Defective Synaptic Connectivity and Axonal Neuropathology in a Human
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Proteolytic Activation Defines Distinct Lymphangiogenic Mechanisms for VEGFC and VEGFD
Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD Hung M. Bui, … , Kari Alitalo, Mark L. Kahn J Clin Invest. 2016;126(6):2167-2180. https://doi.org/10.1172/JCI83967. Research Article Vascular biology Lymphangiogenesis is supported by 2 homologous VEGFR3 ligands, VEGFC and VEGFD. VEGFC is required for lymphatic development, while VEGFD is not. VEGFC and VEGFD are proteolytically cleaved after cell secretion in vitro, and recent studies have implicated the protease a disintegrin and metalloproteinase with thrombospondin motifs 3 (ADAMTS3) and the secreted factor collagen and calcium binding EGF domains 1 (CCBE1) in this process. It is not well understood how ligand proteolysis is controlled at the molecular level or how this process regulates lymphangiogenesis, because these complex molecular interactions have been difficult to follow ex vivo and test in vivo. Here, we have developed and used biochemical and cellular tools to demonstrate that an ADAMTS3-CCBE1 complex can form independently of VEGFR3 and is required to convert VEGFC, but not VEGFD, into an active ligand. Consistent with these ex vivo findings, mouse genetic studies revealed that ADAMTS3 is required for lymphatic development in a manner that is identical to the requirement of VEGFC and CCBE1 for lymphatic development. Moreover, CCBE1 was required for in vivo lymphangiogenesis stimulated by VEGFC but not VEGFD. Together, these studies reveal that lymphangiogenesis is regulated by two distinct proteolytic mechanisms of ligand activation: one in which VEGFC activation by ADAMTS3 and CCBE1 spatially and temporally patterns developing lymphatics, and one in which VEGFD activation by a distinct […] Find the latest version: https://jci.me/83967/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD Hung M. -
Study of the Requirement of the CCBE1 Growth Factor in the Generation of Cardiac Myocytes from Hes Cells
Study of the requirement of the CCBE1 growth factor in the generation of cardiac myocytes from hES cells MS.c Thesis in Biomedical Science Rita Catarina Vaz Drago Study of the requirement of the CCBE1 growth factor in the generation of cardiac myocytes from hES cells MS.c Thesis in Biomedical Science Rita Catarina Vaz Drago Orientador: Professor Doutor José António Belo Co-orientador: Doutora Andreia Bernardo Faro, 2012 ii MS.c Thesis proposal in Biomedical Science Area of Developmental Biology by the Universidade do Algarve Study of the requirement of the CCBE1 growth factor in the generation of cardiac myocytes from hES cells. Dissertação para obtenção do Grau de Mestre em Ciências Biomédicas Área de Biologia do Desenvolvimento pela Universidade do Algarve Estudo da função do factor de crescimento CCBE1 na diferenciação de miócitos cardíacos a partir de células estaminais embrionárias humanas Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. Copyright. A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iii ACKNOWLEDGEMENTS I thank my supervisor, Prof. José Belo, for the support he provided me during this long journey and for the opportunity of working at his laboratory. -
Mutations in CCBE1 Cause Generalized Lymph Vessel Dysplasia
BRIEF COMMUNICATIONS Mutations in CCBE1 cause (Fig. 1a–f)8. Subsequently, subjects with lymphangiectasias in pleura, pericardium, thyroid gland and kidney and with hydrops fetalis were generalized lymph vessel dysplasia described9,10. The entity was designated lymphedema-lymphangiectasia– mental retardation or Hennekam syndrome (MIM 235510). Occurrence in humans of affected siblings, equal occurrence among sexes and frequent consanguinity indicated autosomal recessive inheritance9. 1 2 2 1 Marielle Alders , Benjamin M Hogan , Evisa Gjini , Faranak Salehi , We collected blood samples from a series of 27 subjects with Hennekam 3 4 5 Lihadh Al-Gazali , Eric A Hennekam , Eva E Holmberg , syndrome born to 22 families. None of the subjects carried mutations 1 6 7,8 Marcel M A M Mannens , Margot F Mulder , G Johan A Offerhaus , in FLT4, FOXC2 or SOX18. We performed homozygosity mapping in 5 9 10 Trine E Prescott , Eelco J Schroor , Joke B G M Verheij , three unpublished subjects (A, B and C) originating from a small isolate 2 11,14 12 Merlijn Witte , Petra J Zwijnenburg , Mikka Vikkula , in The Netherlands. Pedigree analysis had shown the parents of subject 2,15 13–15 Stefan Schulte-Merker & Raoul C Hennekam A to be consanguineous and all three subjects to be related (Fig. 1g). We reasoned that occurrence of three cases of a rare disorder in a small Lymphedema, lymphangiectasias, mental retardation and isolate suggested homozygosity for a founder mutation. Homozygosity unusual facial characteristics define the autosomal recessive mapping identified a 5.7-Mb homozygous region on chromosome 18q21 Hennekam syndrome. Homozygosity mapping identified a with identical haplotypes in the three affected individuals (Fig. -
WNT16 Is a New Marker of Senescence
Table S1. A. Complete list of 177 genes overexpressed in replicative senescence Value Gene Description UniGene RefSeq 2.440 WNT16 wingless-type MMTV integration site family, member 16 (WNT16), transcript variant 2, mRNA. Hs.272375 NM_016087 2.355 MMP10 matrix metallopeptidase 10 (stromelysin 2) (MMP10), mRNA. Hs.2258 NM_002425 2.344 MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) (MMP3), mRNA. Hs.375129 NM_002422 2.300 HIST1H2AC Histone cluster 1, H2ac Hs.484950 2.134 CLDN1 claudin 1 (CLDN1), mRNA. Hs.439060 NM_021101 2.119 TSPAN13 tetraspanin 13 (TSPAN13), mRNA. Hs.364544 NM_014399 2.112 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.070 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.026 DCBLD2 discoidin, CUB and LCCL domain containing 2 (DCBLD2), mRNA. Hs.203691 NM_080927 2.007 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), mRNA. Hs.594481 NM_002575 2.004 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.989 OBFC2A Oligonucleotide/oligosaccharide-binding fold containing 2A Hs.591610 1.962 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.947 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 2, mRNA. Hs.472101 NM_182797 1.934 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 1, mRNA. Hs.472101 NM_000933 1.933 KRTAP1-5 keratin associated protein 1-5 (KRTAP1-5), mRNA. Hs.534499 NM_031957 1.894 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.884 CYTL1 cytokine-like 1 (CYTL1), mRNA. Hs.13872 NM_018659 tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain (TNFRSF10D), 1.848 TNFRSF10D Hs.213467 NM_003840 mRNA. -
Prioritization of Genes Involved in Endothelial Cell Apoptosis by Their Implication in Lymphedema Using an Analysis of Associative Gene Networks with Andsystem Olga V
Saik et al. BMC Medical Genomics 2019, 12(Suppl 2):47 https://doi.org/10.1186/s12920-019-0492-9 RESEARCH Open Access Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem Olga V. Saik1,3*, Vadim V. Nimaev2,3, Dilovarkhuja B. Usmonov3,4, Pavel S. Demenkov1,3, Timofey V. Ivanisenko1,3, Inna N. Lavrik1,5 and Vladimir A. Ivanisenko1,3 From 11th International Multiconference “Bioinformatics of Genome Regulation and Structure\Systems Biology” - BGRS\SB- 2018 Novosibirsk, Russia. 20-25 August 2018 Abstract Background: Currently, more than 150 million people worldwide suffer from lymphedema. It is a chronic progressive disease characterized by high-protein edema of various parts of the body due to defects in lymphatic drainage. Molecular-genetic mechanisms of the disease are still poorly understood. Beginning of a clinical manifestation of primary lymphedema in middle age and the development of secondary lymphedema after treatment of breast cancer can be genetically determined. Disruption of endothelial cell apoptosis can be considered as one of the factors contributing to the development of lymphedema. However, a study of the relationship between genes associated with lymphedema and genes involved in endothelial apoptosis, in the associative gene network was not previously conducted. Methods: In the current work, we used well-known methods (ToppGene and Endeavour), as well as methods previously developed by us, to prioritize genes involved in endothelial apoptosis and to find potential participants of molecular-genetic mechanisms of lymphedema among them. Original methods of prioritization took into account the overrepresented Gene Ontology biological processes, the centrality of vertices in the associative gene network, describing the interactions of endothelial apoptosis genes with genes associated with lymphedema, and the association of the analyzed genes with diseases that are comorbid to lymphedema. -
A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy in African Americans
Journal of Personalized Medicine Article A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy in African Americans Huichun Xu 1,* ID , Gerald W. Dorn II 2, Amol Shetty 3, Ankita Parihar 1, Tushar Dave 1, Shawn W. Robinson 4, Stephen S. Gottlieb 4 ID , Mark P. Donahue 5, Gordon F. Tomaselli 6, William E. Kraus 5,7 ID , Braxton D. Mitchell 1,8 and Stephen B. Liggett 9,* 1 Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; [email protected] (A.P.); [email protected] (T.D.); [email protected] (B.D.M.) 2 Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; [email protected] 3 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; [email protected] 4 Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; [email protected] (S.W.R.); [email protected] (S.S.G.) 5 Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27708, USA; [email protected] (M.P.D.); [email protected] (W.E.K.) 6 Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; [email protected] 7 Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA 8 Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration -
Genomic Diagnostics Within a Medically Underserved Population: Efficacy and Implications
© American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Genomic diagnostics within a medically underserved population: efficacy and implications Kevin A. Strauss, MD1, Claudia Gonzaga-Jauregui, PhD2, Karlla W. Brigatti, MS1, Katie B. Williams, MD, PhD1, Alejandra K. King, PhD2, Cristopher Van Hout, PhD2, Donna L. Robinson, CRNP1, Millie Young, RNC1, Kavita Praveen, PhD2, Adam D. Heaps, MS1, Mindy Kuebler, MS1, Aris Baras, MD2, Jeffrey G. Reid, PhD2, John D. Overton, PhD2, Frederick E. Dewey, MD2, Robert N. Jinks, PhD3, Ian Finnegan, BA3, Scott J. Mellis, MD, PhD2, Alan R. Shuldiner, MD2 and Erik G. Puffenberger, PhD1 Purpose: We integrated whole-exome sequencing (WES) and Compared to trio analysis, “family” WES (average seven exomes chromosomal microarray analysis (CMA) into a clinical workflow per proband) reduced filtered candidate variants from 22 ± 6to to serve an endogamous, uninsured, agrarian community. 5 ± 3 per proband. Nineteen (51%) alleles were de novo and 17 Methods: Seventy-nine probands (newborn to 49.8 years) who (46%) inherited; the latter added to a population-based diagnostic presented between 1998 and 2015 remained undiagnosed after panel. We found actionable secondary variants in 21 (4.2%) of 502 biochemical and molecular investigations. We generated WES data subjects, all of whom opted to be informed. for probands and family members and vetted variants through Conclusion: CMA and family-based WES streamline and rephenotyping, segregation analyses, and population studies. economize diagnosis of rare genetic disorders, accelerate novel Results: The most common presentation was neurological disease gene discovery, and create new opportunities for community-based (64%). Seven (9%) probands were diagnosed by CMA. -
Genetic Epidemiology of Hypertension in Populations
GENETIC EPIDEMIOLOGY OF HYPERTENSION IN POPULATIONS: APPLICATIONS OF MODIFIED METHODS by PRIYA BHATIA SHETTY, M.S. Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Xiaofeng Zhu, Ph.D. Department of Epidemiology and Biostatistics CASE WESTERN RESERVE UNIVERSITY January, 2014 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Priya Bhatia Shetty, candidate for the Doctor of Philosophy degree*. Xiaofeng Zhu, PhD Robert C. Elston, PhD Jing Li, PhD Nathan Morris, PhD September 6, 2013 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Dedication This dissertation is dedicated to my husband Manju and our children Suvan, Poppy, Jujubee, and Sayali. 3 TABLE OF CONTENTS List of Tables………………………………………………………………….…………..5 List of Figures…………………………………………………………………………….6 Abstract……………………………………………………………………….…………..7 Chapter 1. Background……………………………………………………...….…………9 Chapter 2. Specific Aims………..……………………………………………………….53 Chapter 3. Variants in CXADR and F2RL1 are associated with blood pressure and obesity in African-Americans in regions identified through admixture mapping………………..60 Chapter 4. Novel variants for HDL-C, LDL-C and triglycerides identified from admixture mapping and fine-mapping analysis in families…...…………………………………….85 Chapter 5. Identification of admixture regions associated with risk of apparent treatment- resistant hypertension in African-Americans………..………………………………….117 Chapter 6. Discussion………………………………..………………………………....137 References………………………………………………………………………………142 4 List of Tables Chapter 1. Table 1. Genome-wide Association Studies of Hypertension………...……...40 Chapter 1. Table 2. Other Analysis Methods in the Genetic Analysis of Hypertension in Unrelated Subjects………………………………………………………………...……..51 Chapter 3. Table 1. Summary statistics…………………………………………...……..80 Chapter 3. Table 2. Results of gene-based multivariable regression models……..….….81 Chapter 3. -
Genomic Landscape and Genetic Heterogeneity in Gastric Adenocarcinoma Revealed by Whole-Genome Sequencing
ARTICLE Received 1 May 2014 | Accepted 3 Oct 2014 | Published 19 Nov 2014 DOI: 10.1038/ncomms6477 Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing Swee Seong Wong1,*, Kyoung-Mee Kim2,*, Jason C. Ting1,*, Kun Yu1,w, Jake Fu3, Shawn Liu4, Razvan Cristescu5, Michael Nebozhyn5, Lara Gong4, Yong Gang Yue1, Jian Wang1, Chen Ronghua5, Andrey Loboda5, James Hardwick5,w, Xiaoqiao Liu5, Hongyue Dai5, Jason Gang Jin3, Xiang S. Ye1, So Young Kang2,InGuDo2, Joon Oh Park6, Tae Sung Sohn7, Christoph Reinhard1, Jeeyun Lee6, Sung Kim7 & Amit Aggarwal1 Gastric cancer (GC) is the second most common cause of cancer-related deaths. It is known to be a heterogeneous disease with several molecular and histological subtypes. Here we perform whole-genome sequencing of 49 GCs with diffuse (N ¼ 31) and intestinal (N ¼ 18) histological subtypes and identify three mutational signatures, impacting TpT, CpG and TpCp[A/T] nucleotides. The diffuse-type GCs show significantly lower clonality and smaller numbers of somatic and structural variants compared with intestinal subtype. We further divide the diffuse subtype into one with infrequent genetic changes/low clonality and another with relatively higher clonality and mutations impacting TpT dinucleotide. Notably, we dis- cover frequent and exclusive mutations in Ephrins and SLIT/ROBO signalling pathway genes. Overall, this study delivers new insights into the mutational heterogeneity underlying distinct histologic subtypes of GC that could have important implications for future research in the diagnosis and treatment of GC. 1 Lilly Research Labs, Eli Lilly and Co, Indianapolis, Indiana 46285, USA. 2 Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea. -
Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.