Antecedent Fluvial Systems on an Uplifted Continental Margin: Constraining Cretaceous to Present-Day Drainage Basin Development in Southern South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Antecedent Fluvial Systems on an Uplifted Continental Margin: Constraining Cretaceous to Present-Day Drainage Basin Development in Southern South Africa I Antecedent fluvial systems on an uplifted continental margin: constraining Cretaceous to present-day drainage basin development in southern South Africa Janet Cristine Richardson Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment May 2016 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 7: Richardson, J.C., Hodgson, D.M., Wilson, A., Carrivick J.L. and Lang, A. Testing the applicability of morphometric characterisation in discordant catchments to ancient landscapes: a case study from southern Africa. Geomorphology, 201, 162- 176. DOI - doi:10.1016/j.geomorph.2016.02.026 Author contributions: Richardson, J.C – Main author. Responsible for data collection, collation and interpretation, and for writing the manuscript. Hodgson, D.M, Wilson, A., and Lang, A – Data discussion, and detailed manuscript review. Carrivick, J.L – Manuscript review. Submitted: 26th September 2015 Available online: 23rd February 2016 This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Janet C. Richardson to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2016 The University of Leeds and Janet C. Richardson Acknowledgments I would like to thank my supervisors Dave Hodgson, Andreas Lang, Andrew Wilson and Jonathan Carrivick for their guidance and help throughout my project. I would especially like to thank Dave for the opportunity to do this PhD, for always being enthusiastic with my work (even if it meant turning into a geomorphologist!) and for ‘helping’ me to find wine! I would like to thank the British Sedimentological Research Group and British Geomorphology Society for providing postgraduate funding for the cosmogenic dating and conference attendance. I would like to thank the Council of Geoscience, South Africa for providing geological tiles for the use in ArcGIS. Midland Valley Exploration Ltd. are thanked for providing the license for their proprietary software, Move. I would like to thank the farm owners of the Western Cape for allowing me onto their land to collect samples. I would also like to thank Veerle Vanacker for her help during laboratory work for cosmogenics and for guidance in interpreting the results. Thank you to Jérôme Schoonejans and Marco Brevin for their help in the laboratory. I would like to thank Robert Duller, John Kavanagh and Barabara Mauz for the interesting talks when I spent time at Liverpool University at the start of my PhD. I would like to thank STRAT group, for all the adventures, discussions and nights out. For their support and always helping me out when I came to visit (special thanks to Michelle, Hannah and Sarah for looking after me when I didn’t live in Leeds and came to visit!). I would especially like to thank Claire Mellett for helping me start my PhD in Liverpool and to Yvonne Spychala for supporting me during the final months! Finally I would like to thank my friends and family, for listening to my research and for providing support towards the final write up period. Thank you to Garry Power and the Geography department at St Michaels Catholic High school for inspiring me about Earth sciences from a young age. I would especially like to thank my aunt Daphne and uncle Richard for their continued support during my project and previous studies. Special thanks to Stephen McCann and family for their continued support and encouragement during my PhD. Papers Several chapters within this thesis (Chapters 4 – 8) were written as papers which were submitted to various geoscience journals for publications. The status of these papers are below. In print: Richardson, J.C., Hodgson, D.M., Wilson, A., Carrivick, J.L. and Lang, A., 2016. Testing the applicability of morphometric characterisation in discordant catchments to ancient landscapes: A case study from southern Africa.Geomorphology, 261, pp.162-176. Under review: Chapter 5: Richardson, J.C, Hodgson, D.M, Paton, D., Rawcliffe, A., Lang, A. Reconstruction of the erosional landscape development of southwestern Africa since the late Jurassic: implications for offshore sediment budgets, drainage basin evolution and the Mesozoic exhumation of southern Africa: where is all the sediment? Gondwana Research, in review. Author contributions: Richardson, J.C – Main author. Responsible for data collection, collation and interpretation, and for writing the manuscript. Repeating Rawcliffe’s 3DMove work and applying further constraints. Hodgson, D.M – Data discussion, and detailed manuscript review. Lang, A, Paton, D – Data discussion and manuscript review. Rawcliffe, A. – Manuscript review and initial 3DMove work as part of M.Geol project (Appendix 1). Chapter 6: Richardson, J.C., Vanacker, V., Lang, A., and Hodgson, D.M. Constraining landscape evolution using cosmogenic nuclide dating in an ancient setting: the pediments of the Western Cape, South Africa. ESPL, in review. Author contributions: Richardson, J.C – Main author. Responsible for data collection, collation and interpretation, and for writing the manuscript. Vanacker, V – guidance in the laboratory with data processing and interpretation, manuscript review. Hodgson, D.M and Lang, A – Data discussion, and detailed manuscript review. ‘Rivers are the gutters, down which flow the ruins of continents’ Leopold et al., 1964 Abstract Reconstructing drainage evolution has important implications for constraining long- term source-to-sink configurations. Furthermore, the analysis of ancient landscapes can support research in geomorphological concepts such as steady state and landscape evolution modelling. Techniques such as cosmogenic dating and morphometric analysis have rarely been applied to investigate the long-term drainage evolution of systems draining southern South Africa. This study focusses on the large-scale antecedent Gouritz catchment, Western Cape. Integrating provenance, cosmogenic and geomorphological (planform / morphometric indices) evidence indicates the trunk rivers are Cretaceous or older in age (i.e. principal topography of Mesozoic age). The trunk rivers fed huge volumes of sediment offshore during large-scale Mesozoic exhumation of southern South Africa with remnant coeval deposits in onshore extensional basins. However, there is a mismatch of onshore exhumation and offshore deposition and material is now found on the Falkland Plateau; separating source-to-sink by 6000 km. During exhumation, large scale pediments formed that grade to individual base levels and should be taken as individual features, not ‘surfaces’ correlated across the continent. A second phase of pediment evolution occurred in the mid-Cenozoic, dissecting the pediments and eroding small catchments into the Cape Fold Belt. These smaller order streams are strongly affected by the tectonic grain of the fold belt, whereas the trunk rivers are not, which is shown by variation in morphometric indices. The lack of correlation between catchment properties and denudation rates indicate the system has decoupled and that allogenic factors are now dominant. Due to the low rates of denundation, weathering is currently the rate limiting factor. However, during the early evolution of the catchment, tectonic activity was more dominant than the present day. The ancient catchment is in geomorphic steady-state, and highlights the need for further research into long-term landscape evolution, and linkage to offshore depositional records. Table of Contents Abstract ................................................................................................................................ vi Table of Contents .............................................................................................................. vii List of Figure ...................................................................................................................... xii List of Tables ................................................................................................................... xviii Chapter 1 Introduction ....................................................................................................... 1 1.1 Project rationale ........................................................................................................ 1 1.2 Thesis aims ................................................................................................................ 2 1.3. Thesis structure ....................................................................................................... 4 Chapter 2 Literature review .............................................................................................. 6 2.1 Long-term landscape evolution ............................................................................ 6 2.1.1 Classical geomorphology; theories of landscape evolution .......................... 7 2.1.2 Controlling factors ............................................................................................. 10 2.1.3 Drainage development ....................................................................................
Recommended publications
  • THE ROMANCE of BIBLE CHRONOLOGY Rev
    THE ROMANCE OF BIBLE CHRONOLOGY Rev. Martin Anstey, BA, MA An Exposition of the Meaning, and a Demonstration of the Truth, of Every Chronological Statement Contained in the Hebrew Text of the Old Testament Marshall Brothers, Ltd., London, Edinburgh and New York 1913. DEDICATION To my dear Friend Rev. G. Campbell Morgan, D.D. to whose inspiring Lectures on “The Divine Library in Human History” I trace the inception of these pages, and whose intimate knowledge and unrivalled exposition of the Written Word makes audible in human ears the Living Voice of the Living God, I dedicate this book. The Author October 3rd, 1913 FOREWORD BY REV. G. CAMPBELL MORGAN, D. D. It is with pleasure, and yet with reluctance, that I have consented to preface this book with any words of mine. The reluctance is due to the fact that the work is so lucidly done, that any setting forth of the method or purpose by way of introduction would be a work of supererogation. The pleasure results from the fact that the book is the outcome of our survey of the Historic move- ment in the redeeming activity of God as seen in the Old Testament, in the Westminster Bible School. While I was giving lectures on that subject, it was my good fortune to have the co—operation of Mr. Mar- tin Anstey, in a series of lectures on these dates. My work was that of sweeping over large areas, and largely ignoring dates. He gave his attention to these, and the result is the present volume, which is in- valuable to the Bible Teacher, on account of its completeness and detailed accuracy.
    [Show full text]
  • Influence of a Dam on Fine-Sediment Storage in a Canyon River Joseph E
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, F01025, doi:10.1029/2004JF000193, 2006 Influence of a dam on fine-sediment storage in a canyon river Joseph E. Hazel Jr.,1 David J. Topping,2 John C. Schmidt,3 and Matt Kaplinski1 Received 24 June 2004; revised 18 August 2005; accepted 14 November 2005; published 28 March 2006. [1] Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main- channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed.
    [Show full text]
  • PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
    PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • The Upper James River
    Waterproof The Upper James River The James River originates at the only class I or II rapids making it ideal will need to plan a river trip. This guide A Paddle Guide to the Upper confluence of the Jackson and Cowpasture for canoe or kayak trips at normal water includes locations of boat landings, rivers in Botetourt County and forms levels. The white water section below campsites, major rapids, and unique Virginia’s longest and most famous river. Glasgow includes a class III section for historic points of interests along the way. The upper section of the James River those interested in more technical water. This is a great resource for planning day is very scenic with stunning Blue Ridge trips as well as multi-day canoe camping mountain views. Dam releases on the This paddle guide covers the upper 64 expeditions. Jackson River flow releases ensure the miles section from the start of the James upper James River is typically run able river to the Cushaw Dam, just below all season. The first 60 miles contain Snowden. It includes everything a paddler Using This Map George Washington and Rapids (See River Safety panel for class system) Jefferson National Forrest* 30 Mile markers— numbered from start of the James Park* River counting down stream Landmark These maps have been orientated so that the river always flows from the bottom of the map to the top of the map. This allows paddlers to easily orient themselves in the river in terms of river right and left while paddling downstream. Bridge 1km Distance gauge 0 1mi North indicator Canal Boat launch Small boat launch Commercial campground River flow River Informal camping Appalachian Trail Hiking Trail *All land along river bank is private property unless noted otherwise.
    [Show full text]
  • Trip Planner
    National Park Service U.S. Department of the Interior Grand Canyon National Park Grand Canyon, Arizona Trip Planner Table of Contents WELCOME TO GRAND CANYON ................... 2 GENERAL INFORMATION ............................... 3 GETTING TO GRAND CANYON ...................... 4 WEATHER ........................................................ 5 SOUTH RIM ..................................................... 6 SOUTH RIM SERVICES AND FACILITIES ......... 7 NORTH RIM ..................................................... 8 NORTH RIM SERVICES AND FACILITIES ......... 9 TOURS AND TRIPS .......................................... 10 HIKING MAP ................................................... 12 DAY HIKING .................................................... 13 HIKING TIPS .................................................... 14 BACKPACKING ................................................ 15 GET INVOLVED ................................................ 17 OUTSIDE THE NATIONAL PARK ..................... 18 PARK PARTNERS ............................................. 19 Navigating Trip Planner This document uses links to ease navigation. A box around a word or website indicates a link. Welcome to Grand Canyon Welcome to Grand Canyon National Park! For many, a visit to Grand Canyon is a once in a lifetime opportunity and we hope you find the following pages useful for trip planning. Whether your first visit or your tenth, this planner can help you design the trip of your dreams. As we welcome over 6 million visitors a year to Grand Canyon, your
    [Show full text]
  • Geomorphometric Delineation of Floodplains and Terraces From
    Earth Surf. Dynam., 5, 369–385, 2017 https://doi.org/10.5194/esurf-5-369-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds Fiona J. Clubb1, Simon M. Mudd1, David T. Milodowski2, Declan A. Valters3, Louise J. Slater4, Martin D. Hurst5, and Ajay B. Limaye6 1School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, UK 2School of GeoSciences, University of Edinburgh, Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UK 3School of Earth, Atmospheric, and Environmental Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK 4Department of Geography, Loughborough University, Loughborough, LE11 3TU, UK 5School of Geographical and Earth Sciences, East Quadrangle, University of Glasgow, Glasgow, G12 8QQ, UK 6Department of Earth Sciences and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA Correspondence to: Fiona J. Clubb ([email protected]) Received: 31 March 2017 – Discussion started: 12 April 2017 Revised: 26 May 2017 – Accepted: 9 June 2017 – Published: 10 July 2017 Abstract. Floodplain and terrace features can provide information about current and past fluvial processes, including channel response to varying discharge and sediment flux, sediment storage, and the climatic or tectonic history of a catchment. Previous methods of identifying floodplain and terraces from digital elevation models (DEMs) tend to be semi-automated, requiring the input of independent datasets or manual editing by the user. In this study we present a new method of identifying floodplain and terrace features based on two thresholds: local gradient, and elevation compared to the nearest channel.
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Rivers, Canals, and Distributaries in Punjab, Pakistan
    Socio#Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wescoat, James L., Jr. et al. "Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan." Water Resources Research 54, 1 (January 2018): 464-479 © 2018 The Authors As Published http://dx.doi.org/10.1002/2017wr021486 Publisher American Geophysical Union (AGU) Version Final published version Citable link https://hdl.handle.net/1721.1/122058 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ PUBLICATIONS Water Resources Research RESEARCH ARTICLE Socio-Hydrology of Channel Flows in Complex River Basins: 10.1002/2017WR021486 Rivers, Canals, and Distributaries in Punjab, Pakistan Special Section: James L. Wescoat Jr.1 , Afreen Siddiqi2 , and Abubakr Muhammad3 Socio-hydrology: Spatial and Temporal Dynamics of 1School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, MA, USA, 2Institute of Data, Coupled Human-Water Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA, 3Lahore University of Management Systems Sciences, Lahore, Pakistan Key Points: This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Coupling historical geographic and Abstract statistical analysis makes an Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irri- important contribution to the theory gation in the mid-nineteenth century to partition and development of the international river basin in the and methods of socio-hydrology mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge Comparing channel flow entitlements with deliveries sheds measurement and data analytics in the early twenty-first century.
    [Show full text]
  • 5Site Assessment
    Site Assessment 55.1 Collecting Site Data 5.2 Analyzing and Interpreting Site Data 5.3 Project Site Risk Assessment 5.4 Document Key Design Considerations and Recommendations 5.5 Reference Reach: The Pattern for Stream- Simulation Design Stream Simulation Steps and Considerations in Site Assessment Sketch a planview map Topographic survey l Site and road topography. l Channel longitudinal profile. l Channel and flood-plain cross sections. Measure size and observe arrangement of bed materials l Pebble count or bulk sample. l Bed mobility and armoring. l Bed structure type and stability (steps, bars, key features). Describe bank characteristics and stability Conduct preliminary geotechnical investigation l Bedrock. l Soils. l Engineering properties. l Mass wasting. l Ground water. Analyze and interpret site data l Bed material size and mobility. l Cross section analysis. Flood-plain conveyance. Bank stability. Lateral adjustment potential. l Longitudinal profile analysis. Vertical adjustment potential. l General channel stability. Document key design considerations and recommendations. RESULTS Geomorphic characterization of reach. Engineering site plan map for design. Understanding of site risk factors and potential channel changes over structure lifetime. Detailed project objectives, including extent and objectives of any channel restoration. Design template for simulated streambed (reference reach). Figure 5.1—Steps and considerations in site assessment. Chapter 5—Site Assessment After verifying that the site is suitable for a crossing and will probably be suitable for stream simulation, the next step is to conduct a thorough site assessment. In this phase, you will collect the topographic and other data necessary for designing both the stream-simulation channel and the crossing structure and road approaches.
    [Show full text]
  • Dayton Valley Development Guidelines Final Draft
    FINAL DRAFT Dayton Valley Development Guidelines Supplement to the Dayton Valley Area Drainage Master Plan prepared for August Lyon County | Storey County | 2019 Carson Water Subconservancy District i FINAL DRAFT Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Background and Rationale ............................................................................................................ 3 1.1.1 More Frequent Flooding ....................................................................................................... 3 1.1.2 Larger Flood Peaks ................................................................................................................ 3 1.1.3 Scour and Erosion ................................................................................................................. 3 1.1.4 Flow Diversion ....................................................................................................................... 3 1.1.5 Flow Concentration ............................................................................................................... 3 1.1.6 Expanded Floodplains ........................................................................................................... 3 1.1.7 Reduced Surface Storage ...................................................................................................... 3 1.1.8 Decreased Ground Water Recharge ....................................................................................
    [Show full text]
  • Rainfall Thresholds for Flow Generation in Desert Ephemeral
    Water Resources Research RESEARCH ARTICLE Rainfall Thresholds for Flow Generation 10.1029/2018WR023714 in Desert Ephemeral Streams 1 1 2 1 Key Points: Stephanie K. Kampf G!), Joshua Faulconer , Jeremy R. Shaw G!), Michael Lefsky , Rainfall thresholds predict 3 2 streamflow responses with high Joseph W. Wagenbrenner G!), and David J. Cooper G!) accuracy in small hyperarid and 1 2 semiarid watersheds Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA, Department 3 Using insufficient rain data usually of Forest and Rangeland Stewardship, Colorado State University, FortCollins, Colorado, USA, USDA Forest Service, Pacific increases threshold values for larger Southwest Research Station, Arcata, California,USA watersheds, leading to apparent scale dependence in thresholds Declines in flow frequency and Rainfall thresholds for streamflow generation are commonly mentioned in the literature, but increases in thresholds with drainage Abstract area are steeper in hyperarid than in studies rarely include methods for quantifying and comparing thresholds. This paper quantifies thresholds semiarid watersheds in ephemeral streams and evaluates how they are affected by rainfall and watershed properties. The study sites are in southern Arizona, USA; one is hyperarid and the other is semiarid. At both sites rainfall and 3 2 2 Supporting Information: streamflow were monitored in watersheds ranging from 10- to 10 km . Streams flowed an average of 0-5 • Supporting Information 51 times per year in hyperarid watersheds and 3-11 times per year in semiarid watersheds. Although hyperarid sites had fewer flow events, their flow frequency (fraction of rain events causing flow) was higher than in Correspondence to: 2 semiarid sites for small ( < 1 km ) watersheds.
    [Show full text]