Notes on Linear Divisible Sequences and Their Construction: a Computational Approach

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Linear Divisible Sequences and Their Construction: a Computational Approach UNLV Theses, Dissertations, Professional Papers, and Capstones May 2018 Notes on Linear Divisible Sequences and Their Construction: A Computational Approach Sean Trendell Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Mathematics Commons Repository Citation Trendell, Sean, "Notes on Linear Divisible Sequences and Their Construction: A Computational Approach" (2018). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3336. http://dx.doi.org/10.34917/13568765 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. NOTES ON LINEAR DIVISIBLE SEQUENCES AND THEIR CONSTRUCTION: A COMPUTATIONAL APPROACH by Sean Trendell Bachelor of Science - Computer Mathematics Keene State College 2005 A thesis submitted in partial fulfillment of the requirements for the Master of Science - Mathematical Sciences Department of Mathematical Sciences College of Sciences The Graduate College University of Nevada, Las Vegas May 2018 Copyright © 2018 by Sean Trendell All Rights Reserved Thesis Approval The Graduate College The University of Nevada, Las Vegas April 4, 2018 This thesis prepared by Sean Trendell entitled Notes on Linear Divisible Sequences and Their Construction: A Computational Approach is approved in partial fulfillment of the requirements for the degree of Master of Science – Mathematical Sciences Department of Mathematical Sciences Peter Shiue, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Chair Graduate College Interim Dean Derrick DuBose, Ph.D. Examination Committee Member Arthur Baragar, Ph.D. Examination Committee Member Yi-Tung Chen, Ph.D. Graduate College Faculty Representative ii ABSTRACT NOTES ON LINEAR DIVISIBLE SEQUENCES AND THEIR CONSTRUCTION: A COMPUTATIONAL APPROACH by Sean Trendell Dr. Pete Shiue, Examination Committee Chair Professor of Mathematical Sciences University of Nevada, Las Vegas, USA In this Masters thesis, we examine linear divisible sequences. A linear divisible sequence is any sequence fangn≥0 that can be expressed by a linear homogeneous recursion relation that is also a divisible sequence. A sequence fangn≥0 is called a divisible sequence if it has the property that if njm, then anjam. A sequence of numbers fangn≥0 is called a linear homogeneous recurrence sequence of order m if it can be written in the form an+m = p1an+m−1 + p2an+m−2 + ··· + pm−1an+1 + pman; n ≥ 0; for some constants p1; p2; :::; pm with pm 6= 0 and initial conditions a0; a1; :::; am−1. We focus on taking products, powers, and products of powers of second order linear divisible sequences in order to construct higher order linear divisible sequences. We hope to find a pattern in these constructions so that we can easily form higher order linear divisible sequence. iii ACKNOWLEDGEMENTS First, I would like to thank Dr. Peter Shiue for being an excellent advisor. He helped me come up with a topic for this thesis, which was both interesting and difficult. I would also like to thank the other members of my committee: Dr. Derrick DuBose, Dr. Arthur Baragar, and Dr. Yi-Tung Chen. I would also like to thank Daniel Corral for all the advice he gave me and believing that that I could finish even when I was worried that I could not. I would like to thank Daniel Lautzenheiser for introducing me to Sage, the computer algebra program, which, without its computational efficiency, I would not have been able to complete much of the work in this thesis. I would also like to thank Edward Huynh for helping me with editing this thesis. iv TABLE OF CONTENTS ABSTRACT iii ACKNOWLEDGEMENTS iv LIST OF TABLES vi 1 INTRODUCTION 1 2 SECOND ORDER LINEAR DIVISIBLE SEQUENCES4 3 PRODUCTS OF SECOND ORDER LINEAR DIVISIBLE SEQUENCES 10 3.1 Product of Two Distinct Second Order Linear Divisible Sequences ............... 15 3.2 Product of Three Distinct Second Order Linear Divisible Sequences............... 20 3.3 Product of Four Distinct Second Order Linear Divisible Sequences ............... 28 4 POWERS OF SECOND ORDER LINEAR DIVISIBLE SEQUENCES 48 4.1 Square of a Second Order Linear Divisible Sequences....................... 48 4.2 Cube of a Second Order Linear Divisible Sequences........................ 52 4.3 Fourth Power of a Second Order Linear Divisible Sequences................... 56 4.4 Fifth Power of a Second Order Linear Divisible Sequences.................... 60 4.5 Sixth Power of a Second Order Linear Divisible Sequences.................... 65 5 PRODUCTS OF POWERS 71 5.1 Product of the Square of a Second Order Times a Second Order ................ 71 5.2 Product of the Squares of Two Second Order ........................... 78 6 POLYNOMIAL LINEAR DIVISIBLE SEQUENCES 89 6.1 Products of Polynomial Linear Divisible Sequences........................ 89 6.2 Powers of Polynomial Linear Divisible Sequences......................... 91 6.3 Products of Powers of Polynomial Linear Divisible Sequences .................. 94 7 CONCLUSION 97 APPENDIX: COEFFICIENTS PRODUCT FOUR SEQUENCES 103 BIBLIOGRAPHY 104 CURRICULUM VITAE 105 v LIST OF TABLES 3.1 Terms of the sequence fwn = FnNng ................................ 19 3.2 Terms of the sequence fwn = PnNng ................................ 20 3.3 Terms of the sequence fwn = MnNng ............................... 20 3.4 Terms of the sequence fwn = FnPnMng .............................. 28 3.5 Terms of the sequence fwn = FnPnMnNng ............................ 47 2 4.1 Terms of the sequence wn = Fn ................................. 51 2 4.2 Terms of the sequence wn = Pn ................................. 51 2 4.3 Terms of the sequence wn = Mn ................................. 51 2 4.4 Terms of the sequence wn = Nn ................................. 52 3 4.5 Terms of the sequence wn = Fn ................................. 55 3 4.6 Terms of the sequence wn = Pn ................................. 55 3 4.7 Terms of the sequence wn = Mn ................................. 56 3 4.8 Terms of the sequence wn = Nn ................................. 56 4 4.9 Terms of the sequence wn = Fn ................................. 59 4 4.10 Terms of the sequence wn = Pn ................................. 59 4 4.11 Terms of the sequence wn = Mn ................................. 60 4 4.12 Terms of the sequence wn = Nn ................................. 60 5 4.13 Terms of the sequence wn = Fn ................................. 64 5 4.14 Terms of the sequence wn = Pn ................................. 64 5 4.15 Terms of the sequence wn = Mn ................................. 64 5 4.16 Terms of the sequence wn = Nn ................................. 65 6 4.17 Terms of the sequence wn = Fn ................................. 69 6 4.18 Terms of the sequence wn = Pn ................................. 69 6 4.19 Terms of the sequence wn = Mn ................................. 70 6 4.20 Terms of the sequence wn = Nn ................................. 70 2 5.1 Terms of the sequence wn = Fn Pn ................................ 76 2 5.2 Terms of the sequence wn = Pn Fn ................................ 77 2 5.3 Terms of the sequence wn = Fn Mn ............................... 77 2 5.4 Terms of the sequence wn = MnFn ............................... 77 2 5.5 Terms of the sequence wn = Pn Mn ............................... 78 2 5.6 Terms of the sequence wn = MnPn ............................... 78 2 2 5.7 Terms of the sequence wn = Fn Pn ................................ 86 2 2 5.8 Terms of the sequence wn = Fn Mn ............................... 86 2 2 5.9 Terms of the sequence wn = Fn Nn ................................ 87 2 2 5.10 Terms of the sequence wn = Pn Mn ............................... 87 2 2 5.11 Terms of the sequence wn = Pn Nn ................................ 87 2 2 5.12 Terms of the sequence wn = MnNn ............................... 88 7.1 Products of second order linear divisible sequences to make a specific order .......... 99 vi CHAPTER 1 INTRODUCTION In this thesis we examine the construction of higher order linear divisible sequences. A linear divisible sequence is any sequence of numbers fangn≥0 that can be expressed as a linear homogeneous recurrence relation that is also a divisible sequence. We also look at polynomial linear divisible sequences. A polyno- mial linear divisible sequence is any sequence of polynomials fan(x)gn≥0 that can be expressed as a linear homogeneous recurrence relation that is also a divisible sequence. For the rest of this thesis, we will define fang to mean fangn≥0 and fan(x)g to mean fan(x)gn≥0. A sequence of numbers fang is called a divisibility sequence if it has the property that whenever njm, then anjam. Our definition of divides in the integral domain states that if R is an integral domain and a; b 2 R, then we say ajb if there exists k 2 R such that ak = b. Thus, if fang is a sequence of elements of the ring of integers Z, then anjam means there is a k 2 Z such that ank = am.
Recommended publications
  • ON SOME GAUSSIAN PELL and PELL-LUCAS NUMBERS Abstract
    Ordu Üniv. Bil. Tek. Derg., Cilt:6, Sayı:1, 2016,8-18/Ordu Univ. J. Sci. Tech., Vol:6, No:1,2016,8-18 ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS Serpil Halıcı*1 Sinan Öz2 1Pamukkale Uni., Science and Arts Faculty,Dept. of Math., KınıklıCampus, Denizli, Turkey 2Pamukkale Uni., Science and Arts Faculty,Dept. of Math., Denizli, Turkey Abstract In this study, we consider firstly the generalized Gaussian Fibonacci and Lucas sequences. Then we define the Gaussian Pell and Gaussian Pell-Lucas sequences. We give the generating functions and Binet formulas of Gaussian Pell and Gaussian Pell- Lucas sequences. Moreover, we obtain some important identities involving the Gaussian Pell and Pell-Lucas numbers. Keywords. Recurrence Relation, Fibonacci numbers, Gaussian Pell and Pell-Lucas numbers. Özet Bu çalışmada, önce genelleştirilmiş Gaussian Fibonacci ve Lucas dizilerini dikkate aldık. Sonra, Gaussian Pell ve Gaussian Pell-Lucas dizilerini tanımladık. Gaussian Pell ve Gaussian Pell-Lucas dizilerinin Binet formüllerini ve üreteç fonksiyonlarını verdik. Üstelik, Gaussian Pell ve Gaussian Pell-Lucas sayılarını içeren bazı önemli özdeşlikler elde ettik. AMS Classification. 11B37, 11B39.1 * [email protected], 8 S. Halıcı, S. Öz 1. INTRODUCTION From (Horadam 1961; Horadam 1963) it is well known Generalized Fibonacci sequence {푈푛}, 푈푛+1 = 푝푈푛 + 푞푈푛−1 , 푈0 = 0 푎푛푑 푈1 = 1, and generalized Lucas sequence {푉푛} are defined by 푉푛+1 = 푝푉푛 + 푞푉푛−1 , 푉0 = 2 푎푛푑 푉1 = 푝, where 푝 and 푞 are nonzero real numbers and 푛 ≥ 1. For 푝 = 푞 = 1, we have classical Fibonacci and Lucas sequences. For 푝 = 2, 푞 = 1, we have Pell and Pell- Lucas sequences.
    [Show full text]
  • 08 Cyclotomic Polynomials
    8. Cyclotomic polynomials 8.1 Multiple factors in polynomials 8.2 Cyclotomic polynomials 8.3 Examples 8.4 Finite subgroups of fields 8.5 Infinitude of primes p = 1 mod n 8.6 Worked examples 1. Multiple factors in polynomials There is a simple device to detect repeated occurrence of a factor in a polynomial with coefficients in a field. Let k be a field. For a polynomial n f(x) = cnx + ::: + c1x + c0 [1] with coefficients ci in k, define the (algebraic) derivative Df(x) of f(x) by n−1 n−2 2 Df(x) = ncnx + (n − 1)cn−1x + ::: + 3c3x + 2c2x + c1 Better said, D is by definition a k-linear map D : k[x] −! k[x] defined on the k-basis fxng by D(xn) = nxn−1 [1.0.1] Lemma: For f; g in k[x], D(fg) = Df · g + f · Dg [1] Just as in the calculus of polynomials and rational functions one is able to evaluate all limits algebraically, one can readily prove (without reference to any limit-taking processes) that the notion of derivative given by this formula has the usual properties. 115 116 Cyclotomic polynomials [1.0.2] Remark: Any k-linear map T of a k-algebra R to itself, with the property that T (rs) = T (r) · s + r · T (s) is a k-linear derivation on R. Proof: Granting the k-linearity of T , to prove the derivation property of D is suffices to consider basis elements xm, xn of k[x]. On one hand, D(xm · xn) = Dxm+n = (m + n)xm+n−1 On the other hand, Df · g + f · Dg = mxm−1 · xn + xm · nxn−1 = (m + n)xm+n−1 yielding the product rule for monomials.
    [Show full text]
  • Adopting Number Sequences for Shielding Information
    Manish Bansal et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.11, November- 2014, pg. 660-667 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 3, Issue. 11, November 2014, pg.660 – 667 RESEARCH ARTICLE Adopting Number Sequences for Shielding Information Mrs. Sandhya Maitra, Mr. Manish Bansal, Ms. Preety Gupta Associate Professor - Department of Computer Applications and Institute of Information Technology and Management, India Student - Department of Computer Applications and Institute of Information Technology and Management, India Student - Department of Computer Applications and Institute of Information Technology and Management, India [email protected] , [email protected] , [email protected] Abstract:-The advancement of technology and global communication networks puts up the question of safety of conveyed data and saved data over these media. Cryptography is the most efficient and feasible mode to transfer security services and also Cryptography is becoming effective tool in numerous applications for information security. This paper studies the shielding of information with the help of cryptographic function and number sequences. The efficiency of the given method is examined, which assures upgraded cryptographic services in physical signal and it is also agile and clear for realization. 1. Introduction Cryptography is the branch of information security. The basic goal of cryptography is to make communication secure in the presence of third party (intruder). Encryption is the mechanism of transforming information into unreadable (cipher) form. This is accomplished for data integrity, forward secrecy, authentication and mainly for data confidentiality.
    [Show full text]
  • On the Connections Between Pell Numbers and Fibonacci P-Numbers
    Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 27, 2021, No. 1, 148–160 DOI: 10.7546/nntdm.2021.27.1.148-160 On the connections between Pell numbers and Fibonacci p-numbers Anthony G. Shannon1, Ozg¨ ur¨ Erdag˘2 and Om¨ ur¨ Deveci3 1 Warrane College, University of New South Wales Kensington, Australia e-mail: [email protected] 2 Department of Mathematics, Faculty of Science and Letters Kafkas University 36100, Turkey e-mail: [email protected] 3 Department of Mathematics, Faculty of Science and Letters Kafkas University 36100, Turkey e-mail: [email protected] Received: 24 April 2020 Revised: 4 January 2021 Accepted: 7 January 2021 Abstract: In this paper, we define the Fibonacci–Pell p-sequence and then we discuss the connection of the Fibonacci–Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci–Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci–Pell p-sequence. Furthermore, we derive relationships between the Fibonacci–Pell p-numbers and their permanent, determinant and sums of certain matrices. Keywords: Pell sequence, Fibonacci p-sequence, Matrix, Representation. 2010 Mathematics Subject Classification: 11K31, 11C20, 15A15. 1 Introduction The well-known Pell sequence fPng is defined by the following recurrence relation: Pn+2 = 2Pn+1 + Pn for n ≥ 0 in which P0 = 0 and P1 = 1. 148 There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence [22, 23] is one of them: Fp (n) = Fp (n − 1) + Fp (n − p − 1) for p = 1; 2; 3;::: and n > p in which Fp (0) = 0, Fp (1) = ··· = Fp (p) = 1.
    [Show full text]
  • Grade 7 Mathematics Strand 6 Pattern and Algebra
    GR 7 MATHEMATICS S6 1 TITLE PAGE GRADE 7 MATHEMATICS STRAND 6 PATTERN AND ALGEBRA SUB-STRAND 1: NUMBER PATTERNS SUB-STRAND 2: DIRECTED NUMBERS SUB-STRAND 3: INDICES SUB-STARND 4: ALGEBRA GR 7 MATHEMATICS S6 2 ACKNOWLEDGEMENT Acknowledgements We acknowledge the contributions of all Secondary and Upper Primary Teachers who in one way or another helped to develop this Course. Special thanks to the Staff of the mathematics Department of FODE who played active role in coordinating writing workshops, outsourcing lesson writing and editing processes, involving selected teachers of Madang, Central Province and NCD. We also acknowledge the professional guidance provided by the Curriculum Development and Assessment Division throughout the processes of writing and, the services given by the members of the Mathematics Review and Academic Committees. The development of this book was co-funded by GoPNG and World Bank. MR. DEMAS TONGOGO Principal- FODE . Written by: Luzviminda B. Fernandez SCO-Mathematics Department Flexible Open and Distance Education Papua New Guinea Published in 2016 @ Copyright 2016, Department of Education Papua New Guinea All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or any other form of reproduction by any process is allowed without the prior permission of the publisher. ISBN: 978 - 9980 - 87 - 250 - 0 National Library Services of Papua New Guinea Printed by the Flexible, Open and Distance Education GR 7 MATHEMATICS S6 3 CONTENTS CONTENTS Page Secretary‟s Message…………………………………….…………………………………......... 4 Strand Introduction…………………………………….…………………………………………. 5 Study Guide………………………………………………….……………………………………. 6 SUB-STRAND 1: NUMBER PATTERNS ……………...….……….……………..………..
    [Show full text]
  • A Quantum Primality Test with Order Finding
    A quantum primality test with order finding Alvaro Donis-Vela1 and Juan Carlos Garcia-Escartin1,2, ∗ 1Universidad de Valladolid, G-FOR: Research Group on Photonics, Quantum Information and Radiation and Scattering of Electromagnetic Waves. o 2Universidad de Valladolid, Dpto. Teor´ıa de la Se˜nal e Ing. Telem´atica, Paseo Bel´en n 15, 47011 Valladolid, Spain (Dated: November 8, 2017) Determining whether a given integer is prime or composite is a basic task in number theory. We present a primality test based on quantum order finding and the converse of Fermat’s theorem. For an integer N, the test tries to find an element of the multiplicative group of integers modulo N with order N − 1. If one is found, the number is known to be prime. During the test, we can also show most of the times N is composite with certainty (and a witness) or, after log log N unsuccessful attempts to find an element of order N − 1, declare it composite with high probability. The algorithm requires O((log n)2n3) operations for a number N with n bits, which can be reduced to O(log log n(log n)3n2) operations in the asymptotic limit if we use fast multiplication. Prime numbers are the fundamental entity in number For a prime N, ϕ(N) = N 1 and we recover Fermat’s theory and play a key role in many of its applications theorem. − such as cryptography. Primality tests are algorithms that If we can find an integer a for which aN−1 1 mod N, determine whether a given integer N is prime or not.
    [Show full text]
  • Tutor Talk Binary Numbers
    What are binary numbers and why do we use them? BINARY NUMBERS Converting decimal numbers to binary numbers The number system we commonly use is decimal numbers, also known as Base 10. Ones, tens, hundreds, and thousands. For example, 4351 represents 4 thousands, 3 hundreds, 5 tens, and 1 ones. Thousands Hundreds Tens ones 4 3 5 1 Thousands Hundreds Tens ones 4 3 5 1 However, a computer does not understand decimal numbers. It only understands “on and off,” “yes and no.” Thousands Hundreds Tens ones 4 3 5 1 In order to convey “yes and no” to a computer, we use the numbers one (“yes” or “on”) and zero (“no” or “off”). To break it down further, the number 4351 represents 1 times 1, 5 times 10, DECIMAL NUMBERS (BASE 10) 3 times 100, and 4 times 1000. Each step to the left is another multiplication of 10. This is why it is called Base 10, or decimal numbers. The prefix dec- 4351 means ten. 4x1000 3x100 5x10 1x1 One is 10 to the zero power. Anything raised to the zero power is one. DECIMAL NUMBERS (BASE 10) Ten is 10 to the first power (or 10). One hundred is 10 to the second power (or 10 times 10). One thousand is 10 to the third 4351 power (or 10 times 10 times 10). 4x1000 3x100 5x10 1x1 103=1000 102=100 101=10 100=1 Binary numbers, or Base 2, use the number 2 instead of the number 10. 103 102 101 100 The prefix bi- means two.
    [Show full text]
  • Explorations in Recursion with John Pell and the Pell Sequence Recurrence Relations and Their Explicit Formulas by Ian Walker Ju
    Explorations in Recursion with John Pell and the Pell Sequence Recurrence Relations and their Explicit Formulas By Ian Walker June 2011 MST 501 Research Project In partial fulfillment for the Master’s of Teaching Mathematics (M.S.T.) Portland State University, Portland, Oregon John Pell (1611-1685) 2 John Pell (1611-1685) An “obscure” English Mathematician • Part of the 17th century intellectual history of England and of Continental Europe. • Pell was married with eight children, taught math at the Gymnasium in Amsterdam, and was Oliver Cromwell’s envoy to Switzerland. • Pell was well read in classical and contemporary mathematics. • Pell had correspondence with Descartes, Leibniz, Cavendish, Mersenne, Hartlib, Collins and others. • His main mathematical focus was on mathematical tables: tables of squares, sums of squares, primes and composites, constant differences, logarithms, antilogarithms, trigonometric functions, etc. 3 John Pell (1611-1685) An “obscure” English Mathematician • Many of Pell’s booklets of tables and other works do not list himself as the author. • Did not publish much mathematical work. Is more known for his activities, correspondence and contacts. • Only one of his tables was ever published (1672), which had tables of the first 10,000 square numbers. • His best known published work is, “An Introduction to Algebra”. It explains how to simplify and solve equations. • Pell is credited with the modern day division symbol and the double-angle tangent formula. • Pell is best known, only by name, for the Pell Sequence and the Pell Equation. 4 John Pell (1611-1685) An “obscure” English Mathematician • Division Symbol: • Double-Angle Tangent Formula: 2tan tan2 2 • Pell Sequence: 1 tan p 2p p p 1, p 2,n 2 n n1 n2 0 1 • Pell Equation: 2 2 x 2y 1 5 John Pell (1611-1685) An “obscure” English Mathematician • Both the Pell Sequence and the Pell Equation are erroneously named after him.
    [Show full text]
  • Enciclopedia Matematica a Claselor De Numere Întregi
    THE MATH ENCYCLOPEDIA OF SMARANDACHE TYPE NOTIONS vol. I. NUMBER THEORY Marius Coman INTRODUCTION About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name), it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. Because this is too vast to be covered in one book, we divide encyclopedia in more volumes. In this first volume of encyclopedia we try to synthesize his work in the field of number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache notions and similar topics, by Henry Ibstedt. We quote from the introduction to the Smarandache’work “On new functions in number theory”, Moldova State University, Kishinev, 1999: “The performances in current mathematics, as the future discoveries, have, of course, their beginning in the oldest and the closest of philosophy branch of nathematics, the number theory. Mathematicians of all times have been, they still are, and they will be drawn to the beaty and variety of specific problems of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as Gauss said, the number theory is shining with its light and attractions, fascinating and facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”.
    [Show full text]
  • 1 Integers and Divisibility
    Jay Daigle Occidental College Math 322: Number Theory 1 Integers and Divisibility In this course we primarily want to study the factorization properties of integers. So we should probably start by reminding ourselves how integers and factorization work. Much of this material was covered in Math 210, but we shall review it so we can use it during the rest of the course, as well as perhaps putting it on a somewhat firmer foundation. 1.1 The integers and the rationals For further reading on the material in this subsection, consult Rosen 1.1{1.3; PMF 1.1{ 1.2, 2.1{2.2. Definition 1.1. The integers are elements of the set Z = f:::; −2; −1; 0; 1; 2;::: g. The natural numbers are elements of the set N = f1; 2;::: g of positive integers. The rational numbers are elements of the set Q = fp=q : p; q 2 Zg. Remark 1.2. 1. Some sources include 0 as a natural number; in this course we will not, and none of the four suggested texts do so. 2. You may feel like these aren't really definitions, and you're not entirely wrong. A rigor- ous definition of the natural numbers is an extremely tedious exercise in mathematical logic; famously, Russell and Whitehead feature the proposition that \1 + 1 = 2" on page 379 of Principia Mathematica. We will simply trust that everyone in this course understands how to count. The natural numbers have two very important properties. Fact 1.3 (The Well-Ordering Property). Every subset of the natural numbers has a least element.
    [Show full text]
  • Arxiv:2106.08994V2 [Math.GM] 1 Aug 2021 Efc Ubr N30b.H Rvdta F2 If That and Proved Properties He Studied BC
    Measuring Abundance with Abundancy Index Kalpok Guha∗ Presidency University, Kolkata Sourangshu Ghosh† Indian Institute of Technology Kharagpur, India Abstract A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote n σ(n) the sum of divisors of . In this paper we study the ratio n . We de- I → I n σ(n) fine the function Abundancy Index : N Q with ( ) = n . Then we study different properties of Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of num- bers known as superabundant numbers. Finally we study superabundant numbers and their connection with Riemann Hypothesis. 1 Introduction Definition 1.1. A positive integer n is called perfect if σ(n)=2n, where σ(n) denote the sum of divisors of n. The first few perfect numbers are 6, 28, 496, 8128, ... (OEIS A000396), This is a well studied topic in number theory. Euclid studied properties and nature of perfect numbers in 300 BC. He proved that if 2p −1 is a prime, then 2p−1(2p −1) is an even perfect number(Elements, Prop. IX.36). Later mathematicians have arXiv:2106.08994v2 [math.GM] 1 Aug 2021 spent years to study the properties of perfect numbers. But still many questions about perfect numbers remain unsolved. Two famous conjectures related to perfect numbers are 1. There exist infinitely many perfect numbers. Euler [1] proved that a num- ber is an even perfect numbers iff it can be written as 2p−1(2p − 1) and 2p − 1 is also a prime number.
    [Show full text]
  • Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers
    Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 6 (2011), No. 1, pp. 41-72 SOME LINKS OF BALANCING AND COBALANCING NUMBERS WITH PELL AND ASSOCIATED PELL NUMBERS G. K. PANDA1,a AND PRASANTA KUMAR RAY2,b 1 National Institute of Technology, Rourkela -769 008, Orissa, India. a E-mail: gkpanda nit@rediffmail.com 2 College of Arts Science and Technology, Bandomunda, Rourkela -770 032, Orissa, India. b E-mail: [email protected] Abstract Links of balancing and cobalancing numbers with Pell and associated Pell numbers th th are established. It is proved that the n balancing number is product of the n Pell th number and the n associated Pell number. It is further observed that the sequences of balancing and cobalancing numbers are very closely related to the Pell sequence whereas, the sequences of Lucas-balancing and Lucas-cobalancing numbers constitute the associated Pell sequence. The solutions of some Diophantine equations including Pythagorean and Pythagorean-type equations are obtained in terms of these numbers. 1. Introduction The study of number sequences has been a source of attraction to the mathematicians since ancient times. From that time many mathematicians have been focusing their attention on the study of the fascinating triangu- lar numbers (numbers of the form n(n + 1)/2 where n Z+ are known as ∈ triangular numbers). Behera and Panda [1], while studying the Diophan- tine equation 1 + 2 + + (n 1) = (n + 1) + (n +2)+ + (n + r) on · · · − · · · triangular numbers, obtained an interesting relation of the numbers n in Received April 28, 2009 and in revised form September 25, 2009.
    [Show full text]