DNA Damage Strength Modulates a Bimodal Switch of P53 Dynamics For

Total Page:16

File Type:pdf, Size:1020Kb

DNA Damage Strength Modulates a Bimodal Switch of P53 Dynamics For Chen et al. BMC Biology 2013, 11:73 http://www.biomedcentral.com/1741-7007/11/73 RESEARCH ARTICLE Open Access DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control Xi Chen1, Jia Chen2, Siting Gan2, Huaji Guan1, Yuan Zhou1, Qi Ouyang2* and Jue Shi1* Abstract Background: The p53 pathway is differentially activated in response to distinct DNA damage, leading to alternative phenotypic outcomes in mammalian cells. Recent evidence suggests that p53 expression dynamics play an important role in the differential regulation of cell fate, but questions remain as to how p53 dynamics and the subsequent cellular response are modulated by variable DNA damage. Results: We identified a novel, bimodal switch of p53 dynamics modulated by DNA-damage strength that is crucial for cell-fate control. After low DNA damage, p53 underwent periodic pulsing and cells entered cell-cycle arrest. After high DNA damage, p53 underwent a strong monotonic increase and cells activated apoptosis. We found that the damage dose-dependent bimodal switch was due to differential Mdm2 upregulation, which controlled the alternative cell fates mainly by modulating the induction level and pro-apoptotic activities of p53. Conclusions: Our findings not only uncover a new mode of regulation for p53 dynamics and cell fate, but also suggest that p53 oscillation may function as a suppressor, maintaining a low level of p53 induction and pro-apoptotic activities so as to render cell-cycle arrest that allows damage repair. Background known to upregulate p53 by attenuating its interaction An efficient and precisely controlled DNA-damage re- with Mdm2, the E3 ubiquitin ligase that targets p53 for sponse is crucial for cell survival. In mammalian cells, proteasome-mediated degradation [5,6]. Less clear is the p53 regulatory pathway, consisting mainly of the how the severity of DNA damage modulates the degree tumor suppressor protein p53 and its downstream tran- of attenuation in p53-Mdm2 interactions, giving rise to scriptional targets, plays an essential role in mediating differential p53 expression that results in these alterna- this crucial stress response to chromosomal damage tive cell fates. Also not clear is how the dynamics of p53 [1-3]. Depending on the type and severity of DNA dam- differ with variation in damage level, and what role any age, the p53 pathway activates either cell-cycle arrest changes in the dynamics might play in the downstream that allows repair of the damage or alternatively, death function of p53. Most previous studies of p53 dynamics of the cell through apoptosis, but the mechanism by have focused only on the response to transient DNA which variation in DNA-damage strength differentially damage induced by gamma or UV irradiation, which has regulates p53 pathway dynamics, and the effect that this been shown to induce an intriguing oscillatory behavior of has on cell fate, are poorly understood. p53, which is largely independent of DNA damage level Mild DNA damage generally induces a moderate in- [7-11]. Moreover, although recent results, including our crease in p53 level, and results in transient cell-cycle ar- own [11,12], have shown that p53 dynamics can be altered rest that allows damage repair, whereas severe and by using nutlin to inhibit Mdm2, the observed change in possibly irreparable DNA damage leads to a large in- p53 dynamics was again independent of damage severity. crease in p53, followed by cell death [4]. DNA damage is To investigate whether and how DNA-damage strength modulates p53 dynamics and subsequently alters cell-fate outcome, we performed a dose–response study by meas- * Correspondence: [email protected]; [email protected] 2 uring the real-time p53 dynamics under variable DNA Center for Quantitative Biology and State Key Laboratory for Mesoscopic Physics, Peking University, 100871, Beijing, P. R. China damage generated by etoposide, a chemotherapeutic com- 1Center for Quantitative Systems Biology and Department of Physics, Hong Kong pound that induces sustained DNA damage. Using time- Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong, China © 2013 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chen et al. BMC Biology 2013, 11:73 Page 2 of 11 http://www.biomedcentral.com/1741-7007/11/73 lapse microscopy, we quantified p53 dynamics at the the degree of DNA damage increased with increasing dos- single-cell level, and correlated the dynamics with cell age of etoposide from 1 μmol/l to 75 to 100 μmol/l. fates. Our results showed that p53 dynamics exhibit To verify that dynamics of the p53-Venus reporter ‘switch-like’ behavior, changing from oscillatory dynamics construct in our clonal reporter line mimicked the en- at low damage to monotonic increase at high damage. dogenous p53, we compared the dynamics of the en- Moreover, this damage dose-dependent, bimodal switch of dogenous and fluorescently tagged p53 by western p53 dynamics was found to regulate cell fate mainly by blotting. The dynamics of the p53-Venus construct that modulating the p53 induction level and its pro-apoptotic we used have been extensively studied previously in activities as a function of DNA-damage strength. Our re- MCF7 cells, which all showed that the reporter con- sults suggest that under certain conditions, p53 oscilla- struct behaved similarly to the endogenous p53 [9,10]. tions may act as a mechanism to suppress p53 induction, Our data from the U-2 OS clone also showed similar thereby restraining its pro-apoptotic activities and pro- induction dynamics between p53-Venus and its en- moting cell-cycle arrest that allows DNA-damage repair. dogenous counterpart (Figure 1b; note that the level of p53-Venus reporter is about half of the endogenous p53. Results For quantified results of western blots, see Additional Dynamics of nuclear p53 is damage dose-dependent file 1: Figure S1), when cells were treated with both low To obtain data on p53 dynamics and cell fate as a func- and high doses of etoposide. Therefore, the fluorescent tion of DNA-damage strength, we performed dose titra- p53 reporter is probably regulated similarly to the en- tion of a DNA-damaging drug, etoposide, on U-2 OS dogenous wild-type p53, and can be used to infer p53 cells expressing a fluorescent p53 reporter. The reporter dynamics in response to DNA damage. cell line was generated by infecting U-2 OS cells with From time-lapse microscopy movies, we quantified the lentivirus encoding an established wild-type p53-Venus real-time induction dynamics of p53 by measuring aver- reporter construct [9]. For the study, we selected an iso- age Venus fluorescence in the nucleus and cytoplasm, genic clone that exhibited behaviors most similar to the respectively. In general, the fluorescent signal of p53- parental line (refer to discussion below). We used Venus in the nucleus was significantly higher than that etoposide as the DNA-damage stimulus, as it is known to in the cytoplasm. Single-cell p53 fluorescence trajector- trigger DNA double-strand breaks (DSBs) by inhibiting ies showed two distinctive dynamic features: 1) nuclear topoisomerase II [13,14]. To select the appropriate range p53 exhibited periodic pulsing at low drug dose, but of etoposide dosage for activating variable amounts of monotonic increase at high dose; and 2) the amplitude of DNA damage, we first measured the level of DNA damage monotonically elevated p53 was substantially higher than under different etoposide doses. DNA damage, as indi- that of the pulsing mode (Figure 1c; see Additional file 1: cated by the DNA-damage marker, phospho-H2A.X, was Figure S2). These bimodal, damage dose-dependent p53 present after 12 hours of drug treatment (Figure 1a), and dynamics are in stark contrast to the dose-independent Figure 1 Differential p53 dynamics as a function of DNA-damage strength. (a) Phospho-H2A.X levels (DNA damage marker) in U-2 OS cells treated with increasing doses of etoposide for 12 hours. Actin served as a loading control. (b) Induction kinetics of p53-Venus and endogenous p53 in the clonal U-2 OS report line treated with 1 and 100 μmol/l etoposide at the indicated time points (in hour). The upper band is p53-Venus (around 80 kDa) and the lower band is endogenous p53 (approximately 53 kDa). (c) Single-cell trajectories of p53 dynamics at the nucleus quantified from p53-Venus fluorescence. U-2 OS cells were treated with either 1 μmol/l (black lines) or 100 μmol/l (red lines) of etoposide at time 0. Individual cells were tracked for 72 hours or until cell death occurred. The abrupt end of p53 trajectories before 72 hours corresponds to the time of death. Chen et al. BMC Biology 2013, 11:73 Page 3 of 11 http://www.biomedcentral.com/1741-7007/11/73 oscillatory response of p53 to gamma irradiation previ- into cell-cycle arrest, and more than 83% of those with ously identified in single mammalian cells [8]. The obser- monotonic p53 induction died. Our data thus suggest that vation of a switch from oscillatory dynamics to a the bimodal switch and its correlation with alternative cell monotonic increase in p53 as DNA damage increased also fate are common in at least some mammalian cells in re- suggests an intriguing new transitional regulation of p53. sponse to variable DNA damage. We noted that although the correlation between cell The distinct mode of p53 dynamics strongly correlates fate and p53 induction dynamics was evident across the with cell fate entire cell population, there was strong cell-to-cell vari- Besides p53 dynamics, cumulative survival curves (quan- ation in terms of the quantitative characteristics.
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Large Meta-Analysis of Genome-Wide Association Studies
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.01.20200659; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Large meta-analysis of genome-wide association studies expands knowledge of the genetic etiology of Alzheimer’s disease and highlights potential translational opportunities Céline Bellenguez1,*,#, Fahri Küçükali2,3,4*, Iris Jansen5,6*, Victor Andrade7,8*, Sonia Morenau- Grau9,10,*, Najaf Amin11,12, Benjamin Grenier-Boley1, Anne Boland13, Luca Kleineidam7,8, Peter Holmans14, Pablo Garcia9,10, Rafael Campos Martin7, Adam Naj15,16, Yang Qiong17, Joshua C. Bis18, Vincent Damotte1, Sven Van der Lee5,6,19, Marcos Costa1, Julien Chapuis1, Vilmentas Giedraitis20, María Jesús Bullido10,21, Adolfo López de Munáin10,22, Jordi Pérez- Tur10,23, Pascual Sánchez-Juan10,24, Raquel Sánchez-Valle25, Victoria Álvarez26, Pau Pastor27, Miguel Medina10,28, Jasper Van Dongen2,3,4, Christine Van Broeckhoven2,3,4, Rik Vandenberghe29,30, Sebastiaan Engelborghs31,32, Gael Nicolas33, Florence Pasquier34, Olivier Hanon35, Carole Dufouil36, Claudine Berr37, Stéphanie Debette36, Jean-François Dartigues36, Gianfranco Spalletta38, Benedetta Nacmias39,40, Vincenzo Solfrezzi41, Barbara Borroni42, Lucio Tremolizzo43, Davide Seripa44, Paolo Caffarra45, Antonio Daniele46,47, Daniela Galimberti48,49, Innocenzo Rainero50, Luisa Benussi51, Alesio Squassina52, Patrizia Mecoci53, Lucilla Parnetti54, Carlo Masullo55, Beatrice Arosio56, John Hardy57, Simon Mead58, Kevin Morgan59, Clive Holmes60, Patrick Kehoe61, Bob Woods62, EADB, Charge, ADGC, Jin Sha15,16, Yi Zhao15,63, Chien-Yueh Lee15,63, Pavel P.
    [Show full text]
  • NATURAL KILLER CELLS, HYPOXIA, and EPIGENETIC REGULATION of HEMOCHORIAL PLACENTATION by Damayanti Chakraborty Submitted to the G
    NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION BY Damayanti Chakraborty Submitted to the graduate degree program in Pathology and Laboratory Medicine and the Graduate Faculty of the University of Kansas in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy. ________________________________ Chair: Michael J. Soares, Ph.D. ________________________________ Jay Vivian, Ph.D. ________________________________ Patrick Fields, Ph.D. ________________________________ Soumen Paul, Ph.D. ________________________________ Michael Wolfe, Ph.D. ________________________________ Adam J. Krieg, Ph.D. Date Defended: 04/01/2013 The Dissertation Committee for Damayanti Chakraborty certifies that this is the approved version of the following dissertation: NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION ________________________________ Chair: Michael J. Soares, Ph.D. Date approved: 04/01/2013 ii ABSTRACT During the establishment of pregnancy, uterine stromal cells differentiate into decidual cells and recruit natural killer (NK) cells. These NK cells are characterized by low cytotoxicity and distinct cytokine production. In rodent as well as in human pregnancy, the uterine NK cells peak in number around mid-gestation after which they decline. NK cells associate with uterine spiral arteries and are implicated in pregnancy associated vascular remodeling processes and potentially in modulating trophoblast invasion. Failure of trophoblast invasion and vascular remodeling has been shown to be associated with pathological conditions like preeclampsia syndrome, hypertension in mother and/or fetal growth restriction. We hypothesize that NK cells fundamentally contribute to the organization of the placentation site. In order to study the in vivo role of NK cells during pregnancy, gestation stage- specific NK cell depletion was performed in rats using anti asialo GM1 antibodies.
    [Show full text]
  • EMBO Facts & Figures
    excellence in life sciences Reykjavik Helsinki Oslo Stockholm Tallinn EMBO facts & figures & EMBO facts Copenhagen Dublin Amsterdam Berlin Warsaw London Brussels Prague Luxembourg Paris Vienna Bratislava Budapest Bern Ljubljana Zagreb Rome Madrid Ankara Lisbon Athens Jerusalem EMBO facts & figures HIGHLIGHTS CONTACT EMBO & EMBC EMBO Long-Term Fellowships Five Advanced Fellows are selected (page ). Long-Term and Short-Term Fellowships are awarded. The Fellows’ EMBO Young Investigators Meeting is held in Heidelberg in June . EMBO Installation Grants New EMBO Members & EMBO elects new members (page ), selects Young EMBO Women in Science Young Investigators Investigators (page ) and eight Installation Grantees Gerlind Wallon EMBO Scientific Publications (page ). Programme Manager Bernd Pulverer S Maria Leptin Deputy Director Head A EMBO Science Policy Issues report on quotas in academia to assure gender balance. R EMBO Director + + A Conducts workshops on emerging biotechnologies and on H T cognitive genomics. Gives invited talks at US National Academy E IC of Sciences, International Summit on Human Genome Editing, I H 5 D MAN 201 O N Washington, DC.; World Congress on Research Integrity, Rio de A M Janeiro; International Scienti c Advisory Board for the Centre for Eilish Craddock IT 2 015 Mammalian Synthetic Biology, Edinburgh. Personal Assistant to EMBO Fellowships EMBO Scientific Publications EMBO Gold Medal Sarah Teichmann and Ido Amit receive the EMBO Gold the EMBO Director David del Álamo Thomas Lemberger Medal (page ). + Programme Manager Deputy Head EMBO Global Activities India and Singapore sign agreements to become EMBC Associate + + Member States. EMBO Courses & Workshops More than , participants from countries attend 6th scienti c events (page ); participants attend EMBO Laboratory Management Courses (page ); rst online course EMBO Courses & Workshops recorded in collaboration with iBiology.
    [Show full text]
  • Associated 16P11.2 Deletion in Drosophila Melanogaster
    ARTICLE DOI: 10.1038/s41467-018-04882-6 OPEN Pervasive genetic interactions modulate neurodevelopmental defects of the autism- associated 16p11.2 deletion in Drosophila melanogaster Janani Iyer1, Mayanglambam Dhruba Singh1, Matthew Jensen1,2, Payal Patel 1, Lucilla Pizzo1, Emily Huber1, Haley Koerselman3, Alexis T. Weiner 1, Paola Lepanto4, Komal Vadodaria1, Alexis Kubina1, Qingyu Wang 1,2, Abigail Talbert1, Sneha Yennawar1, Jose Badano 4, J. Robert Manak3,5, Melissa M. Rolls1, Arjun Krishnan6,7 & 1234567890():,; Santhosh Girirajan 1,2,8 As opposed to syndromic CNVs caused by single genes, extensive phenotypic heterogeneity in variably-expressive CNVs complicates disease gene discovery and functional evaluation. Here, we propose a complex interaction model for pathogenicity of the autism-associated 16p11.2 deletion, where CNV genes interact with each other in conserved pathways to modulate expression of the phenotype. Using multiple quantitative methods in Drosophila RNAi lines, we identify a range of neurodevelopmental phenotypes for knockdown of indi- vidual 16p11.2 homologs in different tissues. We test 565 pairwise knockdowns in the developing eye, and identify 24 interactions between pairs of 16p11.2 homologs and 46 interactions between 16p11.2 homologs and neurodevelopmental genes that suppress or enhance cell proliferation phenotypes compared to one-hit knockdowns. These interac- tions within cell proliferation pathways are also enriched in a human brain-specific network, providing translational relevance in humans. Our study indicates a role for pervasive genetic interactions within CNVs towards cellular and developmental phenotypes. 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. 2 Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
    [Show full text]
  • PDCD5 Interacts with P53 and Functions As a Regulator of P53 Dynamics in the DNA Damage Response
    i \Zhuge-BJ" | 2018/6/13 | 5:45 | page 1 | #1 i i i Biophysical Journal Volume: 00 Month Year 1{12 1 PDCD5 interacts with p53 and functions as a regulator of p53 dynamics in the DNA damage response Changjing Zhugea, Xiaojuan Sunb, Yingyu Chenc, Jinzhi Leid a College of Sciences, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China; b School of Science, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Beijing 100876, China; c Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, 38 Xueyuan Road, Beijing 100083, China; d MOE Key Laboratory of Bioinformatics, Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China Abstract The tumor suppressor p53 plays a central role in cell fate decisions after DNA damage. Programmed Cell Death 5 (PDCD5) is known to interact with the p53 pathway to promote cell apoptosis. Recombinant human PDCD5 can significantly sensitize different cancers to chemotherapies. In the present paper, we construct a computational model that includes PDCD5 interactions in the p53 signaling network and study the effects of PDCD5 on p53- mediated cell fate decisions during the DNA damage response. Our results revealed that PDCD5 functions as a co-activator of p53 that regulates p53-dependent cell fate decisions via the mediation of p53 dynamics. The effects of PDCD5 are dose-dependent such that p53 can display either sustained or pulsed dynamics at different PDCD5 levels. Moreover, PDCD5 regulates caspase-3 activation via two mechanisms during the two phases of sustained and pulsed p53 dynamics. This study provides insights regarding how PDCD5 functions as a regulator of the p53 pathway and might be helpful for increasing our understanding of the molecular mechanisms by which PDCD5 can be used to treat cancers.
    [Show full text]
  • Genome-Wide Profiling of Promoter Methylation in Human
    Oncogene (2006) 25, 3059–3064 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc TECHNICAL REPORT Genome-wide profiling of promoter methylation in human I Hatada1,2, M Fukasawa1,2, M Kimura1,2, S Morita1,2, K Yamada3, T Yoshikawa3, S Yamanaka4,5, C Endo4, A Sakurada4, M Sato4, T Kondo4, A Horii5, T Ushijima6 and H Sasaki7,8 1Laboratory of Genome Science, Biosignal Genome Resource Center, Department of Molecular and Cellular Biology, Gunma University, Maebashi, Japan; 2PRESTO, Japan Science and Technology Corporation (JST), Kawaguchi, Japan; 3Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan, 4Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; 5Department of Molecular Pathology, Tohoku University School of Medicine, Sendai, Japan; 6Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; 7Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan and 8Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan DNA methylation in the promoter region of a gene is Microarray-based methods of comparing differences in associated with a loss of that gene’s expression and plays DNA methylation in the genome of two samples using an important role in gene silencing. The inactivation of methylation-sensitive restriction enzymes (Yan et al., tumor-suppressor genes by aberrant methylation in the 2001; Hatada et al., 2002) have two problems. The first promoter region is well recognized in carcinogenesis. is that the microarrays contain clones from libraries of However, there has been little study in this area when it CpG islands.
    [Show full text]
  • YPEL3, a P53-Regulated Gene That Induces Cellular Senescence
    Published OnlineFirst April 13, 2010; DOI: 10.1158/0008-5472.CAN-09-3219 Molecular and Cellular Pathobiology Cancer Research YPEL3, a p53-Regulated Gene that Induces Cellular Senescence Kevin D. Kelley1, Kelly R. Miller1, Amber Todd1, Amy R. Kelley1, Rebecca Tuttle2, and Steven J. Berberich1 Abstract Cellular senescence, the limited ability of cultured normal cells to divide, can result from cellular damage triggered through oncogene activation (premature senescence) or the loss of telomeres following successive rounds of DNA replication (replicative senescence). Although both processes require a functional p53 signaling pathway, relevant downstream p53 targets have been difficult to identify. Discovery of senescence activators is important because induction of tumor cell senescence may represent a therapeutic approach for the treat- ment of cancer. In microarray studies in which p53 was reactivated in MCF7 cells, we discovered that Yippee- like-3 (YPEL3), a member of a recently discovered family of putative zinc finger motif coding genes consisting of YPEL1-5, is a p53-regulated gene. YPEL3 expression induced by DNA damage leads to p53 recruitment to a cis-acting DNA response element located near the human YPEL3 promoter. Physiologic induction of YPEL3 results in a substantial decrease in cell viability associated with an increase in cellular senescence. Through the use of RNAi and H-ras induction of cellular senescence, we show that YPEL3 activates cellular senescence downstream of p53. Consistent with its growth suppressive activity, YPEL3 gene expression is repressed in ovarian tumor samples. One mechanism of YPEL3 downregulation in ovarian tumor cell lines seems to be hypermethylation of a CpG island upstream of the YPEL3 promoter.
    [Show full text]
  • YPEL3 Antibody Cat
    YPEL3 Antibody Cat. No.: 6775 Western blot analysis of YPEL3 in A-20 cell lysate with YPEL3 antibody at 1 μg/mL in (A) the absence and (B) the presence of blocking peptide Immunocytochemistry of YPEL3 in A20 cells with YPEL3 Immunofluorescence of YPEL3 in A20 cells with YPEL3 antibody at 2.5 μg/mL. antibody at 5 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%) YPEL3 antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of human YPEL3. IMMUNOGEN: The immunogen is located within amino acids 20 - 70 of YPEL3. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 28, 2021 1 https://www.prosci-inc.com/ypel3-antibody-6775.html YPEL3 antibody can be used for detection of YPEL3 by Western blot at 1 μg/mL. Antibody can also be used for immunocytochemistry starting at 2.5 μg/mL. For immunofluorescence start at 2.5 μg/mL. APPLICATIONS: Antibody validated: Western Blot in mouse samples; Immunocytochemistry in mouse samples and Immunofluorescence in mouse samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1288 - A20 Cell Lysate 2) Cat. No. 17-208 - A-20 Cell Slide Properties PURIFICATION: YPEL3 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: YPEL3 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL YPEL3 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year.
    [Show full text]
  • Mammalian Atypical E2fs Link Endocycle Control to Cancer
    Mammalian Atypical E2Fs Link Endocycle Control to Cancer DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Zi Chen Graduate Program in Integrated Biomedical Science Program The Ohio State University 2011 Dissertation Committee: Gustavo Leone, PhD, Advisor Michael Ostrowski, PhD Clay Marsh, MD Tsonwin Hai, PhD Kathryn Wikenheiser-Brokamp, MD PhD Copyright by Hui-Zi Chen 2011 Abstract The endocycle is a developmentally programmed variant cell cycle consisting of successive S (DNA synthesis) and G (Gap) phases without an intervening M phase or cytokinesis. As a consequence of the regulated “decoupling” of DNA replication and mitosis, which are two central processes of the traditional cell division program, endocycling cells acquire highly polyploid genomes after having undergone multiple rounds of whole genome reduplication. Although essential for metazoan development, relatively little is known about the regulation of endocycle or its physiologic role in higher vertebrates such as the mammal. A substantial body of work in the model organism Drosophila melanogaster has demonstrated an important function for dE2Fs in the control of endocycle. Genetic studies showed that both endocycle initiation and progression is severely disrupted by altering the expression of the fly E2F activator (dE2F1) or repressor (dE2F2). In mammals, the E2F family is comprised of nine structurally related proteins, encoded by eight distinct genes, that can be classified into transcriptional activators (E2f1, E2f2, E2f3a and E2f3b) or repressors (E2f4, E2f5, E2f6, E2f7 and E2f8). The repressor subclass may then be further divided into canonical (E2f4, E2f5 and E2f6) or atypical E2fs (E2f7 and E2f8).
    [Show full text]
  • A High Throughput, Functional Screen of Human Body Mass Index GWAS Loci Using Tissue-Specific Rnai Drosophila Melanogaster Crosses Thomas J
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. Baranski Washington University School of Medicine in St. Louis Aldi T. Kraja Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Mary Feitosa Washington University School of Medicine in St. Louis Petra A. Lenzini Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Baranski, Thomas J.; Kraja, Aldi T.; Fink, Jill L.; Feitosa, Mary; Lenzini, Petra A.; Borecki, Ingrid B.; Liu, Ching-Ti; Cupples, L. Adrienne; North, Kari E.; and Province, Michael A., ,"A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses." PLoS Genetics.14,4. e1007222. (2018). https://digitalcommons.wustl.edu/open_access_pubs/6820 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Thomas J. Baranski, Aldi T. Kraja, Jill L. Fink, Mary Feitosa, Petra A. Lenzini, Ingrid B. Borecki, Ching-Ti Liu, L. Adrienne Cupples, Kari E. North, and Michael A. Province This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6820 RESEARCH ARTICLE A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J.
    [Show full text]
  • The Pseudo-Caspase FLIP(L) Regulates Cell Fate Following P53 Activation
    The pseudo-caspase FLIP(L) regulates cell fate following p53 activation Andrea Leesa,1, Alexander J. McIntyrea,1, Nyree T. Crawforda, Fiammetta Falconea, Christopher McCanna, Caitriona Holohana, Gerard P. Quinna, Jamie Z. Robertsa, Tamas Sesslera, Peter F. Gallaghera, Gemma M. A. Gregga, Katherine McAllistera, Kirsty M. McLaughlina, Wendy L. Allena, Laurence J. Eganb, Aideen E. Ryanb,c, Melissa J. Labonte-Wilsona, Philip D. Dunnea, Mark Wappetta, Vicky M. Coylea, Patrick G. Johnstona, Emma M. Kerra, Daniel B. Longleya,2,3, and Simon S. McDadea,2,3 aPatrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom; bDiscipline of Pharmacology & Therapeutics, Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; and cRegenerative Medicine Institute, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland Edited by Karen H. Vousden, Francis Crick Institute, London, United Kingdom, and approved June 8, 2020 (received for review February 12, 2020) p53 is the most frequently mutated, well-studied tumor-suppressor switch from cell-cycle arrest to cell death induction remain gene, yet the molecular basis of the switch from p53-induced cell- poorly understood, although p53-mediated transcriptional up- cycle arrest to apoptosis remains poorly understood. Using a combi- regulation of PUMA has been suggested to be crucial in a nation of transcriptomics and functional genomics, we unexpectedly number of studies (10, 11). identified a nodal role for the caspase-8 paralog and only human Despite p53/TP53 being the most frequently mutated gene in pseudo-caspase, FLIP(L), in regulating this switch.
    [Show full text]