Application Publication Aug. 11, 2011 Sheet 6 of 19 US 2011/O196614 A1 Active PTB Figure 3D Latent TB S Healthy BCG non-vaccinated Healthy BCG I vaccinated (3.3 TF10 8 &ST:LE TIFRSFSR, i: colored by P38 8&": is: Ps: 282 Patent Application Publication Aug. 11, 2011 Sheet 8 of 19 US 2011/O196614 A1 Active PTB Figure 5A Latent TB 8 Healthy Controls CD273/PDL2 & & Active PTB Patent Application Publication Aug. 11, 2011 Sheet 9 of 19 US 2011/O196614 A1 Figure 5B Control Control BCG BCG Patent Application Publication Aug. 11, 2011 Sheet 12 of 19 US 2011/O196614 A1 Figure 8A : P&S 3 8 Normalised Expression 8. Healthy Controls Latent TB Selected & Trek: P22431838 T-Rat P&L 2.2xl.a.LStatsberged Colored by: F23. 38'ay8TB-Referen: Default interpretation Selected Condition Tres: P22428 May8TERef P&L 22x DAL Statsberged 3 sns List: Merged ListStats.LTE and FTB (118 Branch color parameter: Study group2 Patent Application Publication Aug. 11, 2011 Sheet 18 of 19 US 2011/O196614 A1 Modules must have >25% of the total genes change in the direction represented and the number of genes changing in that UNDER-XP. direction must be > 10. is 38 8 is 3: Functionai interpretation % pixie sets x.S. issi: ::is Erysidey8s ississis isis SS 8-celis interists &isis; iii.3883& S iia:gto: isitos(xis:’atiss irreissertities {yiotixi &isis Patent Application Publication Aug. 11, 2011 Sheet 19 of 19 US 2011/O196614 A1 Figure 10 Modules must have >25% of the total genes change in the direction represented and the number of genes changing in that direction must be >10. S3 c Functional interpretation Pisia (sis Erissyfes seis Š: i: sists 8&isis iis&g: S. iii.338gsix isix-sopsis proteis facieges risis: {yin: xis: sis is sis: is irogiris US 2011/0196614 A1 Aug. 11, 2011 BLOODTRANSCRIPTIONAL SIGNATURE OF demonstrating immunoreactivity to specific M. tuberculosis MYCOBACTERIUMITUBERCULOSS antigens, which are absent in BCG. Reactivity to these M. INFECTION tuberculosis antigens, as measured by production of IFN-Y by blood cells in Interferon Gamma Release Assays (IGRA), TECHNICAL FIELD OF THE INVENTION however, does not differentiate latent from active disease. Latent TB is defined in the clinic by a delayed type hypersen 0001. The present invention relates in general to the field sitivity reaction when the patient is intradermally challenged of Mycobacterium tuberculosis infection, and more particu with PPD, together with an IGRA positive result, in the larly, to a system, method and apparatus for the diagnosis, absence of clinical symptoms or signs, or radiology Sugges prognosis and monitoring of latent and active Mycobacterium tive of active disease. The reactivation of latent/dormant tuberculosis infection and disease progression before, during tuberculosis (TB) presents a major health hazard with the risk and after treatment. of transmission to other individuals, and thus biomarkers reflecting differences in latent and active TB patients would LENGTHY TABLE be of use in disease management, particularly since anti 0002 The patent application contains a lengthy table sec mycobacterial drug treatment is arduous and can result in tion. A copy of the table is available in electronic form from serious side-effects. the USPTO web site (http://seqdata.uspto.gov/). An elec tronic copy of the table will also be available from the USPTO SUMMARY OF THE INVENTION upon request and payment of the fee set forth in 37 CFR 0006. The present invention includes methods and kits for 1.19(b)(3). the identification of latent versus active tuberculosis (TB) patients, as compared to healthy controls. In one embodi BACKGROUND OF THE INVENTION ment, microarray analysis of blood of a distinct and reciprocal 0003. Without limiting the scope of the invention, its back immune signature is used to determine, diagnose, track and ground is described in connection with the identification and treat latent versus active tuberculosis (TB) patients. treatment of Mycobacterium tuberculosis infection. 0007. In one embodiment, the present invention includes 0004 Pulmonary tuberculosis (PTB) is a major and methods, systems and kits for distinguishing between active increasing cause of morbidity and mortality worldwide and latent Mycobacterium tuberculosis infection in a patient caused by Mycobacterium tuberculosis (M. tuberculosis). suspected of being infected with Mycobacterium tuberculo However, the majority of individuals infected with M. tuber sis, the method including the steps of obtaining a gene culosis remain asymptomatic, retaining the infection in a expression dataset from a whole blood sample from the latent form and it is thought that this latent state is maintained patient; determining the differential expression of one or by an active immune response (WHO; Kaufmann, SH & more transcriptional gene expression modules that distin McMichael, A. J., Nat Med, 2005). This is supported by guish between infected patients and non-infected individuals, reports showing that treatment of patients with Crohn's Dis wherein the dataset demonstrates an aggregate change in the ease or Rheumatoid Arthritis with anti-TNF antibodies, levels of polynucleotides in the one or more transcriptional results in improvement of autoimmune symptoms, but on the gene expression modules as compared to matched non-in other hand causes reactivation of TB in patients previously in fected individuals, and distinguishing between active and contact with M. tuberculosis (Keane). The immune response latent Mycobacterium tuberculosis (TB) infection based on to M. tuberculosis is multifactorial and includes genetically the one or more transcriptional gene expression modules that determined host factors, such as TNF, and IFN-Y and IL-12, of differentiate between active and latent infection. In one the Th1 axis (Reviewed in Casanova, Ann Rev. Newport). aspect, the invention may also include the step of using the However, immune cells from adult pulmonary TB patients determined comparative gene product information to formu can produce IFN-y, IL-12 and TNF, and IFN-y therapy does late a diagnosis. not help to ameliorate disease (Reviewed in Reljic, 2007, J 0008. In another aspect, the method may also include the Interferon & Cyt Res., 27, 353-63), suggesting that a broader step of using the determined comparative gene product infor number of host immune factors are involved in protection mation to formulate a prognosis or the step of using the against M. tuberculosis and the maintenance of latency. Thus, determined comparative gene product information to formu a knowledge of host factors induced in latent versus active TB late a treatment plan. In one alternative aspect, the method may provide information with respect to the immune may include the step of distinguishing patients with latent TB response which can control infection with M. tuberculosis. from active TB patients. In one aspect, the module may 0005. The diagnosis of PTB can be difficult and problem include a dataset of the genes in modules M1.2, M1.3, M1.4. atic for a number of reasons. Firstly demonstrating the pres M1.5, M1.8, M2.1, M2.4, M2.8, M3.1, M3.2, M3.3, M3.4, ence of typical M. tuberculosis bacilli in the sputum by M3.6, M3.7, M3.8 or M3.9 to detect active pulmonary infec microscopy examination (Smear positive) has a sensitivity of tion. In another aspect, the module may include a dataset of only 50-70%, and positive diagnosis requires isolation of M. the genes in modules M1.5, M2.1, M2.6, M2.10, M3.2 or tuberculosis by culture, which can take up to 8 weeks.
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Ailanthone Inhibits Non-Small Cell Lung Cancer Cell Growth Through Repressing DNA Replication Via Downregulating RPA1
    FULL PAPER British Journal of Cancer (2017) 117, 1621–1630 | doi: 10.1038/bjc.2017.319 Keywords: ailanthone; non-small cell lung cancer; DNA replication; RPA1; Chinese medicine Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1 Zhongya Ni1, Chao Yao1, Xiaowen Zhu1, Chenyuan Gong1, Zihang Xu2, Lixin Wang3, Suyun Li4, Chunpu Zou2 and Shiguo Zhu*,1,3 1Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China; 2Department of Internal Classic of Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China; 3Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China and 4Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China Background: The identification of bioactive compounds from Chinese medicine plays a crucial role in the development of novel reagents against non-small cell lung cancer (NSCLC). Methods: High throughput screening assay and analyses of cell growth, cell cycle, apoptosis, cDNA microarray, BrdU incorporation and gene expression were performed. Results: Ailanthone (Aila) suppressed NSCLC cell growth and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously xenografted and orthotopic lung tumour models, leading to prolonged survival of tumour-bearing mice. Moreover, Aila induced cell cycle arrest in a dose-independent manner but did not induce apoptosis in all NSCLC cells.
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • Organization, Evolution and Function of Alpha Satellite Dna
    ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6
    [Show full text]
  • Impact of Fluorescence in Situ Hybridization in the Detection of Cryptic Fusion Transcript PML/RARA and a Complex T(5;15;17) in a Case of Acute Promyelocytic Leukemia
    Impact of Fluorescence in Situ Hybridization in the Detection of Cryptic Fusion Transcript PML/RARA and A Complex t(5;15;17) in a Case of Acute Promyelocytic Leukemia Gönül OGUR*,****, Turgay FEN**, Gülsan SUCAK***, Pierre HEIMANN*, Gaye CANKUÞ****, Rauf HAZNEDAR**** * Univérsité Libre de Bruxelles, Hôpital Erasme, Service Génétique Medicale, Bruxelles, BELGIUM ** Oncology Hospital, Ankara, TURKEY *** Adult Hematology Department, Faculty of Medicine, Gazi University, Ankara, TURKEY **** GEN-MED Genetic Diseases and Prenatal Diagnosis Center, Ankara, TURKEY ABSTRACT Genetic aspects of a 28 year-old female patient with typical morphological and clinical features of acute promyelocytic leukemia is presented. Pml/rara fusion transcript and a complex translocation involving chromosomes 5, 15 and 17 were detected by fluorescence in situ hybridization (FISH) tech- nique which was applied as in adjunct to conventional cytogenetics. The patient deceased soon in spite of the immediate ATRA and cytostatic therapy. Key Words: FISH, PML/RARA, Acute promyelocytic leukemia. Turk J Haematol 2000;17(4):207-212. INTRODUCTION sociated with t(15;17)(q22;q12-21). The diagnosis of APL and the detection of residual disease are Acute promyelocytic leukemia (APL) is a rara based on the presence of this translocati- distinct subtype of myeloid leukemia characterized on[1,3,4,5,6,7,15]. Rarely alternative balanced trans- by invasion of bone marrow by hypergranular le- locations have been described in subtypes of APL, ukemia cells, by specific translocations almost al- and as more cases are being evaluated, complex, ways involving chromosome 17 and by a high sen- variant translocations are increasingly recogni- sitivity of the promyelocytic blasts to retinoic acid zed[17,19,20,22, 24].
    [Show full text]
  • Clipped Histone H3 Is Integrated Into Nucleosomes of DNA Replication
    Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite Plasmodium falciparum Abril Marcela Herrera-solorio, Shruthi Sridhar Vembar, Cameron Ross Macpherson, Daniela Lozano-amado, Gabriela Romero Meza, Beatriz Xoconostle-cazares, Rafael Miyazawa Martins, Patty Chen, Miguel Vargas, Artur Scherf, et al. To cite this version: Abril Marcela Herrera-solorio, Shruthi Sridhar Vembar, Cameron Ross Macpherson, Daniela Lozano- amado, Gabriela Romero Meza, et al.. Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite Plasmodium falciparum. EMBO Reports, EMBO Press, 2019, 20 (4), pp.e46331. 10.15252/embr.201846331. hal-02321832 HAL Id: hal-02321832 https://hal.archives-ouvertes.fr/hal-02321832 Submitted on 9 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Scientific Report Clipped histone H3 is integrated into nucleosomes of DNA replication genes in the human malaria parasite
    [Show full text]
  • Caracterització De L'efecte De Compostos Naturals En Models In
    Caracterització de l’efecte de compostos naturals en models in vitro i in vivo de càncer de còlon Susana Sánchez Tena ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Anti-RPA1 Monoclonal Antibody, Clone 3I21 (DCABH-3680) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-RPA1 Monoclonal antibody, clone 3I21 (DCABH-3680) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse monoclonal to RPA70 Antigen Description Plays an essential role in several cellular processes in DNA metabolism including replication, recombination and DNA repair. Binds and subsequently stabilizes single-stranded DNA intermediates and thus prevents complementary DNA from reannealing.Functions as component of the alternative replication protein A complex (aRPA). aRPA binds single-stranded DNA and probably plays a role in DNA repair; it does not support chromosomal DNA replication and cell cycle progression through S-phase. In vitro, aRPA cannot promote efficient priming by DNA polymerase alpha but supports DNA polymerase delta synthesis in the presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange. Immunogen Purified Human RPA70 protein Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone 3I21 Purity Protein G purified Conjugate Unconjugated Applications WB, IP Positive Control HeLa cells Format Liquid Size 500 μl Buffer pH: 7.40; Preservative: 0.09% Sodium azide; Constituents: 99% PBS, 0.02% BSA Preservative 0.09% Sodium Azide Storage Store at +4°C short term (1-2 weeks). Store at -20°C or -80°C. Avoid freeze / thaw cycle. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics
    [Show full text]
  • VITA Peter M. Govey
    The Pennsylvania State University The Graduate School Department of Bioengineering MULTISCALE ANABOLIC BONE RESPONSES TO FLUID FLOW AND POST-IRRADITION LOADING A Dissertation in Bioengineering by Peter M. Govey © 2015 Peter M. Govey Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The dissertation of Peter M. Govey was reviewed and approved* by the following: Henry J. Donahue Michael and Myrtle Baker Professor of Orthopaedics and Rehabilitation, Cellular and Molecular Physiology, and Bioengineering Dissertation Advisor Chair of Committee Justin Brown Assistant Professor of Bioengineering Gregory Lewis Assistant Professor of Orthopaedics and Rehabilitation Christopher Niyibizi Associate Professor of Orthopaedics and Rehabilitation Christopher Siedlecki Professor of Surgery and Bioengineering Cheng Dong Distinguished Professor of Bioengineering Head of the Department of Bioengineering *Signatures are on file in the Graduate School. ii ABSTRACT Bone responds to its mechanical environment, strengthening in response to daily use and wasting during disuse. Examples of disuse include bed rest, immobility, and microgravity experienced in space. Bone resorption may be exacerbated by aging, radiation exposure, sex hormone reduction, and various other pathologies, leading to osteoporosis. Resulting insufficiency fractures represent a tremendous toll on our population’s health, and current treatments such as anti-resorptive bisphosphonates are stop-gap measures with accompanying complications. Improved
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Basic Genetic Mechanisms— the Ways in Which the Cell Maintains, Replicates, Expresses, and Occasionally Improves the Genetic Information Carried in Its DNA
    BASIC GENETIC PART MECHANISMS II 4 DNA AND CHROMOSOMES 5 DNA REPLICATION, REPAIR, AND RECOMBINATION 6 HOW CELLS READ THE GENOME: FROM DNA TO PROTEIN 7 CONTROL OF GENE EXPRESSION The ribosome. The large subunit of the bacterial ribosome is shown here with the ribosomal RNA shown in gray and the ribosomal proteins in gold.The ribosome is the complex catalytic machine at the heart of protein synthesis. (From N. Ban et al., Science 289:905–920, 2000. © AAAS.) The nucleosome. The basic structural unit of all eucaryotic chromosomes is the nucleosome.The DNA double helix (gray) is wrapped around a core particle of histone proteins (colored) to create the nucleosome. Nucleosomes are spaced roughly 200 nucleotide pairs apart along the chromosomal DNA. (Reprinted by permission from K. Luger et al., Nature 389:251–260, 1997. © Macmillan Magazines Ltd.) 4 THE STRUCTURE AND FUNCTION DNA AND OF DNA CHROMOSOMAL DNA AND ITS PACKAGING IN THE CHROMATIN CHROMOSOMES FIBER THE GLOBAL STRUCTURE OF CHROMOSOMES Life depends on the ability of cells to store, retrieve, and translate the genetic instructions required to make and maintain a living organism. This hereditary information is passed on from a cell to its daughter cells at cell division, and from one generation of an organism to the next through the organism’s repro- ductive cells. These instructions are stored within every living cell as its genes, the information-containing elements that determine the characteristics of a species as a whole and of the individuals within it. As soon as genetics emerged as a science at the beginning of the twentieth century, scientists became intrigued by the chemical structure of genes.
    [Show full text]
  • Supplementary Materials and Tables a and B
    SUPPLEMENTARY MATERIAL 1 Table A. Main characteristics of the subset of 23 AML patients studied by high-density arrays (subset A) WBC BM blasts MYST3- MLL Age/Gender WHO / FAB subtype Karyotype FLT3-ITD NPM status (x109/L) (%) CREBBP status 1 51 / F M4 NA 21 78 + - G A 2 28 / M M4 t(8;16)(p11;p13) 8 92 + - G G 3 53 / F M4 t(8;16)(p11;p13) 27 96 + NA G NA 4 24 / M PML-RARα / M3 t(15;17) 5 90 - - G G 5 52 / M PML-RARα / M3 t(15;17) 1.5 75 - - G G 6 31 / F PML-RARα / M3 t(15;17) 3.2 89 - - G G 7 23 / M RUNX1-RUNX1T1 / M2 t(8;21) 38 34 - + ND G 8 52 / M RUNX1-RUNX1T1 / M2 t(8;21) 8 68 - - ND G 9 40 / M RUNX1-RUNX1T1 / M2 t(8;21) 5.1 54 - - ND G 10 63 / M CBFβ-MYH11 / M4 inv(16) 297 80 - - ND G 11 63 / M CBFβ-MYH11 / M4 inv(16) 7 74 - - ND G 12 59 / M CBFβ-MYH11 / M0 t(16;16) 108 94 - - ND G 13 41 / F MLLT3-MLL / M5 t(9;11) 51 90 - + G R 14 38 / F M5 46, XX 36 79 - + G G 15 76 / M M4 46 XY, der(10) 21 90 - - G NA 16 59 / M M4 NA 29 59 - - M G 17 26 / M M5 46, XY 295 92 - + G G 18 62 / F M5 NA 67 88 - + M A 19 47 / F M5 del(11q23) 17 78 - + M G 20 50 / F M5 46, XX 61 59 - + M G 21 28 / F M5 46, XX 132 90 - + G G 22 30 / F AML-MD / M5 46, XX 6 79 - + M G 23 64 / M AML-MD / M1 46, XY 17 83 - + M G WBC: white blood cell.
    [Show full text]