Atlantic Blue Crab Callinectes Sapidus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
A New Record of Callinectes Sapidus Rathbun, 1896 (Crustacea: Decapoda: Brachyura) from the Cantabrian Sea, Bay of Biscay, Spain
Aquatic Invasions (2006) Volume 1, Issue 3: 186-187 DOI 10.3391/ai.2006.1.3.14 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Short communication A new record of Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Brachyura) from the Cantabrian Sea, Bay of Biscay, Spain Jesús Cabal1*, Jose Antonio Pis Millán2 and Juan Carlos Arronte3 1Instituto Español de Oceanografía, Centro Oceanográfico de Gijón, Avenida Príncipe de Asturias 70, Bis. 33212, Gijón, Spain, E-mail: [email protected] 2Centro de Experimentación Pesquera, Avenida Príncipe de Asturias, s/n. 33212 Gijón, Spain, E-mail: [email protected] 3Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Calle Catedrático Rodrigo Uria, s/n. 33071 Oviedo, Spain, E-mail: [email protected] *Corresponding author Received 19 June 2006; accepted in revised form 24 July 2006 Abstract A single immature female specimen of the blue crab, Callinectes sapidus Rathbun, 1896 was collected on 22 September 2004 in a refrigeration pipe of the power station at Port of El Musel, Gijón, Northern Spain. This is the first record of this alien species from northern Spain. Key words: Callinectes sapidus, alien species, blue crab, Biscay Bay, Spain A single immature female specimen of the estua- immature as the size for mature females is rine blue crab, Callinectes sapidus Rathburn, between 120-170 mm, as indicated in studies of 1896 (Figure 1) was collected on 22 September the Chesapeake Bay (Cadman and Weinstein 2004 from the grille of the refrigeration pipe in a 1985). -
Blue Crab (Callinectes Sapidus) Use of the Ship/Trinity/Tiger Shoal
ACCESS NUMBER: 32806-35161 STUDY TITLE: Ship Shoal: Sand, Shrimp, and Seatrout REPORT TITLE: Blue Crab (Callinectes sapidus) Use of the Ship/Trinity/Tiger Shoal Complex as a Nationally Important Spawning/Hatching/Foraging Ground: Discovery, Evaluation, and Sand Mining Recommendations based on Blue Crab, Shrimp, and Spotted Seatrout Findings CONTRACT NUMBER: 1435-01-04-CA-32806-35161 (M05AZ10660) SPONSORING OCS REGION: Gulf of Mexico APPLICABLE PLANNING AREA: Central FISCAL YEARS OF PROJECT FUNDING: 2004-2009 COMPLETION DATE OF REPORT: December 2009 COSTS: FY 2004-2009, $145,778; CUMMULATIVE PROJECT COSTS: $145,778 PROJECT MANAGER: R. E. Condrey AFFILIATION: Louisiana State University, Department of Oceanography and Coastal Sciences, School of the Coast and Environment ADDRESS: Energy, Coast, and Environment Building, Louisiana State University, Baton Rouge, LA 70803 PRINCIPAL INVESTIGATOR: R.E. Condrey KEY WORDS: Gulf of Mexico, Ship Shoal, Trinity Shoal, Tiger Shoal, Louisiana, sand mining, blue crab, white shrimp, brown shrimp, spotted seatrout, condition factor, fecundity, spawning grounds, coastal restoration BACKGROUND: The Minerals Management Service (MMS) is addressing the recent demand for U.S. continental shelf sand resources for coastal erosion management, a critical challenge to Louisiana’s ecosystems and economies. Louisiana considers barrier island restoration as a promising way to combat wetland loss, with sand mined from Ship Shoal as the most feasible sediment source. Additional sand resources on Trinity and Tiger Shoals are also being considered. Since this area supports major demersal fisheries on white and brown shrimp (Litopenaeus setiferus and Farfantepenaeus aztecus), the present study was conducted as part of a larger effort to understand the sand-mining ecology of the Ship/Trinity/Tiger Shoal Complex (STTSC). -
Barnegat Bay— Year 2
Plan 9: Research Barnegat Bay— Benthic Invertebrate Community Monitoring & Year 2 Indicator Development for the Barnegat Bay-Little Egg Harbor Estuary - Barnegat Bay Diatom Nutrient Inference Model Hard Clams as Indicators of Suspended Ecological Evaluation of Particulates in Barnegat Bay Sedge Island Marine Assessment of Fishes & Crabs Responses to Conservation Zone Human Alteration of Barnegat Bay Assessment of Stinging Sea Nettles (Jellyfishes) in Barnegat Bay Baseline Characterization Dr. Paul Jivoff, Rider University, Principal Investigator of Phytoplankton and Harmful Algal Blooms Project Manager: Joe Bilinski, Division of Science, Research and Environmental Health Baseline Characterization of Zooplankton in Barnegat Bay Thomas Belton, Barnegat Bay Research Coordinator Dr. Gary Buchanan, Director—Division of Science, Research & Environmental Health Multi-Trophic Level Modeling of Barnegat Bob Martin, Commissioner, NJDEP Bay Chris Christie, Governor Tidal Freshwater & Salt Marsh Wetland Studies of Changing Ecological Function & Adaptation Strategies 29 August 2014 Final Report Project Title: Ecological Evaluation of Sedge Island Marine Conservation Area in Barnegat Bay Dr. Paul Jivoff, Rider University, Manager [email protected] Joseph Bilinski, NJDEP Project Manager [email protected] Tom Belton, NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Acknowledgements I would like to thank the Rutgers University Marine Field Station for providing equipment, facilities and logistical support that were vital to completing this project. I also thank Rider University students (Jade Kels, Julie McCarthy, Laura Moritzen, Amanda Young, Frank Pandolfo, Amber Barton, Pilar Ferdinando and Chelsea Tighe) who provided critical assistance in the field and laboratory. The Sedge Island Natural Resource Education Center provided key logistical support for this project. -
The First Recorded Occurrences of the Invasive Crab Callinectes Sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) in Coast
BioInvasions Records (2018) Volume 7, Issue 2: 191–196 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.12 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication The first recorded occurrences of the invasive crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) in coastal lagoons of the Balearic Islands (Spain) Lluc Garcia1, Samuel Pinya1,2,*, Victor Colomar3, Tomàs París3, Miquel Puig3, Maties Rebassa4 and Joan Mayol4 1Museu Balear de Ciències Naturals, Carretera Palma-Port de Sóller, km 30. P.O. Box 55. Sóller 07100, Balearic Islands, Spain 2Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Balearic Islands, Spain 3Consorci per a la Recuperació de Fauna de les Illes Balears (COFIB), Ctra Sineu km 15.400, Santa Eugènia 07142, Balearic Islands, Spain 4Direcció General d’Espais Naturals i Biodiversitat, Conselleria de Medi Ambient Agricultura i Pesca, Gremi de Corredors, 10, Polígon Son Rossinyol, Palma 07009, Balearic Islands, Spain *Corresponding author E-mail: [email protected] Received: 26 September 2017 / Accepted: 31 January 2018 / Published online: 5 February 2018 Handling editor: Thomas Therriault Abstract The introduction of species is a major threat to biodiversity conservation. Island biodiversity is especially sensitive to the arrival of new species, and species introductions are one of the major concerns of conservation management policies. Here, we report for the first time the arrival of Callinectes sapidus, a new potentially invasive crab species from the East coast of America to the Balearic Islands (Spain). It appeared simultaneously in both Mallorca and Menorca islands. Nine different records of 20 individuals were documented in six different localities, suggesting an initial colonization process of the territory. -
Dimorphism and the Functional Basis of Claw Strength in Six Brachyuran Crabs
J. Zool., Lond. (2001) 255, 105±119 # 2001 The Zoological Society of London Printed in the United Kingdom Dimorphism and the functional basis of claw strength in six brachyuran crabs Steve C. Schenk1 and Peter C. Wainwright2 1 Department of Biological Science, Florida State University, Tallahassee, Florida 32306, U.S.A. 2 Section of Evolution and Ecology, University of California, Davis, CA 95616, U.S.A. (Accepted 7 November 2000) Abstract By examining the morphological basis of force generation in the chelae (claws) of both molluscivorous and non-molluscivorous crabs, it is possible to understand better the difference between general crab claw design and the morphology associated with durophagy. This comparative study investigates the mor- phology underlying claw force production and intraspeci®c claw dimorphism in six brachyuran crabs: Callinectes sapidus (Portunidae), Libinia emarginata (Majidae), Ocypode quadrata (Ocypodidae), Menippe mercenaria (Xanthidae), Panopeus herbstii (Xanthidae), and P. obesus (Xanthidae). The crushers of the three molluscivorous xanthids consistently proved to be morphologically `strong,' having largest mechan- ical advantages (MAs), mean angles of pinnation (MAPs), and physiological cross-sectional areas (PCSAs). However, some patterns of variation (e.g. low MA in C. sapidus, indistinguishable force generation potential in the xanthids) suggested that a quantitative assessment of occlusion and dentition is needed to understand fully the relationship between force generation and diet. Interspeci®c differences in force generation potential seemed mainly to be a function of differences in chela closer muscle cross- sectional area, due to a sixfold variation in apodeme area. Intraspeci®c dimorphism was generally de®ned by tall crushers with long in-levers, though O. -
Dieta Natural Do Siri-Azul Callinectes Sapidus (Decapoda, Portunidae) Na Região
Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região... 305 Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região estuarina da Lagoa dos Patos, Rio Grande, Rio Grande do Sul, Brasil Alexandre Oliveira, Taciana K. Pinto, Débora P. D. Santos & Fernando D’Incao Fundação Universidade Federal do Rio Grande, Caixa Postal 474, 96201-900 Rio Grande, RS, Brasil. ([email protected], [email protected], [email protected], [email protected]) ABSTRACT. Natural diet of the blue crab Callinectes sapidus (Decapoda, Portunidae) in the Patos Lagoon estuary area, Rio Grande, Rio Grande do Sul, Brazil. The Southern Brazil blue crab Callinectes sapidus Rathbun, 1869 is the most abundant crab of the genus Callinectes in Patos Lagoon estuary. Although this species is widely distributed throughout the Patos Lagoon estuary area, there is little information about its natural diet. This species is an important predator and has a significant influence on its prey populations. The aim of this study was to check the natural diet of blue crab through the foregut contents analysis. Crabs were collected using an otter trawl net from March 2003 to March 2004. After collected, crabs were preserved immediately in 10% formaldehyde. The carapace width, weight and sex were measured for each individual. The foregut of each crab was removed and stored in 70% ethanol. Blue crab feeds on a wide variety of sessile and slow moving invertebrates. The main item was Detritus, followed by the suspension-feeder mollusk Erodona mactroides Bosc, 1802 (Erodonidae). Sand grains and the small crustaceans of class Ostracoda, were an important component of the foregut contents, but sand grains were not considered food. -
Chinese Mitten Crab (Eriocheir Sinensis)
www.nonnativespecies.org For definitive identification, contact: [email protected] Chinese mitten crab (Eriocheir sinensis) Synonyms: - big sluiceway crab, Chinese freshwater edible crab, Chinese mittenhanded crab, Chinese mit- ten-handed crab, Chinese river crab, crabe chi- nois, mitten crab, river crab, Shanghai crab, villus crab - Eriocheir japonicas, E. leptognathus, E. rectus Consignments likely to come from: unknown Use: may be used for human consumption Identification difficulty: easy Identification information: - the only freshwater crab present in Britain - body (carapace) olive-green-brown, up to 8cm wide - pincers covered in a mat of fine hair resembling mittens - legs long and hairy Key ID Features Pincers covered in a mat Body (carapace) olive- of fine hair, giving the green-brown, up to 8 cm appearance of mittens wide Up to 8 cm Legs long and hairy Male and female Chinese mitten crabs are similar in appearance except their undersides Underside Underside of female of male Similar species Three other crab species are commonly imported to Britain but these are unlikely to be confused with Chinese mitten crab. Eriocheir sinensis Metacarcinus magister (Chinese mitten crab) (Dungeness crab) for comparison Body up tp to 8cm Legs long across and hairy Body up tp to 25cm across, usually under 20cm Body beige to light brown in Body (carapace) olive- Pincers covered in a mat colour with blue edges green-brown of fine hair, giving the appearance of mittens Callinectes sapidus Portunus pelagicus (Atlantic blue crab) (blue swimmer crab) Legs blue, body greyish / Body up tp to 27cm Vary in colour from dark Body up tp to 21cm greenish brown across brown, blue and purple across Pair of long, pointed Paddle shaped rear legs spines at lateral edges Paddle shaped rear legs of body Photos from: Almandine, Children’s Museum of Indianapolis, Dan Boone—United States Fish and Wildlife Service (all via Wikimedia Commons), & APHA . -
Diet, Feeding Habits, and Predator Size/Prey Size Relationships of Red Drum (Sciaenops Ocellatus) in Galveston Bay, Texas
Diet, Feeding Habits, and Predator Size/Prey Size Relationships of Red Drum (Sciaenops ocellatus) in Galveston Bay, Texas 233 Kurtis K. Schlicht Conservation Scientist II Texas Parks and Wildlife, Coastal Fisheries Division Seabrook Marine Laboratory B.S. Degree in Biology from Texas Tech University, Lubbock, Texas. Previous work includes Biologist Assistant for six years with Houston Lighting and Power's Environmental Division. Currently working as a Conservation Scientist II in the Coastal Fisheries Division of the Texas Parks and Wildlife, Seabrook Marine Laboratory. (281) 474-2811. 234 Feeding Habits of Red Drum (Sciaenops ocellatus) in Galveston Bay, Texas: Seasonal Diet Variation and Predator-Prey Size Relationships Frederick S. Scharf and Kurtis K. Schlicht Texas Parks and Wildlife, Coastal Fisheries Division, Seabrook Marine Laboratory, P.O. Box 8, Seabrook, TX 77586 Introduction The effect of predaceous fishes on the composition of aquatic ecosystems can be significant. Mortality induced by predation can reduce prey abundances locally and may limit prey recruitment in some systems. In order to begin to quantify the potential effects offish predation on community structure and prey populations, detailed information is needed on the feeding habits of important predators. The red drum (Sciaenops ocellatus) is an abundant estuarine-dependent fish that is widely distributed throughout the Gulf of Mexico. Adults spawn in near shore Gulf waters close to the mouths of passes and inlets during late summer and early fall. Larvae are transported through passes into estuaries via tidal currents, where they settle in shallow nursery areas and remain through the juvenile stage. Although older red drum may migrate to offshore waters during fall and winter, fish at least as old as age four commonly occur in Gulf of Mexico estuaries. -
A New Pathogenic Virus in the Caribbean Spiny Lobster Panulirus Argus from the Florida Keys
DISEASES OF AQUATIC ORGANISMS Vol. 59: 109–118, 2004 Published May 5 Dis Aquat Org A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys Jeffrey D. Shields1,*, Donald C. Behringer Jr2 1Virginia Institute of Marine Science, The College of William & Mary, Gloucester Point, Virginia 23062, USA 2Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA ABSTRACT: A pathogenic virus was diagnosed from juvenile Caribbean spiny lobsters Panulirus argus from the Florida Keys. Moribund lobsters had characteristically milky hemolymph that did not clot. Altered hyalinocytes and semigranulocytes, but not granulocytes, were observed with light microscopy. Infected hemocytes had emarginated, condensed chromatin, hypertrophied nuclei and faint eosinophilic Cowdry-type-A inclusions. In some cases, infected cells were observed in soft con- nective tissues. With electron microscopy, unenveloped, nonoccluded, icosahedral virions (182 ± 9 nm SD) were diffusely spread around the inner periphery of the nuclear envelope. Virions also occurred in loose aggregates in the cytoplasm or were free in the hemolymph. Assembly of the nucleocapsid occurred entirely within the nucleus of the infected cells. Within the virogenic stroma, blunt rod-like structures or whorls of electron-dense granular material were apparently associated with viral assembly. The prevalence of overt infections, defined as lethargic animals with milky hemolymph, ranged from 6 to 8% with certain foci reaching prevalences of 37%. The disease was transmissible to uninfected lobsters using inoculations of raw hemolymph from infected animals. Inoculated animals became moribund 5 to 7 d before dying and they began dying after 30 to 80 d post-exposure. -
Growth Rate Variability and Lipofuscin Accumulation Rates in the Blue Crab Callinectes Sapidus
MARINE ECOLOGY PROGRESS SERIES Vol. 224: 197–205, 2001 Published December 19 Mar Ecol Prog Ser Growth rate variability and lipofuscin accumulation rates in the blue crab Callinectes sapidus Se-Jong Ju, David H. Secor, H. Rodger Harvey* Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, PO Box 38, Solomons, Maryland 20688, USA ABSTRACT: To better understand growth and age-pigment (lipofuscin) accumulation rates of the blue crab Callinectes sapidus under natural conditions, juveniles (33 to 94 mm carapace width) were reared in outdoor ponds for over 1 yr. Growth rates, measured by carapace width, during summer and fall exceeded all those reported in the literature; the initial carapace width of 59 ± 14 mm (mean ± SD) increased to 164 ± 15 mm within a 3 mo period. No growth occurred during winter months (Novem- ber to April) at low water temperatures. Growth rates of crabs in ponds were substantially higher (von Bertalanffy growth parameter K = 1.09) than those of crabs held in laboratory environments, and than rate estimates for natural populations of mid-Atlantic blue crabs. Model comparisons indicated that seasonalized von Bertalanffy growth models (r2 > 0.9) provide a better fit than the non-seasonalized model (r2 = 0.74) for pond-reared crabs and, by implication, are more appropriate for field popula- tions. Despite growth rates that varied strongly with season, lipofuscin (normalized to protein con- centration) accumulation rate was nearly constant throughout the year. Although the lipofuscin level in pond-reared crabs was significantly correlated with size (carapace width), it was more closely cor- related with chronological age. -
Physiological and Biochemical Responses to Hypoxia in the Blue Crab, Callinectes Sapidus Rathbun, the Lesser Blue Crab, Callinec
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1993 Physiological and Biochemical Responses to Hypoxia in the Blue Crab, Callinectes Sapidus Rathbun, the Lesser Blue Crab, Callinectes Similis Williams, and the Southern Oyster Drill, Stramonita Haemastoma Linnaeus. Tapash Das Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Das, Tapash, "Physiological and Biochemical Responses to Hypoxia in the Blue Crab, Callinectes Sapidus Rathbun, the Lesser Blue Crab, Callinectes Similis Williams, and the Southern Oyster Drill, Stramonita Haemastoma Linnaeus." (1993). LSU Historical Dissertations and Theses. 5625. https://digitalcommons.lsu.edu/gradschool_disstheses/5625 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.