The Development of the Dutch Flood Safety Strategy

Total Page:16

File Type:pdf, Size:1020Kb

The Development of the Dutch Flood Safety Strategy The development of the Dutch flood safety strategy technical report Mark Z. Voorendt THE DEVELOPMENT OF THE DUTCH FLOOD SAFETY STRATEGY - technical report, improved edition - Mark Z. Voorendt April 29, 2016 ISBN/EAN 978-90-74767-18-7 NUR-code 956 ©2015, 2016 M.Z. Voorendt, Delft University of Technology published by Bee’s Books, Amsterdam series: Delta Technology, Design & Governance Cover page: graph from the Delta report, part 1 (1960) PREFACE This report is part of my research on the ’structural evaluation of multifunctional flood defences’. The research is part of the programme on ’integral and sustainable design of multifunctional flood defences’ which is supported by the Dutch Technol- ogy Foundation STW, which is part of the Netherlands Organisation for Scientific Re- search (NWO), and is partly funded by the Ministry of Economic Affairs. This pro- gramme is one of the ’Perspective’ programmes that are organised within consortia of research institutes and users. The research programme consists of several projects in which various aspects of mul- tifunctional flood defences are studied. These include technical aspects (strengths and loads), safety philosophy, governance, architecture and financial aspects. For details of the programme, one is referred to the project proposal (see the information on www.flooddefences.org). The current project on structural evaluation is being carried out under supervision of promoter prof.drs.ir. Han Vrijling and with advice from ir. Wilfred Molenaar, dr.ir. Jarit de Gijt and dr.ir. Klaas Jan Bakker, all working at Delft University of Technol- ogy. The research project is externally supported by Witteveen+Bos (especially ir. Paul Ravenstijn and ir. Gerben Spaargaren), Arcadis (dr.ing. Marco Veendorp and dr.ir. Hessel Voortman), Deltares (dr.ir. Meindert Van, ir. Han Knoeff and ir. Harrie Schelfhout) and STOWA (ir. Henk van Hemert). I also got much support from many (other) employees of the Department of Hydraulic Engineering of Delft University of Technology, especially prof.dr.ir. Bas Jonkman, prof.dr.ir. Matthijs Kok, prof.dr.ir. Marcel Stive, ir. Ad van der Toorn, ir. Henk Jan Verhagen, dr.ir. Paul Visser. Their support is highly appreciated! This edition of the report contains some improvements of the report issued in De- cember 2015. Next to some minor corrections, additional relevant information has been included and the text has been better structured. Nevertheless, the author is open to any comments on this renewed edition. Mark Voorendt Delft, April 29, 2016 i CONTENTS 1 Early history1 2 Advances in the design of flood defences5 3 The first half of the twentieth century9 4 Philosophy of the Delta Committee 15 4.1 Reasoning way one: Historical study of water levels............. 16 4.2 Reasoning way two: Statistical analysis..................... 18 4.3 Reasoning way three: Econometric optimisation............... 22 4.4 Basic levels outside Hoek van Holland...................... 25 5 The second half of the twentieth century 27 6 Legalisation of the safety standard 35 7 The Veerman Committee 39 8 Other developments in the early 21th century 43 8.1 More developments in legalisation........................ 43 8.2 The assessment of Dutch flood defences.................... 46 8.3 The multi-layer flood safety approach...................... 48 8.4 Change towards a flood risk-based approach................. 52 References 57 iii 1 EARLY HISTORY The Netherlands are located in a delta area where the rivers Rhine, Meuse, Scheldt and Ems flow into the North Sea. Rivers, sea and land formed a dynamic system, which ever more interfered with the spatial and occupational ambitions of the in- habitants of the low countries. The inhabitants of the low countries had to cope with regular floods and resulting loss of goods and lives. The first inhabitants of the Frisian land (in the north of the Netherlands) therefore settled down on higher plains, but this came to an end when, due to climate change, these plains flooded ever more frequently. In the first century AD Pliny the Elder, a Roman author and natural philosopher vis- ited the Netherlands and characterised a pitiful country, where ... two times in each period of a day and a night, the ocean with a fast tide submerges an immense plain, thereby the hiding the secular fight of the Nature whether the area is sea or land. There this miserable race inhabits raised pieces ground or platforms, which they have moored by hand above the level of the highest known tide. Living in huts built on the chosen spots, they seem like sailors in ships if water covers the surrounding country, but like shipwrecked people when the tide has withdrawn itself, and around their huts they catch fish which tries to escape with the expiring tide. It is for them not possible to keep herds and live on milk such as the surround- ing tribes, they cannot even fight with wild animals, because all the bush country lies too far away. (Gaius Plinius Secundus,78) As a result of the floods, from the sixth century BC, many people moved to higher land areas like the Drents Plateau, or they started to create mounds, to elevate their dwellings to a height less prone to floods, usually not more than four or five me- tres above average sea level. Incidentally more rigorous measures were attempted: already in the first or second century BC, at the Frisian town of Peins (in the mu- nicipality Franeker), a dike was constructed of which a 40-meter section has been discovered lately. Around 1000 AD, dikes started to be constructed on a larger scale 1 2 1E ARLY HISTORY to protect larger areas of land. Monasteries, like the monastery of Aduard in Gronin- gen that was founded in 1192, often organised the construction of these first dikes to protect their estates (Bosker, 2008). The inhabitants of small towns and hamlets also started to cooperate to manage the water. The first known collaboration of this kind was in Utrecht, around 1122, where twenty towns worked together to dam the Kromme Rijn near Wijk bij Duurstede. This collective was later on institutionalised in the Hoogheemraadschap van den Lekdijk Bovendams (’Water board of the Lek dike upstream of the dam’). The first water board, the Hoogheemraadschap van Rijnland, was meanwhile founded in 1255 by count William II of Holland. Since about 1250, a growing number of water boards (waterschappen and hoogheem- raadschappen in Dutch) were set-up to supervise the farmers who were responsi- ble for the maintenance of the dikes and water courses. The regulations for farm- ers and landlords were established in farmstead systems (verhoefslagstelsels), by-laws (keuren) and ledgers (leggers). Farmstead systems contain regulations about the ap- portionment of dike maintenance responsibilities. By-laws are collections of legal regulations applying to rivers, brooks, ditches and flood defences that are adminis- tered by the water-board, but also by other parties. Ledgers are legal documents that contain information on the functional requirements and maintenance duties regards hydraulic works like water courses, flood defences, catchment areas and correspond- ing structures. They also contain specific information on the status of channels and flood defences, dimensions and shapes of hydraulic works, position and dimensions of maintenance strips and protecting zones along water courses and flood defences. These regulations were later on incorporated by the water-boards that were made responsible for the supervision of the flood defences1. The need to control water quantities did not only originate in high sea and river lev- els, but also in the exploitation of peatlands. Peat was namely excavated in large amounts for salt extrusion and fuel. Initially, back quays (achterkades) were con- structed to prevent water intrusion in these excavated parts of land from higher, not yet exploited, land, but good dewatering caused settling of the peat. Therefore, ditches and streams had to be dug deeper, but at the long term this did not help suf- ficiently. That is the reason why dikes and dams with sluices were constructed. In North Holland, many small dikes were constructed to protect against the intruding sea and bank erosion of lakes. This, amongst others, led to construction of the 100 km long West Frision Circle dike (Westfriese Omringdijk), which was completed around 1250. That dike did not only function to protect against floods, but it was also an im- portant road connection2. It was count Floris V who improved the organisation and coordination of dike maintenance in North Holland, but due to political unrest, this did not hold. He was more successful in the Alblasserwaard, which he decided to en- close by dikes in 1277. This was the start of the Hoogheemraadschap van de Alblasser- waard. Meanwhile, the situation in North Holland only improved when William III of Holland ruled this part of the Netherlands. He also gave orders to protect Staveren in Friesland with a dike (1325), followed by Albrecht of Bavaria who initiated construc- 1By-laws and ledgers are legal documents up to now and are complementary to the present Water Act. 2Therefore, the principle of multifunctional flood defences is already quite old. 3 tion of the sea dikes near Oostergo and Westergo (1398). (Beenakker, 1991), (van Buijtenen and Obreen, 1956). Despite all these efforts, flood defences failed regularly, like in 1164 (Saint Juliana’s Flood, about 20 000 fatalities), 1362 (Marcellus Flood, 25 000 to 40 000 or even more fatalities), 1421 (Saint Elisabeths’ Flood, one of the most well-know floods, but ’only’ about 2000 fatalities) and 1570 (All Saints’ Flood, more than 20 000 fatalities) and 1717 (Christmas Flood, more than 14 000 fatalities). These were hard times, when people had to fight the water persistently to survive3.(Buisman and van Engelen, 2000) The state of the profession of dike construction has been written down in a well- known, but unfinished, book by Andries Vierlingh (1578).
Recommended publications
  • Nieuwsbrief Dijkversterking Tiel – Waardenburg Waardevolle Waaldijk 6• Mei 2019
    sterke dijken schoon water Nieuwsbrief dijkversterking Tiel – Waardenburg Waardevolle Waaldijk 6• mei 2019 De dijk tussen Tiel (Inundatiekanaal) en Waardenburg (A2) moet worden versterkt. Hij voldoet niet aan de wettelijke veiligheidsregels. De afgelopen jaren heeft het waterschap gezocht naar oplossingen om de dijk te versterken. Inmiddels weten we op hoofdlijnen hoe we de dijk willen versterken. Nu gaan we verfijnen. We informeren u met deze nieuwsbrief over onze activiteiten van de afgelopen periode. Tevens leest u wat we nu aan het doen zijn. Dijkversterking Tiel-Waardenburg gaat verder Het ingelaste intermezzo is inmiddels te lassen en aan de projectorganisatie te het nieuwe Algemeen Bestuur van het grotendeels afgerond. De project- vragen de mogelijkheden te onderzoeken waterschap. organisatie van dijkversterking Tiel- om de kostenraming naar beneden bij Vooruitlopend daarop gebruiken we Waardenburg gaat nu verder met de te stellen. Dit zonder in te leveren op de op dit moment de voorstellen als voorbereiding van de dijkversterking veiligheidseisen van de dijk. uitgangspunt voor het verder detailleren om vervolgens het concept dijkontwerp van het ontwerp van de nieuwe dijk. Het op te stellen en te bespreken met De afgelopen maanden zijn voorstellen werken aan deze verbeteringen in de bewoners. ontwikkeld, waarmee we de kosten- afgelopen periode heeft ertoe geleid dat raming van de uitvoeringskosten naar onze planuitwerking een aantal maanden Aan het einde van de verkenningsfase beneden kunnen bijstellen. Dit sluit langer gaat duren. Van uitstel van het bleken de geschatte kosten voor de goed aan op het verder uitwerken project is geen sprake op dit moment. dijkversterking hoger te zijn dan bij de van het voorkeursalternatief, waarbij De komende maanden staan in het teken start van het project (in 2014) geraamd.
    [Show full text]
  • Presentatie Bor Waal Merwede
    Bouwsteen Beeld op de Rivieren 24 november 2020 – Bouwdag Rijn 1 Ontwikkelperspectief Waal Merwede 24 november 2020 – Bouwdag Rijn 1 Ontwikkelperspectief Waal Merwede Trajecten Waal Merwede • Midden-Waal (Nijmegen - Tiel) • Beneden-Waal (Tiel - Woudrichem) • Boven-Merwede (Woudrichem – Werkendam) Wat bespreken we? • Oogst gezamenlijke werksessies • Richtinggevend perspectief gebruiksfuncties rivierengebied • Lange termijn (2050 en verder) • Strategische keuzen Hoe lees je de kaart? • Bekijk de kaart via de GIS viewer • Toekomstige gebruiksfuncties zijn met kleur aangegeven • Kansen en opgaven met * aangeduid, verbindingen met een pijl • Keuzes en dilemma’s weergegeven met icoontje Synthese Rijn Waterbeschikbaarheid • Belangrijkste strategische keuze: waterverdeling splitsingspunt. • Meer water via IJssel naar IJsselmeer in tijden van hoogwater (aanvullen buffer IJsselmeer) • Verplaatsen innamepunten Lek voor zoetwater wenselijk i.v.m. verzilting • Afbouwen drainage in buitendijkse gebieden i.v.m. langer vasthouden van water. Creëren van waterbuffers in bovenstroomse deel van het Nederlandse Rijnsysteem. (balans • droge/natte periodes). Natuur • Noodzakelijk om robuuste natuureenheden te realiseren • Splitsingspunt is belangrijke ecologische knooppunt. • Uiterwaarden Waal geschikt voor dynamische grootschalige natuur. Landbouw • Nederrijn + IJssel: mengvorm van landbouw en natuur mogelijk. Waterveiligheid • Tot 2050 zijn dijkversterkingen afdoende -> daarna meer richten op rivierverruiming. Meer water via IJssel betekent vergroten waterveiligheidsopgave
    [Show full text]
  • Dynamic Control of Salt Intrusion in the Mark-Vliet River System, the Netherlands
    Water Resour Manage (2011) 25:1005–1020 DOI 10.1007/s11269-010-9738-1 Dynamic Control of Salt Intrusion in the Mark-Vliet River System, The Netherlands Denie C. M. Augustijn · Marcel van den Berg · Erik de Bruine · Hans Korving Received: 11 January 2010 / Accepted: 8 November 2010 / Published online: 11 January 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com Abstract The Volkerak-Zoom Lake is an enclosed part of the estuarine delta in the southwest of the Netherlands and exists as such since 1987. The current freshwater lake experienced a deterioration in water and ecological quality. Espe- cially cyanobacteria are a serious problem. To solve this problem it is proposed to reintroduce salt water and tidal dynamics in the Volkerak-Zoom Lake. However, this will affect the water quality of the Mark-Vliet River system that drains into the lake. Each of the two branches of the Mark-Vliet River system is separated from the Volkerak-Zoom Lake by a lock and drainage sluice. Salt intrusion via the locks may hamper the intake of freshwater by the surrounding polders. Salt intrusion can be reduced by increasing the discharge in the river system. In this study we used the hydrodynamic SOBEK model to run different strategies with the aim to minimize the additional discharge needed to reduce chloride concentrations. Dynamic control of the sluices downstream and a water inlet upstream based on real-time chloride concentrations is able to generate the desired discharges required to maintain the chloride concentrations at the polder intake locations below the threshold level and D.
    [Show full text]
  • Kansen Voor Achteroevers Inhoud
    Kansen voor Achteroevers Inhoud Een oever achter de dijk om water beter te benuten 3 Wenkend perspectief 4 Achteroever Koopmanspolder – Proefuin voor innovatief waterbeheer en natuurontwikkeling 5 Achteroever Wieringermeer – Combinatie waterbeheer met economische bedrijvigheid 7 Samenwerking 11 “Herstel de natuurlijke dynamiek in het IJsselmeergebied waar het kan” 12 Het achteroeverconcept en de toekomst van het IJsselmeergebied 14 Naar een living lab IJsselmeergebied? 15 Het IJsselmeergebied Achteroever Wieringermeer Achteroever Koopmanspolder Een oever achter de dijk om water beter te benuten Anders omgaan met ons schaarse zoete water Het klimaat verandert en dat heef grote gevolgen voor het waterbeheer in Nederland. We zullen moeten leren omgaan met grotere hoeveelheden water (zeespiegelstijging, grotere rivierafvoeren, extremere hoeveelheden neerslag), maar ook met grotere perioden van droogte. De zomer van 2018 staat wat dat betref nog vers in het geheugen. Beschikbaar zoet water is schaars op wereldschaal. Het meeste water op aarde is zout, en veel van het zoete water zit in gletsjers, of in de ondergrond. Slechts een klein deel is beschikbaar in meren en rivieren. Het IJsselmeer – inclusief Markermeer en Randmeren – is een grote regenton met kost- baar zoet water van prima kwaliteit voor een groot deel van Nederland. Het watersysteem functioneert nog goed, maar loopt wel op tegen de grenzen vanwege klimaatverandering. Door innovatie wegen naar de toekomst verkennen Het is verstandig om ons op die verandering voor te bereiden. Rijkswaterstaat verkent daarom samen met partners nu al mogelijke oplossingsrichtingen die ons in de toekomst kunnen helpen. Dat doen we door te innoveren en te zoeken naar vernieuwende manieren om met het water om te gaan.
    [Show full text]
  • 1 the DUTCH DELTA MODEL for POLICY ANALYSIS on FLOOD RISK MANAGEMENT in the NETHERLANDS R.M. Slomp1, J.P. De Waal2, E.F.W. Ruijg
    THE DUTCH DELTA MODEL FOR POLICY ANALYSIS ON FLOOD RISK MANAGEMENT IN THE NETHERLANDS R.M. Slomp1, J.P. de Waal2, E.F.W. Ruijgh2, T. Kroon1, E. Snippen2, J.S.L.J. van Alphen3 1. Ministry of Infrastructure and Environment / Rijkswaterstaat 2. Deltares 3. Staff Delta Programme Commissioner ABSTRACT The Netherlands is located in a delta where the rivers Rhine, Meuse, Scheldt and Eems drain into the North Sea. Over the centuries floods have been caused by high river discharges, storms, and ice dams. In view of the changing climate the probability of flooding is expected to increase. Moreover, as the socio- economic developments in the Netherlands lead to further growth of private and public property, the possible damage as a result of flooding is likely to increase even more. The increasing flood risk has led the government to act, even though the Netherlands has not had a major flood since 1953. An integrated policy analysis study has been launched by the government called the Dutch Delta Programme. The Delta model is the integrated and consistent set of models to support long-term analyses of the various decisions in the Delta Programme. The programme covers the Netherlands, and includes flood risk analysis and water supply studies. This means the Delta model includes models for flood risk management as well as fresh water supply. In this paper we will discuss the models for flood risk management. The issues tackled were: consistent climate change scenarios for all water systems, consistent measures over the water systems, choice of the same proxies to evaluate flood probabilities and the reduction of computation and analysis time.
    [Show full text]
  • Wild Bees in the Hoeksche Waard
    Wild bees in the Hoeksche Waard Wilson Westdijk C.S.G. Willem van Oranje Text: Wilson Westdijk Applicant: C.S.G. Willem van Oranje Contact person applicant: Bart Lubbers Photos front page Upper: Typical landscape of the Hoeksche Waard - Rotary Hoeksche Waard Down left: Andrena rosae - Gert Huijzers ​ ​ Down right: Bombus muscorum - Gert Huijzers ​ ​ Table of contents Summary 3 Preface 3 Introduction 4 Research question 4 Hypothesis 4 Method 5 Field study 5 Literature study 5 Bee studies in the Hoeksche Waard 9 Habitats in the Hoeksche Waard 11 Origin of the Hoeksche Waard 11 Landscape and bees 12 Bees in the Hoeksche Waard 17 Recorded bee species in the Hoeksche Waard 17 Possible species in the Hoeksche Waard 22 Comparison 99 Compared to Land van Wijk en Wouden 100 Species of priority 101 Species of priority in the Hoeksche Waard 102 Threats 106 Recommendations 108 Conclusion 109 Discussion 109 Literature 111 Sources photos 112 Attachment 1: Logbook 112 2 Summary At this moment 98 bee species have been recorded in the Hoeksche Waard. 14 of these species are on the red list. 39 species, that have not been recorded yet, are likely to occur in the Hoeksche Waard. This results in 137 species, which is 41% of all species that occur in the Netherlands. The species of priority are: Andrena rosae, A. labialis, A. wilkella, Bombus ​ jonellus, B. muscorum and B. veteranus. Potential species of priority are: Andrena pilipes, A. ​ ​ ​ gravida Bombus ruderarius B. rupestris and Nomada bifasciata. ​ ​ Threats to bees are: scaling up in agriculture, eutrophication, reduction of flowers, pesticides and competition with honey bees.
    [Show full text]
  • The Quandary of Allied Logistics from D-Day to the Rhine
    THE QUANDARY OF ALLIED LOGISTICS FROM D-DAY TO THE RHINE By Parker Andrew Roberson November, 2018 Director: Dr. Wade G. Dudley Program in American History, Department of History This thesis analyzes the Allied campaign in Europe from the D-Day landings to the crossing of the Rhine to argue that, had American and British forces given the port of Antwerp priority over Operation Market Garden, the war may have ended sooner. This study analyzes the logistical system and the strategic decisions of the Allied forces in order to explore the possibility of a shortened European campaign. Three overall ideas are covered: logistics and the broad-front strategy, the importance of ports to military campaigns, and the consequences of the decisions of the Allied commanders at Antwerp. The analysis of these points will enforce the theory that, had Antwerp been given priority, the war in Europe may have ended sooner. THE QUANDARY OF ALLIED LOGISTICS FROM D-DAY TO THE RHINE A Thesis Presented to the Faculty of the Department of History East Carolina University In Partial Fulfillment of the Requirements for the Degree Master of Arts in History By Parker Andrew Roberson November, 2018 © Parker Roberson, 2018 THE QUANDARY OF ALLIED LOGISTICS FROM D-DAY TO THE RHINE By Parker Andrew Roberson APPROVED BY: DIRECTOR OF THESIS: Dr. Wade G. Dudley, Ph.D. COMMITTEE MEMBER: Dr. Gerald J. Prokopowicz, Ph.D. COMMITTEE MEMBER: Dr. Michael T. Bennett, Ph.D. CHAIR OF THE DEP ARTMENT OF HISTORY: Dr. Christopher Oakley, Ph.D. DEAN OF THE GRADUATE SCHOOL: Dr. Paul J.
    [Show full text]
  • Aanvulling Akoestisch Onderzoek Wegverkeerslawaai
    NOTITIE Aan : dhr. J. de Rooij gemeente Culemborg Tel.nr./e-mail : 0345-477792 / [email protected] Van : dhr. E.J.L. Kuijs Doorkiesnummer : 0344-638505 / [email protected] Datum : 3 december 2009 Betreft : Akoestisch onderzoek aanpassing Vlinderlaan Parijsch zuid te Culemborg (aanvulling op rapport d.d. 26 oktober 2009) Aantal pagina’s : 6 (incl. bijlagen) Toelichting: Op verzoek van de gemeente Culemborg is op 26 oktober 2009 een akoestisch onderzoek opgesteld naar het wegverkeerslawaai bij nieuw te projecteren woningen in het plan Parijsch zuid te Culemborg. Het plan Parijsch zuid omvat (naast het projecteren van nieuwe woningen en wegen), het wijzigen van een bestaande weg, die een geluidszone heeft waarbinnen zich bestaande woningen bevinden. Het betreft de wijziging van de Vlinderlaan en de aansluiting daarvan op de rotonde met de Wethouder Schoutenweg. De hier nabij gelegen bestaande woningen zijn de woningen Rietveldseweg 15, 16 en 17. Voor deze woningen zijn de geluidsbelastingen berekend in de huidige situatie 2009 en de toekomstige situatie 2020. Met die gegevens kan worden bepaald of er sprake is van een "reconstructie van een weg" volgens de definitie in de Wet geluidhinder1. Van een reconstructie is sprake als de geluidsbelasting in 2020 met 2 dB of meer is verhoogd ten opzichte van de huidige situatie 2009 (of ten opzichte van een in het verleden vastgestelde hogere waarde) en daarbij de geluidsgrenswaarde uit de Wet geluidhinder (48 dB) wordt overschreden. De toetsing dient daarbij te gebeuren per weg: in dit geval de Vlinderlaan en de Wethouder Schoutenweg en zonder rekening te houden met het treffen van maatregelen.
    [Show full text]
  • Vergeten Rivieren
    This page was exported from - Watericonen Export date: Thu Sep 23 18:19:27 2021 / +0000 GMT Vergeten rivieren De drie bekende rivieren bij Dordrecht zijn de Beneden-Merwede, de Noord en de Oude Maas. Het kanaal, nummer vier, de Nieuwe Merwede wordt daarbij nog wel eens vergeten. Er zijn in de omgeving echter nog meer ?vergeten' rivieren. Weliswaar soms al eeuwen afgedamd, ze horen in het landschap van de polders en de waarden. Vooral de Alblasserwaard telt nog een aantal oude rivieren. Natuurlijk de Alblas die in het oosten als rivier de Graafstroom begint. Vroeger was de Alblas een druk bevaren rivier met voornamelijk schuiten die veevoer (zoals pulp) transporteerden. Vandaag de dag wordt de rivier alleen bevaren door plezierschippers. Op zomerse dagen kan het op het water enorm druk zijn. Er zijn plannen om de oude, niet meer functionerende, schutsluis in Alblasserdam te restaureren, waardoor de Alblas en de Noord weer verbinding met elkaar krijgen. Ook in de Alblasserwaard, maar meer naar het zuidoosten gelegen is de Giessen. Het is een veenriviertje dat zijn oorsprong heeft in twee kleine veenriviertjes, de Noordeloos en de Kromme Giessen. De Giessen mondt uit in de Beneden-Merwede. De Giessen is net als de Alblas en Graafstroom een schilderachtige parel in het polderlandschap. De landschappelijke waarde werd zo groot gedacht dat de goederenspoorlijn Betuwelijn er met een tunnel onderdoor gaat. Voor wie het weet zijn op het Eiland van Dordrecht nog twee rivieren aan te wijzen. De Thuredriht bijvoorbeeld, de rivier waaraan Dordrecht zijn naam dankt. Het deel van de Voorstraatshaven tussen de Visbrug en Boombrug is het restant van de rivier.
    [Show full text]
  • Fvanderziel Master Thesis ... Ep2009.Pdf
    Appendix Master thesis: Movable water barrier for the 21st century Technical University Delft Section: Hydraulic Structures F. van der Ziel BSc September 15, 2009 TABLE OF CONTENTS A. Literature Study (conclusions only) ...................................................................................... 2 B. Inland Water Navigations..................................................................................................... 3 B.1 CEMT-classes ............................................................................................................... 3 B.2 Current Navigation ....................................................................................................... 5 B.3 Future Navigation ........................................................................................................ 6 C. Locations Descriptions and Selections .................................................................................. 9 C.1 Criteria ......................................................................................................................... 9 C.2 Spui ............................................................................................................................ 11 C.3 Dordtsche Kil .............................................................................................................. 16 C.4 Beneden Merwede ..................................................................................................... 20 C.5 Lek ............................................................................................................................
    [Show full text]
  • New Canalization of the Nederrijn and Lek Main
    NEW CANALIZATION OF THE NEDERRIJN AND LEK MAIN REPORT Design of a weir equipped with fibre reinforced polymer gates which is designed using a structured design methodology based on Systems Engineering 25 January 2013 : Henry Tuin New canalization of the Nederrijn and Lek Main report Colophon Title: New canalization of the Nederrijn and Lek – Design of a weir with fibre reinforced polymer gates which is made using a structured design methodology based on Systems Engineering Reference: Tuin H. G., 2013. New canalization of the Nederrijn and Lek – Design of a weir with fibre reinforced polymer gates which is designed using a structured design methodology based on Systems Engineering (Master Thesis), Delft: Technical University of Delft. Key words: Hydraulic structures, weir design, dam regime design, Systems Engineering, canalization of rivers, fibre reinforced polymer hydraulic gates, Nederrijn, Lek, corridor approach, river engineering. Author: Name: ing. H.G. Tuin Study number: 1354493 Address: Meulmansweg 25-C 3441 AT Woerden Mobile phone number: +31 (0) 641 177 158 E-mail address: [email protected] Study: Civil Engineering; Technical University of Delft Graduation field: Hydraulic Structures Study: Technical University of Delft Faculty of Civil Engineering and Geosciences Section of Hydraulic Engineering Specialisation Hydraulic Structures CIE 5060-09 Master Thesis Graduation committee: Prof. drs. ir. J.K. Vrijling TU Delft, Hydraulic Engineering, chairman Dr. ir. H.G. Voortman ARCADIS, Principal Consultant Water Division, daily supervisor Ir. A. van der Toorn TU Delft, Hydraulic Engineering, daily supervisor Dr. M.H. Kolstein TU Delft, Structural Engineering, supervisor for fibre reinforced polymers : ARCADIS & TUDelft i New canalization of the Nederrijn and Lek Main report Preface & acknowledgements This thesis is the result of the master Hydraulic Engineering specialization Hydraulic Structures of the faculty of Civil Engineering and Geosciences of the Delft University of Technology.
    [Show full text]
  • PUB Commences Coastal Protection Study at City-East Coast
    PUB commences coastal protection study at City-East Coast First site-specific study key to developing a flood resilient master plan to protect Singapore’s south-eastern coastlines from sea-level rise Singapore, 18 May 2021 – National Water Agency PUB will commence a site-specific study along Singapore’s City-East Coast, looking into possible solutions to protect it from the threat of rising seas caused by climate change. This is the first of a series of planned studies for different parts of Singapore’s coastline to be progressively carried out over the next few years, and are a key plank in Singapore’s long-term coastal protection plans. 2 The study covers 57.8 km of the coastline, across three areas (see Annex A for detailed infographic showing the scope of study) – Changi, the East Coast-Marina stretch and part of the Greater Southern Waterfront district. This section of the coastline had been identified to be more vulnerable and critical based on factors such as the potential impact of a flood event, criticality of assets (e.g. airports, economic and industrial districts) and opportunities to dovetail with upcoming developments. 3 The study will take around four years to complete, and will include work such as literature review to glean international best practices, collecting site data to support design works, formulating adaptation measures and pathways and developing the designs of solutions to mitigate flood risks. 4 Ms Hazel Khoo, Director of PUB’s Coastal Protection Department, said, “When PUB was appointed national coastal protection agency in April 2020, this study was earmarked as a significant milestone in our mission to prepare Singapore for the impacts of sea-level rise.
    [Show full text]